Editor-in-Chief
TheodoreE.Simos
AcademicianLaboratoryofAppliedMathematicsforSolvingInterdisci- plinaryProblemsofEnergyProduction,UlyanovskStateTechnicalUniver- sity,Ulyanovsk,RussianFederation,
SouthUralStateUniversity,Chelyabinsk,Russia,
Sectionof Mathematics,Departmentof CivilEngineering, Democritus UniversityofThrace,Xanthi,Greece
AssociateEditors L.Aceto,Pisa,Italy
C.J.S.Alves,Lisbon,Portugal
S.AmatPlata,Cartagena(Murcia),Spain P.Amodio,Bari,Italy
I.K.Argyros,Lawton,Oklahoma,USA M.Asghari,Tehran,Iran
S.AugustaSantos,Campinas,Brazil L.Barletti,Firenze,Italy
R.Barrio,Zaragoza,Spain
I.Boglaev,PalmerstonNorth,NewZealand L.Bonaventura,Milano,Italy
E.Braverman,Calgary,Alberta,Canada L.Brugnano,Firenze,Italy
K.Burrage,Brisbane,Queensland,Australia S.Busquier,Cartagena(Murcia),Spain R.Cavoretto,PhD,Torino,Italy X.-H.Chang,Wuhan,China
C.Christara,Toronto,Ontario,Canada E.R.Csetnek,Vienna,Austria D.-M.Dang,Brisbane,Australia F.DeTeranVergara,Leganés,Spain M.Dehmer,Hall,Tyrol,Austria S.Dempe,Freiberg,Germany M.Donatelli,Varese,Italy M.Dumbser,Trento,Italy J.Fliege,Southampton,UK J.M.Framinan,Sevilla,Spain L.A.Grzelak,Delft,Netherlands N.Guglielmi,L’Aquila,Italy H.Hamel,Bozen,Italy
W.Hereman,Golden,Colorado,USA Z.H.Huang,Tianjin,China
F.Iavernaro,Bari,Italy I.G.Ivanov,Sofia,Bulgaria N.Ivanova,Kiev,Ukraine U.Kaehler,Aveiro,Portugal Z.Kalogiratou,Kastoria,Greece
C.Y.Kaya,Adelaide,SouthAustralia,Australia O.Koch,Wien,Austria
N.A.Kudryashov,Moscow,RussianFederation T.H.Lee,Jeonju-Si,TheRepublicofKorea L.Liebrock,Socorro,NewMexico,USA M.-Z.Liu,Harbin,China
M.Lukacova,Mainz,Germany C.Magherini,Pisa,Italy
M.Massoudi,Pittsburgh,Pennsylvania,USA
F.Mazzia,Bari,Italy
K.Meerbergen,Heverlee,Belgium G.V.Milovanovic,Belgrade,Serbia S.Mitchell,Limerick,Ireland L.H.A.Monteiro,SaoPaulo,SP,Brazil S.Morigi,Bologna,Italy
B.Neta,Monterey,California,USA D.O’Regan,Galway,Ireland
J.H.Park,Kyongsan,TheRepublicofKorea M.Parks,Albuquerque,NewMexico,USA M.Perc,Maribor,Slovenia
M.S.Petkovic,Niš,Serbia T.Preis,Coventry,England,UK
V.Y.Protasov,Moscow,RussianFederation C.Rohde,Stuttgart,Germany
R.Ruiz,Valencia,Spain
K.P.Sendova,London,Ontario,Canada Y.D.Sergeyev,Rende,Italy
K.K.Sharma,Chandigarh,India H.Shen,Ma’anshan,China Y.Shi,Tianjin,China P.Solin,Reno,Nevada,USA S.Stevic,Belgrade,Serbia T.Stützle,Brussels,Belgium J.Tanimoto,Fukuoka,Japan
T.Terlaky,Bethlehem,Pennsylvania,USA G.Teschke,Neubrandenburg,Germany C.Tsitouras,Psahna,Greece
F.E.Udwadia,LosAngeles,California,USA A.Vaidya,Montclair,NewJersey,USA C.VazquezCendon,ACoruna,Spain R.Verma,Texas,USA
S.Villa,Milano,Italy
M.Vynnycky,Stockholm,Sweden Z.Wang,Fukuoka,Japan G.-C.Wu,Nanjing,China D.C.Xu,Beijing,China J.Y.Yuan,Curitiba,PR,Brazil C.Zhang,Wuhan,China E.Zio,Milan,Italy EmeritusEditor
M.R.Scott,Virginia,USA
Publisher
D.Sugrue
1/10/22, 1:38 PM Applied Mathematics and Computation
https://www.scimagojr.com/journalsearch.php?q=25170&tip=sid&clean=0 1/4
also developed by scimago: SCIMAGO INSTITUTIONS RANKINGS Scimago Journal & Country Rank
Home Journal Rankings Country Rankings Viz Tools Help About Us
Applied Mathematics and Computation
COUNTRY United States
SUBJECT AREA AND CATEGORY
Mathematics
PUBLISHER Elsevier Inc.
H-INDEX
145
PUBLICATION TYPE Journals
ISSN
00963003, 18735649
COVERAGE 1975-2021
INFORMATION
Homepage
How to publish in this journal
SCOPE
Applied Mathematics and Computation addresses work at the interface between applied mathematics, numerical computation, and applications of systems – oriented ideas to the physical, biological, social, and behavioral sciences, and emphasizes papers of a computational nature focusing on new algorithms, their analysis and numerical results. In addition to presenting research papers, Applied Mathematics and Computation publishes review articles and single–topics issues.
Join the conversation about this journal
Enter Journal Title, ISSN or Publisher Name
Universities and research institutions in United States
Applied Mathematics Computational Mathematics
Quartiles
1/10/22, 1:38 PM Applied Mathematics and Computation
https://www.scimagojr.com/journalsearch.php?q=25170&tip=sid&clean=0 2/4
FIND SIMILAR JOURNALS
1
Computational and Applied Mathematics
USA
70%
similarity
2
Journal of Applied
Mathematics and Computing DEU
65%
similarity
3
Mathematical Modelling and Analysis
LTU
65%
similarity
4
International Jou Applied and Com IND
64%
similar
SJR
The SJR is a size-independent prestige indicator that ranks journals by their 'average prestige per article'. It is based on the idea that 'all citations are not created equal'. SJR is a measure of scienti c in uence of journals that accounts for both the number of citations received by a journal and the importance or prestige of the journals where such citations come from It measures the scienti c in uence of the average article in a journal it expresses how central to the global
Total Documents
Evolution of the number of published documents. All types of documents are considered, including citable and non citable documents.
Year Documents 1999 170 2000 191 2001 198 2002 339
Citations per document
This indicator counts the number of citations received by documents from a journal and divides them by the total number of documents published in that journal. The chart shows the evolution of the average number of times documents published in a journal in the past two, three and four years have been cited in the current year.
The two years line is equivalent to journal impact factor
™ (Thomson Reuters) metric.
Cites per document Year Value Cites / Doc. (4 years) 1999 0.283 Cites / Doc. (4 years) 2000 0.346 Cites / Doc. (4 years) 2001 0.441 Cites / Doc. (4 years) 2002 0.548 Cites / Doc. (4 years) 2003 0.560 Cites / Doc. (4 years) 2004 0.674 Cites / Doc. (4 years) 2005 0.874 Cites / Doc. (4 years) 2006 1.028 Cites / Doc. (4 years) 2007 1.108 Cites / Doc. (4 years) 2008 1.180 Total Cites Self-Cites
Evolution of the total number of citations and journal's self-citations received by a journal's published documents during the three previous years.
Journal Self-citation is de ned as the number of citation from a journal citing article to articles published by the same journal.
Cites Year Value
S lf Ci 1999 36
External Cites per Doc Cites per Doc
Evolution of the number of total citation per document and external citation per document (i.e. journal self- citations removed) received by a journal's published documents during the three previous years. External citations are calculated by subtracting the number of self-citations from the total number of citations received by the journal’s documents.
% International Collaboration
International Collaboration accounts for the articles that have been produced by researchers from several countries. The chart shows the ratio of a journal's documents signed by researchers from more than one country; that is including more than one country address.
Citable documents Non-citable documents
Not every article in a journal is considered primary research and therefore "citable", this chart shows the ratio of a journal's articles including substantial research (research articles, conference papers and reviews) in three year windows vs. those documents other than research articles, reviews and conference papers.
1999 2002 2005 2008 2011 2014 2017 2020 0
0.4 0.8 1.2
1999 2002 2005 2008 2011 2014 2017 2020 0
700 1.4k 2.1k
Cites / Doc. (4 years) Cites / Doc. (3 years) Cites / Doc. (2 years)
1999 2002 2005 2008 2011 2014 2017 2020 0
0.9 1.8 2.7 3.6 4.5
1999 2002 2005 2008 2011 2014 2017 2020 0
5k 10k
1999 2002 2005 2008 2011 2014 2017 2020 0
2 4 6
1/10/22, 1:38 PM Applied Mathematics and Computation
https://www.scimagojr.com/journalsearch.php?q=25170&tip=sid&clean=0 3/4
Metrics based on Scopus® data as of April 2021
Maedeh 1 year ago hi
reply
Leave a comment Name
(will not be published)
Year International Collaboration Year International Collaboration
1999 14.12 Documents Year Value
N i bl d 1999 0
Cited documents Uncited documents
Ratio of a journal's items, grouped in three years windows, that have been cited at least once vs. those not cited during the following year.
Documents Year Value
Uncited documents 1999 294 Uncited documents 2000 315 Uncited documents 2001 361 Uncited documents 2002 393
←Show this widget in your own website Just copy the code below and paste within your html code:
<a href="https://www.scimag
SCImago GraphicaSCImago GraphicaSCImago Graphica Explore, visuallyExplore, visually
Explore, visually
communicate and makecommunicate and make communicate and make sense of data with our sense of data with our sense of data with our newnewnew free toolfree tool
free tool... Get it
M
Melanie Ortiz 1 year ago
Dear Maedeh, welcome and thanks for your participation! Best Regards, SCImago Team
M
SCImago Team36 5k
1999 2002 2005 2008 2011 2014 2017 2020 0
2.5k 5k
1/10/22, 1:38 PM Applied Mathematics and Computation
https://www.scimagojr.com/journalsearch.php?q=25170&tip=sid&clean=0 4/4
Submit
The users of Scimago Journal & Country Rank have the possibility to dialogue through comments linked to a speci c journal. The purpose is to have a forum in which general doubts about the processes of publication in the journal, experiences and other issues derived from the publication of papers are resolved. For topics on particular articles, maintain the dialogue through the usual channels with your editor.
Developed by: Powered by:
Follow us on @ScimagoJR
Scimago Lab, Copyright 2007-2020. Data Source: Scopus®
reCAPTCHA
I'm not a robot
Privacy - Terms
Applied Mathematics and Computation 411 (2021) 126490
ContentslistsavailableatScienceDirect
Applied Mathematics and Computation
journalhomepage:www.elsevier.com/locate/amc
Investigating the effects of viscosity and density ratio on the numerical analysis of Rayleigh-Taylor instability in two-phase flow using Lattice Boltzmann method: From early stage to equilibrium state
Bahrul Jalaali
a, Muhammad Ridlo Erdata Nasution
b, Kumara Ari Yuana
c, Deendarlianto
d,e, Okto Dinaryanto
a,∗aDepartment of Mechanical Engineering, Faculty of Aerospace Technology, Institut Teknologi Dirgantara Adisutjipto, Blok R Lanud Adisutjipto, Yogyakarta 55198, Indonesia
bDepartment of Aerospace Engineering, Faculty of Aerospace Technology, Institut Teknologi Dirgantara Adisutjipto, Blok R Lanud Adisutjipto, Yogyakarta 55198, Indonesia
cDepartment of Informatics, Faculty of Computer Science, Universitas Amikom Yogyakarta Jl Ringroad Utara, Yogyakarta 55281, Indonesia
dDepartment of Mechanical and Industrial Engineering, Faculty of Engineering, Universitas Gadjah Mada, Jalan Grafika 2, Yogyakarta 55281, Indonesia
eCenter for Energy Studies, Universitas Gadjah Mada, Sekip K-1A Kampus UGM, Yogyakarta 55281, Indonesia
a rt i c l e i nf o
Article history:
Received 25 June 2020 Revised 23 June 2021 Accepted 28 June 2021
Keywords:
Liquid-liquid two-phase flow Rayleigh-Taylor instability Lattice-Boltzmann method Viscosity
Density ratio
a b s t ra c t
Thegravitationalliquid-liquidtwo-phaseflowwasnumericallyinvestigatedbyusinglat- tice Boltzmannmethod(LBM). The methodwas implementedforanalyzing amodelof Rayleigh-TaylorInstability(RTI).Thefeasibilityofthispresentnumericalapproachwasin- vestigatedbyperformingconvergencetest,andvalidatingtheobtainedresultswiththose obtained from experiments as well as other preceding numerical methods. Qualitative andquantitativecomparisonswereexamined,wherebygoodagreementsarenotedforall cases. Parametricstudies werealsoconductedby varyingbothofReynoldsand Atwood numbers toinvestigatetheeffects ofviscosityand density ratioonthebehavior offlu- ids interaction.Basedontheobtainedoutcomesofthisnumericalapproach, thepresent LBMwasabletosuccessfullysimulatethecompletephenomenaduringRTI,i.e.:thelinear growth,secondaryinstability,bubblerisingandcoalescence,and liquidbreak-up,includ- ingturbulentmixingconditionsaswellastheequilibriumstate.Thefindingobtainedfrom thisworkmightbebeneficialintheinvestigationofparametricbehaviorindesignofpro- cessesequipmentsuchasforseparatordesign.
© 2021ElsevierInc.Allrightsreserved.
1. Introduction
Theliquid-liquidtwo-phaseflowisoftenencountered inmanyapplicationswithinpetroleumindustries[1–3],e.g.:oil- waterseparationprocess [4,5].Thegravitationalliquid-liquidtwo-phaseflowhasbeenbecomingtheobjectofmultiphase studies andisrelatedtothedemandofoilprocess operation[6–8].Flow instabilitieswerefrequentlyfoundintheliquid-
∗Corresponding author at: Department of Mechanical Engineering, Faculty of Aerospace Technology, Institut Teknologi Dirgantara Adisutjipto.
E-mail address: [email protected] (O. Dinaryanto).
https://doi.org/10.1016/j.amc.2021.126490 0 096-30 03/© 2021 Elsevier Inc. All rights reserved.
B. Jalaali, M.R.E. Nasution, K.A. Yuana et al. Applied Mathematics and Computation 411 (2021) 126490
Fig. 1. The growth of RTI phenomena: (a) first stage, (b) second stage, (c) third stage, and (d) fourth stage.
liquidtwo-phaseflow[2],forinstance,fluidmixingandseparationingravityseparatordevices[8].Theoperationofgravity separatorplaysanimportantroleforseparatingfluidphasesbeforetransportingintofacilities[9].Inthedesigndevelopment offluidseparationequipment,costreductionbecomesoneofmajorconcerns.Thiscanbeachievedbyminimizingthespace andweightofequipment,aswell asacceleratingtheseparationprocess[3].Severalcomplexitiesare particularlyfound in the design ofseparator, suchas theconsideration ofresidenceandsurge timeswhich relatesto fluid’s equilibriumstate anditsperformance [7,10], whereasthoseparameters areinfluencedby physicalpropertiessuch asviscosityanddensity [10,11]andtherateofachievingtheequilibriumstateispresentedastheinstabilityrate[12–14].Hence,itisimportantto improvetheunderstandingofinstabilitybehavioroffluidinteractioninthedesignconsiderationofseparator.
The gravityseparator involvesa phenomenonwhereby thedenser fluid flowsdownwardthrough thelighter fluid due to the body force of gravity [12, 13, 15,16]. The presence of body force instratified multiphase flow withzero velocity gradientemergencesthebuoyancy-driveninstabilitycalledRayleigh-TaylorInstability(RTI).TheRTIoccurswhentwofluids withdifferentdensityhaveanopposingtrendbetweenpressureanddensitygradients[15].Itleadstoaregimeofturbulent orchaoticmixingoftwofluids. Themixingisattainedafterseveralstagesasfollows:(i)initialperturbationwave growth (Fig.1(a));(ii)themovementofheavierfluidintothelighterfluidintheformofround-toppedbubblesduetotheirdiffer- entdensities(Fig.1(b)); (iii)thedevelopmentofspikesandHelmholtzinstabilityphenomenon(Fig.1(c));(iv)theforming ofturbulent regime (Fig.1(d)) [17–20].The presenceofturbulentmixinggenerates vibrationeffects[17,21],such asres- onance, whichmayleadto significantdamage tothedevice [1].Consequently,the aforementionedphenomenashouldbe consideredinthedesignofgravityseparator.Theflowinstabilitybehaviorisimportanttobecomprehensivelyinvestigated fromitsinitialstatetothecompleteequilibriumstate(i.e.thecompleteseparationbetweentwofluids).Whereasthedepth understandingofinstabilitybehaviorindesignconsiderationofoil-gasdevicesisindispensablesinceinstabilityisanunpre- dictedphenomenon.However,tothebestofauthors’knowledge,thereexistonlyafewresearchesinvolvingtheequilibrium stateofRTI.
Severalpreviousworkshadbeenanalyticallycarriedoutbyusinglinearstabilitytheory[15].However, someemployed assumptions yielded inaccurate results. Waddell et al.[22] experimentally investigated RTI by varying the density ratio using aheptane-water mixture.Intheearly stages,spikesandbubbleswere formed andtheinstabilityratewasgrowing exponentially. Meanwhile, the instability rateinthelate stages canbe considered to increase linearly.In thisregard,the similar trendswereparticularlyfoundatlow ReynoldnumberintheresearchofLewis[23]andWilkinsonetal.[24].The experimental resultsclarifiedthattheanalyticalsolutionwasonlyvalidfortheearlystagesofRTI.Theanalytical solution started to deviate at the late stages of RTI since the forming of the turbulent mixing regime. The flow behavior in the turbulentmixingdependedonthefluidproperties,i.e.:viscosityanddensityratio,numericallyrepresentedbyReynoldsand Atwoodnumbers,respectively.Bothpropertieswerealsofoundtoaffecttheinstabilityrate[22,24–26].Thus,RTIbehavior needstobecarefullyinvestigatedbymeansofvaryingthevalueofReynoldsandAtwoodnumbers.However,thiswouldbe quitecumbersometodoinexperiments.
The investigation of material properties and behavior including instability phenomenon can be efficiently performed through the useofnumerical analysis[1, 27]. InRTI,numerical analysisisoften performedby eitherconventional mesh ormesh-lessmethods[16,17,28,48,49].Numerousnumericalmethodshadbeenabletosuccessfullysimulatetheinitial stagesofRTI,forinstance,thephase-fieldmethod[21],finiteelementapproach[29],radialbasisfunction [30]andvortex incell[31].Nevertheless,thosestudieswere stillnot abletosimulateRTIintheequilibriumstate,whilenumericalinsta- bilitywasstill foundwhensolvingacomplexgoverningequation.Leeetal.[21]usedphase-fieldmethodandsuccessfully generatedtheRTItoanequilibriumstate.Ontheotherhand,itlackedaclearphysicalexplanation.
The particle-based method that has been developed into a powerful and efficient method for an immense range of fluid casesis Lattice BoltzmannMethod (LBM) [32–34]. LBM has advantagesin completely linear ofconvective operator
2
B. Jalaali, M.R.E. Nasution, K.A. Yuana et al. Applied Mathematics and Computation 411 (2021) 126490
(streamingprocess) thannon-linearNavier-Stokes equations,whichmakes itlessdifficulttosolve. Furthermore,LBMuti- lizestheequationofstates,andthisyieldsthatPoissonequationisnotnecessarilytobesolvedinordertoobtainpressure terms. LBMis ableto formulatethe simplemechanicalrules fordeclaringthe complexboundarycondition[34–36].Sev- eral LBM methods hadbeen developedto approximate multiphase flow cases.Gunstensenet al.proposed color-gradient LBM [37].In thestudy,inaccurateresults ofmultiphaseflow wereobtained. The free-energyLBM wasproposed by Swift et al.[38] byutilizingmore complexequation andlack ofGalileaninvariance whichwasnumericallyinefficient. Further, both color-gradientandfree-energymethodsneed tobenumericallyimproved [34,39].Thepseudopotential methodwas developedby Shan-Chen(SC).The methodpossessedseveraladvantagesinbothnumericalefficiencyandsimplergovern- ingequation.Yet,thermodynamicsconsistency,numericalaccuracy,andlimitedReynoldsnumberbecometheweakness of thismethod[34,39–40]. Heetal.[17]introduced thenovelLBM (HCZ)to overcomethelimitationoftheSC method.The method utilizedan indexfunctionto define afluid interface. Furthermore,HCZisableto facilitatea higherdensityratio andReynoldsnumber[41].CitedfromHuangetal.[42],HCZmodelcan beimprovedbymodifying theforce schemeinto that of Chao etal.[43]. TheLBM for RTIcaseshadbeen previously employed by Fakhariet al.[44].The studywasable tosimulateRTIathighReynoldsandAtwoodnumbers.However, theinvestigationofequilibriumstatewasnotperformed.
TheimplementationoftheforcingschemeisusedinthisstudytoanalyzethebehaviorRTIandbecamethedistinguishand improvisationaspectcomparedwiththerelated-previousstudies.
The aim of thispaperis to conduct the physicalphenomena analysisof RTIfrom early stage to equilibriumstate by using unconventional numericalmethod of fluid. The analysis employs a novel perspective in comparisonwith previous studiesforamodelofimmiscibleliquid-liquidtwo-phaseflowinaccordancewithpracticalcase.Assessmentsoftheimpact ofviscosityanddensityratioto thefluidinstability isperformedwherebyviscosityisrepresentedasReynoldswhilethat ofdensityratioisrelatedtoAtwoodnumbers.Inthispaper,RTIsimulationiscarriedout untiltheRTIlate-stageorafter theemerged ofsecondaryinstabilityusingmodified-LBM.TheRTIintheturbulentmixingregimeconsistsofseveralfluid phenomenasuch asbubbleandspike coalescence,emerging ofsecondary instabilityandliquid break-up.Thispaper also aims to enrich the study of late-stage instability behavior in liquid-liquid two-phase numerical model, which is, to the bestofauthors’knowledge,noteasilyfound inthecurrentliterature.Inordertoexaminetheplausibilityoftheproposed approach, theresultsof presentanalysis arecompared tothose ofother conventional meshmethodaswell asmess-less method.
2. Methods
TheobservationdomainofLBMisamesoscopicscalethatconsidersasetofparticlesasaunitwithoutconsideringthe behaviorofeachparticle[32].Inordertodeterminethepropertyofthesetofparticles,adistributionfunctionisintroduced.
Thefunctionisdefinedasastatisticaldescriptionofasystemthatcharacterizesthepropertiesofparticles.Byapplyingthe law of similarity, dimensionless parameters can be used to link between the propertiesin mesoscopic and macroscopic domains[32,33].
In the presentanalysis, a discrete distribution function is employed for simulating liquid-liquidflow. The simulation adopts the HCZ model,which islinked to theauthors’ previous work of Kumaraet al.[48]. It hasa limitation that the densityratiobetweenbothfluidsshouldbe morethan0.1[42].Inthe caseoftheinvestigationoftwo phaseswithhigh- densityratio, suchasliquid-gasflow, extension analyses employingLBM can be foundin theresearches ofFakhari etal.
[44]andGeier etal.[50].Itisalsoworthwhileto considerseveralnumericalanalyses intheframeworkoffiniteelement methodinRefs.[51,52].
In thisproposedmethod,the analysisofliquid-liquidtwophase flowutilizes twodistribution functionsnamelyindex distribution functionandpressuredistributionfunction asexpressedinEqs.(1)and2,respectively. Theindexdistribution functionperformsasatrackinginterface,whilepressuredistributionfunctionisbeneficialtoanalyzethephysicalproperties.
Twosourceterms(i.e.Sfi(x,t)andSgi(x,t))areincludedinthedistributionfunctions.BothtermsaredefinedinEqs.(3)and4. Inthoseequations,thetermi(u)isdescribedas fiφeq,whereby
ϕ
denotesindexfunction(Eq.(5)).Theindexfunctionshaveto beexplicitlydefinedto distinguishbetweenthevalue ofeachfluid phase.The valueof
ϕ
h andϕ
l can betheoretically obtainedbyMaxwellconstruction.Thevalueofϕ
handϕ
l areshownasfollows:φ
={
f luid1,φ
hinter f acial region,
φ
h<φ
<φ
lf luid2,
φ
lThefunctionof
ψ
(ϕ
),includedinEq.(3),isnecessaryintwo-phaseflowsimulationstoimitatethephysicalintermolec- ularinteractionintermsofparticlecollisions.Influidsproblem,theparticlecollisionsareinfluencedbysurfacetensionFsandeffectiveforce
ψ
(ρ
).fi
(
x+eiδ
t,t+δ
t)
−fi(
x,t)
=− fi(
x,t)
−fieq(
x,t)
τ
f +Sfi(
x,t) δ
t (1)gi
(
x+eiδ
t,t+δ
t)
−gi(
x,t)
=−(
gi(
x,t)
−gieq(
x,t) )
τ
g +Sgi(
x,t) δ
t (2)3
B. Jalaali, M.R.E. Nasution, K.A. Yuana et al. Applied Mathematics and Computation 411 (2021) 126490
Sf
(
x,t)
=−i
(
u)
2τ
f−1 2τ
f(
ei−u)
.∇ψ ( φ )
RT (3)
Sg
(
x,t)
=−2τ
g−12
τ
g(
ei−u)
.[i
(
u)
.(
Fs+G)
−(
i(
u)
−i
(
0) ) ∇ψ ( ρ )
] (4)φ
=fi (5)ρ ( φ )
=1+φ
−φ
lφ
h−φ
lρ
1ρ
2 −1(6)
v ( φ )
=1+φ
−φ
lφ
h−φ
lv
1v
2−1
(7)
p=
gi−u
2.
∇ψ ( ρ ) δ
t (8)u=
eigi+RT2
(
Fs+G) δ
tρ
RT (9)In Eq.(4),themultiplication ofa considerablysmall term(i(u) − i(0))and effectiveforce
∇ψ
(ρ
) is done inordertoreducenumericalerror[43].Itisnotedthati(u)−i(0)iscomparabletotheMachnumberinweaklyincompressible limit.ThedensityandkinematicviscosityareexpressedinEqs.(6)and7,asafunctionof
ϕ
.Inbothequations,thedensitiesρ
1andρ
2arethoseoffluidswithhigherandlowerdensityvalue,respectively.Thepressuredistributionfunction(gi)isthen utilizedtocalculatepressureandmacroscopicvelocityasdefinedinEqs.(8)and9.The distributionfunctionsinequilibriumconditionareshowninEqs. (10)and11.Here, thefunctionsareobtainedby settingtherelaxationtime
τ
fandτ
gtobeequal.Therelaxationtimeτ
islinkedtothekinematicviscositywhichisdefinedas
υ
= c32(τ
− 12)δ
t.Itisnoteworthythat,inEq.(10),c=√RT.ThetermsofR,Tandwiarethegasconstant,temperature, andweightingfactors,respectively.
fieq
(
x,t)
=wiφ
1+3ei.u
c2 +9
(
ei.u)
2 2c4 −3u22c2 (10)
geqi
(
x,t)
=wip+
ρ
RT 3ei.uRTc2 +9
(
ei.u)
2 2RTc4 − 3u22RTc2 (11)
F=Fs+G=
κρ∇ ∇
2φ
+ g.ρ
(12)Inthisstudy,theexternalandbody forcesare consideredthroughtheuseofgravityforce(G)andsurfacetension(Fs).
The sumoftotalforcesisgiveninEq.(12).Theterm
κ
relatesthemagnitudeofsurfacetension.Numericalmodelisob-served in two-dimensionalspace withninedirections ofmotion(D2Q9).The weighting factorof theconfigurationis ex- pressedas:
wi=
(
4/9)
, i=0(
1/9)
, i=1,2,3,4(
1/36)
, i=5,6,7,8Thecorrespondingdiscretevelocities(ei)foreachdirectioncanbedefinedasfollows:
ei=
⎧ ⎨
⎩
(
0,0)
, i=1(
sinα
i,cosα
i)
, i=2, 4, 6, 8;α
i=π
−π4i√2
(
sinα
i,cosα
i)
, i=3, 5, 7, 9⎫ ⎬
⎭
The numericalmodel utilizedinthisnumericalworks isshowninFig. 2.Inthisfigure, vx andvy denotethevelocity components,LandHrespectivelyindicatethedomainlengthandheight,gisthegravitationalforce,whilefa,fb,ga andgb arethedistributionfunctions.
Aperturbationwaveissubjectedtotheinterfacebetweentwofluids.ThewaveisexpressedinEq.(13),wherebyAisthe wave amplitudeandndenotes thewavelength.Asmallinitialperturbation wave(y)isalsogivenby Eq.(13)asaninitial conditionwherexandnisthelengthandnumberofwave,respectively.Inthemodel,bounce-backboundaryconditionsare appliedatthetopandbottomwalls.Therightandleftsidesofthemodelareunderperiodicboundaryconditions(Eq.(14))
4
B. Jalaali, M.R.E. Nasution, K.A. Yuana et al. Applied Mathematics and Computation 411 (2021) 126490
Fig. 2. Numerical model of RTI simulation.
illustratedinFig.2.Furthermore,gravityforceisappliedinthefluidinterfaceaswell.
y= H
2 +0.1Ancos
2π
xn
(13)
fa= fb;ga=gb (14)
Thesimulationresultsarepresentedindimensionlessquantities.Theutilizeddimensionlessparametersaretimestep(ts), Reynoldsnumber(Re),andAtwoodnumber(At).TheReynoldsnumberistheratiobetweeninertiaandviscousforces.Itis expressed byRe= L√
Lg
ν . Meanwhile,the Atwoodnumberwhichrelatedto thedensityratiobetweenboth fluidscanbe definedasAt=ρρ11−+ρρ22.Thetimedomainischaracterizedusingtimesteps(ts)expressedasT=
L g . 3. Resultsanddiscussion
In thepresent study,the observationdomainis shownin Fig.3.In thisfigure, schematicrepresentationof spikeand bubblewithrespecttothepositionisgiven.Theanalysiswillevaluatetheheightofthebubble(hb)andspike(hb)amplitude atcertaintimesteps.
Agridindependencetestwasfirstlyconducted.Thetestwascarriedoutbyvaryingthenumberoflatticeswhilekeeping the physicalparametersatconstant values.Thistest aimsto providethevalue ofindependencelatticeswherethecalcu- lations start to obtain convergent results. The test utilizestwo caseswith differentReynolds number(i.e. Re= 256 and Re=1024).Meanwhile,thetotalnumberoflatticesarevariedasfollows:25,600;40,000;65,536;90,000;and122,500.The simulationswere carriedoutbyusinggeometrywithaspectratioof1:4forLandHvalues.TheresultsaregiveninFig.4, wherebyonlyasmallchangeofthespikeamplitudeexistsintheresultsofbothRe=256andRe=1024forlatticenumber of65,536 andabove.Meanwhile, thenumericaltime tendstoincrease exponentiallyastheincrease oflatticesnumberas clearlyshown inFig.5. Theaforementioned factsconcludethat the numberoflatticesof 65,536 canbe regarded asthe optimumvalueinthisanalysis,andwillbeusedfortherestcalculation.
Inthispaper,thevalidationsare performedby comparingtheresultsobtainedfromthecurrentanalysiswiththoseof other numerical methods [21, 31, 44–46] as well as available experiment data[22,24] from open literature. The spikes and bubblepositions are considered asquantitative parameters.Numerical validations were conductedby simulatingthe RTI model underthe flow conditionof Re= 3000 andAt = 0.5. Both LBM-based andnon-LBMmethods are utilized as comparingmethods.Inthisstudy,thenon-LBMmethodsusedforcomparisonpurposeareVortexincellmethod[31]and finitedifference-phasefieldmeshlessmethod[20].ThevalidationresultsareshowninFig.6.
In thecaseofvalidationwiththe experimentalstudy[22],anumerical modelwithphysicalparametersof At = 0.156 andRe= 6000isemployed. Besides,theexperimental studyconductedbyWilkinson covers theearly stagesofRTIwith At=0.15[24].Thenumericalandexperimental resultsarequantitatively andqualitativelycompared.Here, themagnitude ofbubbleamplitudeisquantitativelystudiedintermsofspikeandbubbleposition.Fig.7ashowsthecomparisonofbubble andspikepositionbetweennumericalandexperimentalresults.Fromthisfigure,atTofabout0.2s,thedeviationbetween both resultstends to increase. Thisphenomenon occursdue to the fluidsturbulence mixingcondition. However, within
5
B. Jalaali, M.R.E. Nasution, K.A. Yuana et al. Applied Mathematics and Computation 411 (2021) 126490
Fig. 3. Schematic definition of bubble ( h b) and spike ( h s) amplitude.
Fig. 4. The value of spike amplitude for varied number of lattice at particular Reynolds number.
Fig. 5. The duration of simulation at certain number of lattice.
6
B. Jalaali, M.R.E. Nasution, K.A. Yuana et al. Applied Mathematics and Computation 411 (2021) 126490
Fig. 6. Simulation results for bubble and spike position of current model compared with others numerical study.
Fig. 7. a) The spike and bubble position of simulation and experimental of Ref. [22] result comparison. b) The amplitude of bubble comparison in early stages RTI.
theearly stage(T=0to 0.2),both simulationandexperimental valuesareingoodagreements.Fig.7bshowsthebubble amplitudeofpresentstudycomparedwiththoseofRefs.[22]and[24].Goodagreementsarealsoobservedduringtheearly stage of RTI.Furthermore,thequalitative comparisonresults areshownin Fig.8.In thisfigure,the visual representation ofearly stageRTIissuccessfullysimulated.Thisfact canbeexhibitedby asimilarpatternofspikesandbubblesbetween simulationandexperimentalresultsforseveralcertaintime.
Forsakeofaccuracyassessmentofthesimulation,meanabsolutepercentageerror(MAPE)iscalculatedbythefollowing equation:
MAPE=1 n
n
i=1
Xs,iX−c,iXc,i
x100% (14a)
7
B. Jalaali, M.R.E. Nasution, K.A. Yuana et al. Applied Mathematics and Computation 411 (2021) 126490
Fig. 8. Comparison of numerical (below) and experimental (above) result of Waddell et al. [22] at certain time.
Table 1
MAPE value of numerical and experiment benchmarking.
MAPE of position comparison with present result
Bubble Spike Total MAPE value Numerical Studies
Tryggvason [31] 7.17% 8.66% 7.85%
Lee et al. [20] 8.10% 5.28% 6.49%
Fakhari et al. [44] 4.12% 8.21% 5.72%
Zu et al. [45] 5.39% 9.43% 7.34%
Ren et al. [46] 3.72% 8.93% 6.32%
Experimental Study
Waddel et al. [22] 12.72% 25.62% 19.03%
InEq.(14),Xs,i istheresultofpresentanalysiswhileXc,idenotestheresultofcomparativestudy.ThecalculatedMAPE valuesare showninTable1.The resultsreveal thattheobtainedMAPEvalue forbubblepositionbetweensimulationand experimentis12.72%whilethosebetweenthepresentsimulationandothernumericalanalysesarelessthan10%.Interms of spikeposition,MAPEvalue betweensimulationandexperimentis 25.62%whichis stillconsidered asa reasonableac- curate. Meanwhile,MAPEvalue forspikepositionisnot morethan10% ascomparedtoother numericalstudies.Thisfact yieldsthatthecurrentLBManalysisisabletoaccuratelysimulatetheliquid-liquidtwo-phaseofRTIproblem.
InordertoinvestigatetheeffectsofviscosityanddensityratioonRTIbehavior,parametricstudies varyingseveralsets of Reynolds andAtwood numbers are performed. In the parametric studyof Re, three differentReynolds numbers were varied (i.e.Re=256;512;1024)underaconstantAt =0.5. Meanwhile,variationsofAtwoodnumbersof0.1, 0.3,and0.5 arealsoutilizedintheparametricstudyofAt underaconstantofRe=1024.Here,theinstabilityratewillbeinvestigated byconsideringthespikeandbubbleposition.Intermsofseparatordesign,instabilityrateiscloselyrelatedtothesurgeand residencetimeinfluidseparationprocess.TheRTIstagesareshowninFig.9.
TheresultsofparametricstudyoftheeffectofReareshowninFigs.10and11forthebubbleandspikepositions,respec- tively.Ingeneral,spikesandbubblepositionstendtobequicklyshiftedforRe=1024thanRe=512and256.ThelowerRe means thehigherviscous force,consequently,thebubbleandspiketraveled-distancewillbeslightlydelayedcomparedto ahigherReduetotheabilitytoholdthegravitationalforce up.Inthefigures,thediscrepanciesofbothspikesandbubble positionsbetweentheresultsofRe=1024and512withrespecttoRe=256aregiven.AtT<1,thespikesandthebubbles are shiftedconstantlyexperiencing thelineargrowthinstability.Meanwhile, thefluidroll-upemerges asaresultofshear force asshowninT= 3forRe= 1024.Althoughthe spikepositionisslightlythesame,the fluidsroll-upforRe= 1024 is firstly formed than others. The higher Releads the fluid to become less viscous, hence the fluids frictional force de- creases.Therolling-upfluidexhibitsthesecondaryinstabilityofKelvin-Helmholtzinstability(KHI).Thespikedisplacement isslightlydelayedduringtherollingupprocess.Thisphenomenonoccursduetotheinteractionbetweengravitationaland viscousforcesonthefluidinterface.Furthermore,theemergenceofKHIcausesspiketobeacceleratedatT=4.Meanwhile, for smallerRe,theinstability ratewaslow andthe effectofKHI wassuppresseddue tothe lessdeformablebehavior of fluid.AdeeperinvestigationofspikepositionresultsinatendencyofspiketofallslightlyfasterinhigherRe.AtRe=1024, thestagesofinstabilityareclearlyobserved(i.e.fluidroll-up)incomparisontothecaseswithlowerReandthistrendisin linewithRef.[28].
Fromtheaboveanalysis,byneglectingtheeffectofthedensityratio,viscosity(i.e.intermsofRe)wasfoundtoslightly influence the instability rate. However, viscosityhas a significant influencein the fluid roll-upprocess. The vortices that
8
B. Jalaali, M.R.E. Nasution, K.A. Yuana et al. Applied Mathematics and Computation 411 (2021) 126490
Fig. 9. RTI phase to equilibrium state.
Fig. 10. Bubble position and value of discrepancy w.r.t Re = 256.
Fig. 11. Spike position and value of discrepancy w.r.t Re = 256.
occurredduringtheinstabilitystagesareclearlycapturedinthecasewithhigherRe.Theoutcomesareingoodagreement with the previous analytical studyof [15, 46]. This aforementioned phenomena lead fluidsto be more deformable (less viscous)andincrease thedurationofturbulentmixingandsurfaceoscillationphaseasshowninFigs.12.Thisassertsthat increasingRewilldelaytheequilibriumstate,albeititincreasestheinstabilityrate.
Investigation oftheeffectsofdensityratioisperformedbyvarying Atwoodnumber.The resultsareshowninFigs.13 and14forbubbleandspikes,respectively.Thedensityratiocorrespondstotheeffectofbuoyancyforce,whichaffectsthe
9
B. Jalaali, M.R.E. Nasution, K.A. Yuana et al. Applied Mathematics and Computation 411 (2021) 126490
Fig. 12. The duration of RTI equilibrium state process for Re variation w.r.t. A t= 0.5.
Fig. 13. Bubble position and value of discrepancy w.r.t. A t= 0.1.
Fig. 14. Spike position and value of discrepancy w.r.t. A t= 0.1.
lighter fluid to arise through theheavier fluid.The spike andbubblepositions in thehigher At havea tendencyto shift fasterthanlowerAt,thereforetheyareattainingtoturbulentmixingphasequickly.
WhenTislessthan1,thebubblepositionofAt=0.5isdelayedduetotheinteractionbetweengravitationalandviscous force attheinterface.When Tismorethan2,thegravitationalforce isdominatingtheviscous force,andthiscauses the bubbletolinearlyincrease.ThebubblepositionsinbothAt=0.5and0.3showrelativelythesametrend.Ontheotherhand, atAt=0.1,thebubblepositionislowerbecausethedensitydifferenceissmall.BothfluidsatlowAtarehardtobeseparated so that affectsto the bubble andposition displacement. The formation of fluid roll-up occursat T = 1 forAt= 0.5and acceleratesthespikeposition.Consequently,thespikepositionofAt=0.5hasaquickerdecreasethanthatofAt=0.1and
10
B. Jalaali, M.R.E. Nasution, K.A. Yuana et al. Applied Mathematics and Computation 411 (2021) 126490
Fig. 15. The duration of RTI equilibrium state process for A tvariation w.r.t Re = 1024.
Fig. 16. Plot of spike and bubble velocity and the region of early stages instability.
0.3.Meanwhile,forAt=0.1,spikefallsslowerandsmootherasthefluidroll-upisholdingup,hencethespikeaccelerationis delayed.Itmaybeconcludedthatduetothelowerbuoyancyforce,At=0.1,itwillgraduallyrisethaninthecasewithhigher At. Thebuoyancyforce causesa lighter fluidto moveupwardsfasterthan theheavierone. Thismayrelatestothe surge andresidence timein separatordesign considerations.As showninFig. 15,the equilibriumstate forhigherAt isquickly attainedthanthatoflowerAt.Thehigherdensityratiomeansthatthefluidsarerapidlyenteringtheturbulentmixingand equilibrium state, andconsequently yields a lower surgeand residencetime. Contrarily, fluids withsimilar densities are difficult tobe separatedandwillhavehighersurge andresidencetime. Intermsof separatordesign,such fluidbehavior shouldbeconsideredinthedesignofseparatorlength.Theaforementionedfactsshowthattheinstabilityratewasstrongly influencedbythedensityratio.Thisagreeswithsomefindingsinexistinganalyticalstudies[14,15]aswellasexperimental workinRef.[26].
IncomparisontotheeffectofRe,thediscrepancyofbothbubblesandspikepositionswithrespecttotheresultsobtained by thelowestvalue ofAt(0.1)tendtobe morefluctuated.FromFigs.13and14,itisfoundthattheincreaseofAtofthree times (i.e. from 0.1 to 0.3) results in the maximumvalue of discrepancyof about 180% and 210% forbubble and spike positions,respectively.Meanwhile,inFigs.9and10,thediscrepanciesobtainedduetotheincreaseofRefrom256to1024 (fourtimes)arelessthan15%.ThesefactsindicatethatAthasmoredominanteffectsonthetraveled-distanceofspikeand bubblesandinstabilityrate,ascomparedtoRe.Thisalsoagreeswiththefindingsinother availableliteraturesinRefs.[17, 20, 46]. It canbe concludedthat densityratiohas amore dominantrole, ascomparedto theviscosity, intheinstability rate.
Inthisstudy,RTIsimulationwasperformedinacompletemanner.Thesimulationcoverstheearlystagesofinstability, turbulent mixingphase,aswell asthe equilibriumstateasthelast stage. Investigationofthe earlystagesisdivided into fourregion,ascanbeseeninFig.16.Thefirstregionexhibitsthatthegravitationalforcestarttopenetrateagainstthefluids viscousforce.Thegravitationalforcewillforcethedenserfluidtopenetrateintothelighterfluid.Thiscausesbothbubbles andspiketoacceleratefastasthebuoyancyforceofthelighterfluidtendstoagainstthegravitationalforce.Inthesecond region,bubblevelocityisrelativelyconstantascomparedtothatofspike,whichstillacceleratesdownwards.Onthecenter ofgeometry,thevelocityofhigherfluidwillmovedownwardduetothegravitationalforce.Becauseofexistenceofvelocity difference,liketheBernoulliprinciple,thehigher-pressurefluidwillpenetrateintothelower-pressurefluidtoformaroll- up mushroom-shaped. The early roll-up ofspike isformed atT = 2.This roll-upformation delaysthe bubbleand spike
11
B. Jalaali, M.R.E. Nasution, K.A. Yuana et al. Applied Mathematics and Computation 411 (2021) 126490
Fig. 17. Velocity field at the emerging of secondary fluid roll up.
movements.Theformationoffluidrollupinspikeisfoundinthirdregion.Thespikeroll-upmechanismisinitiallyformed as a resultof fluidsshear force interaction. The formof spikes vortex exhibitssecondary instability ofKelvin-Helmholtz instability (KHI) emerged. The KHI causes fluidsto roll-up,andforms other vortexes, which initiatesfluid mixingphase.
The secondfluid roll-upappearsatT= 3.2andthevelocity fieldisshowninFig.17.Theformationofthesecond vortex yieldsthespiketore-accelerate,andthenincreasesthebubblevelocity.There-accelerationofthespikepushesheavyfluid downwardandgivesadditionalforcetothebuoyancyforce.Meanwhile,fluidroll-upformationpullsfluidwithinthefluid vortex,hencethebubblevelocityisdelayed.Asthefluidroll-upmechanismiscompleted,bubblevelocity willincreaseas shownatT>3.2. ThefourthregioninvolvesspikeinstabilitywhichisshownT>3.2. Thespikeinstabilityregionisright beforethefluidmixingstage.Bothspikesandbubbleswillbere-acceleratedwithinthespikeinstabilityregion.Inthisstudy, the bubblepositionwillexponentiallyrise toobeythelinearstabilitytheoryasreportedinRef. [2].Sharp[15]identified that, when thefluid roll-up occurredasan exhibition ofKHI, fluid vortexleadsthe fluid tobe separated inthe formof a bubblewhichstatedasliquidbreakup phenomenon.In thisstudy,theliquidbreak-up canbe successfullysimulatedas showninFig.18.
The results are shownin Figs. 19and 20for earlyand late-stageinstability,respectively. As mentioned above, in the early stage, the fluidroll-up asa resultofKHI is formed,and thebubble rises.When the spikereaches thebottom, the turbulentmixingoccursasshowninFig.20(a)atT>8.Thedenserfluidwilldirectlymove downwardasthelighterfluid arises. The remaining lighter fluid is trapped inside the heavierfluid region and the bubble will be formed dueto the
12
B. Jalaali, M.R.E. Nasution, K.A. Yuana et al. Applied Mathematics and Computation 411 (2021) 126490
Fig. 18. Appearance of liquid break-up during KHI formation.
Fig. 19. Early stage of RTI simuation.
Fig. 20. Late stage of RTI simulation result.
13
B. Jalaali, M.R.E. Nasution, K.A. Yuana et al. Applied Mathematics and Computation 411 (2021) 126490
Fig. 21. The formation of bubble amalgamation.
Fig. 22. Bubble rising at certain time.
emergenceofsurfacetensionforce.ThebuoyancyforceinducesbubblerisingasshowninFig.20(b).Theinterfaceoffluids experiencesoscillationaftertheturbulentmixingconditioncompleted,whenthefluidshavefullyexchangedbetweeneach other (Fig. 20(c)). Furthermore,the gravitational force is not strongenough to make the lighter fluid to go through the densefluid.Thefluidinterfaceoscillationwillgraduallydecreaseastimegoesby.AsshowninFig.20(d),thefluidreaches theequilibriumstate,wherebythelighterfluidissituatedabovetheheavierfluid.
TheinvestigationofbubbleamalgamationandbubbleriseisreportedinFig.21.AtFig.21(a),twobubblesareformedand mergedatT=16.8(Fig.21(b)).Duetothesimilarvalueofbothfluidssurfacetension,thebubblewillmergebetweeneach other.Severalsmallbubblesarethenmergedintoabiggerbubbleasaresultofbuoyancyforce.Thisphenomenonwasalso reportedbyRef. [47].Thisresultprovesthat thecurrentLBM modelisabletoaccuratelysimulatethebubblecoalescence phenomenon. InFigs.22(a) and(b),thebubble riseisobservedatT =17.2 -18.1rightafterthebubblecoalescence.The subsequentbubbleriseappearsatT=20.3asshowninFig.22(c).TheaforementionedfactsindicatethatthecurrentLBM modelcanpreciselysimulatethebubblerisephenomenon.
4. Conclusion
A numericalstudyof thephenomenaduringRTI wasconductedthrough theuse ofa Lattice-Boltzmann method.The method isproposed toanalyzethe turbulentmixingphenomenainliquid-liquidtwo-phase flow. Theanalyses performed inthepresentpaperareabletoaccuratelyinvestigateacompletebehavioroffluidsinteractionincludingconditionswhen instabilityoccursaswellasthephenomenaduringtheequilibriumstate.Theremarkableresultsaresummarizedasfollows:
14