FOSFOR.
Jumlah dalam Tanaman: 1/5 sampai 1/10 lebih rendah dari N berat kering , sama dengan Ca, Mg dan S unsur makro dalam tanah
Tanaman menyerap P dalam bentuk : H2PO4-1 atau HPO4-2 tergantung pH
TRANSFORMASI DALAM TANAMAN :
Tidak ada perubahan yang besar dari Ortofosfat yang diserap tanaman
Mobilitas dalam tanaman :
Fosfor dapat dipindahkan ke seluruh tanaman baik melalui Xylem maupun floem
Jika terjadi kekurangan P dalam tanaman, maka P dari daun tua akan dipindahkan ke jaringan muda.
FOSFOR
Phosphorus in Soils
• Soils may contain from 0.1 to 0.02% P
• N:P ratio in soils is about 8:1
• There is little relationship between total soil P and
available P; only a tiny fraction of total P is available to plants
• Forms of soil P:
• Organic - various P forms associated with humus
• Inorganic - mineral P, adsorbed P
• P in soil solution (ionic forms)
Phosphorus behavior in soils
PO43- will react with:
whatever cation is in greatest abundance and,
whatever cation is held with the strongest bond.
In nature, there is plenty of water around:
H2O === H+ + OH-
Concentration of H+ = OH-
= 10
-7 PO43- will react with:
whatever cation is in greatest abundance and,
whatever cation is held with the strongest bond.
In nature, there is plenty of water around:
H2O === H+ + OH-
Concentration of H+ = OH-
= 10
-7Phosphorus behavior in soils
When the charges on phosphate are all satisfied by H+, in the laboratory, the
compound phosphoric acid is formed.
H
3PO
4 When the charges on phosphate are all satisfied by H+, in the laboratory, the
compound phosphoric acid is formed.
H
3PO
4
Review
Review
HO - P - OH HO - P - OH
O ll O ll
l
OH
l
OH
Phosphorus behavior in soils
The H+ leave (dissociate from) phosphoric acid in a stepwise manner when the acid is reacted with base, like sodium hydroxide (NaOH).
H
3PO
4 H
++ H
2PO
4-
H
2PO
4- H
++ HPO
42-
HPO
42- H
++ PO
43- One or more of the phosphate forms will be present in solution, depending upon the
solution pH.
The H+ leave (dissociate from) phosphoric acid in a stepwise manner when the acid is reacted with base, like sodium hydroxide (NaOH).
H
3PO
4 H
++ H
2PO
4-
H
2PO
4- H
++ HPO
42-
HPO
42- H
++ PO
43- One or more of the phosphate forms will be present in solution, depending upon the
solution pH.
Phosphorus behavior in soils
One or more of the phosphate forms will be present in solution, depending upon the
solution pH.
One or more of the phosphate forms will be present in solution, depending upon the
solution pH.
Mole fraction of phosphate ionic species with pH.
0.00 0.20 0.40 0.60 0.80 1.00
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Solution pH
Mole fracton P
H3PO4 H2PO4 HPO4 PO4
Al3+ + H3PO4 == AlPO4
DAP Al3+ + (NH4)2HPO4 == AlPO4 + 2 NH4+ MAP Al3+ + NH4H2PO4 == AlPO4 + NH4+
AlPO4 is very insoluble.
The reaction rate depends on the concentrations of Al3+ and H3PO4 in the soil solution
.
27 lbs Al3+ will react with about 71 lbs P2O5 to form AlPO4
.
Al3+ + H3PO4 == AlPO4
DAP Al3+ + (NH4)2HPO4 == AlPO4 + 2 NH4+ MAP Al3+ + NH4H2PO4 == AlPO4 + NH4+
AlPO4 is very insoluble.
The reaction rate depends on the concentrations of Al3+ and H3PO4 in the soil solution
.
27 lbs Al3+ will react with about 71 lbs P2O5 to form AlPO4
.
Below soil pH 5.5 there are increasing amounts of Al3+ ~ H+
.
Mineralization-Immobilization of P
Organic P Inorganic P
Immobilization and Mineralization of soil P are similar to that of N:
If added organic materials have a C:P ratio of
>300, there will be net immobilization P if <200 there will be net mineralization of P
Mineral Forms of P
• In neutral to alkaline soils, most mineral P will be as Ca-phosphates. Most of these are quite
insoluble.
• In acid soils, most mineral P will be as Fe and Al- phosphates. Most of these are quite insoluble.
• The insolubility of most P minerals is one
important reason that P availability to plants is usually low.
Adsorbed P
• Phosphate ions (HPO4-, H2PO42-) are strongly adsorbed to the surfaces of:
• Iron oxides, especially in acid soils
• CaCO3, especially in alkaline soils
• Adsorption is at a minimum in neutral (6-7) pH
• Adsorption reactions are another reason that P availability in soils is limited.
Brady and Weil, Figure 13.10
Phosphorus availability and pH
P Reactions with Soil Minerals
Phosphorus Reactions in Desert Soils
H2PO4- HPO4=
Ca8H2 (PO4)6 octocalcium
phosphate
Na2HPO4 sodium phosphate
Calcareous soils
Sodic soils Inorganic P
Nutrient Mobility in Soils
• Mobility in soils refers to the relative rate of movement of soluble nutrient forms in soils.
• Mobility is a function of soil texture and mineralogy (generally slower in clay soils)
• Usually, N (NO3-), S (SO42-), and Cl (Cl-) are considered mobile in soils
• Most other elements are less mobile in soils.
Nutrient Mobility in Soil
Soil volume exploited for mobile nutrients:
N, S, Cl
Soil volume exploited for immobile nutrients:
Most others
Because P is immobile, we cannot rely
on movement of irrigation water to transport P.
Apply immobile nutrients here (close to roots)
SERAPAN P
• Bentuk H
2PO
4-1,HPO
4-2P dlm tanaman tetap berada dalam bentuk oksidasi
Type serapan P
• Serapan P bersifat aktif → diatur respirasi karbohidrat
• Konsentrasi dalam xylem SAP 100- 1000 X > di luar akar → terjadi perbedaan konsentrasi
Faktor yang mempengaruhi serapan
P
• pH tanah,• pada pH rendah << 4, Serapan 4x > pH 8.7 , karena eksudat akar ( as. Amino, as. Organik ) P lebih tersedia
• Jenis/spesies tanaman
Tan dengan rambut akar >>>
Permukaan akar >>> daya serap P >>>
Bentuk bentuk P setelah diserap tanaman
Tetap sebagai P anorganik (Pi) H2PO4-
Teresterifikasi melalui hidroksil ke rantai karbon (C-O-P), sebagai esterfosfat sederhana, contoh : Gula Fosfat
Terikat pada fosfat lain dengan ikatan pyrofosfat kaya E (P P),contoh : ATP
Terikat sebagai diester yg stabil; (C-P-C), dlm ikatan ini P membentuk jembatan penghubung antara
unit2 menjadi struktur makromolekul yang kompleks
• Laju pertukaran antara Pi ke P dlm ester fosfat dan ikatan pirofosfat sangat cepat.
• Pi yang diserap tanaman segera menjadi P organik dlm beberapa menit, setelah itu Pi dilepaskan kembali ke Xylem
Turn over times of Organic Fosfat Fraction
Fraksi P
(nmol / g twt)
Turnover Time (minute ATP
Glucose – 6P Fosfolipid
RNA DNA
170 670 2700 4900 560
0.5 7 130 2800 2800
• Begitu masuk ke akar tanaman, P akan disimpan di root atau diangkut ke bagian atas dari tanaman.
• Melalui berbagai reaksi kimia, itu dimasukkan ke dalam senyawa organik,
• asam nukleat (DNA dan RNA),
• fosfoprotein, fosfolipid, gula fosfat, enzim,
• fosfat kaya energi senyawa ... misalnya, adenosin triphosphate (ATP).
Serapan dan Transportasi Fosfor
PERANAN P DALAM TANAMAN
1. P sebagai elemen struktural
P Penyusun struktur makromolekul (asam Nukleat)
DNA – Pembawa informasi genetik
RNA – penterjemah informasi genetik Ribose – O – P – O – Ribose – O – P – O - Ribose
O-
O
O-
O
P penyusun fosfotidilcholine / lecitin
Digliseride – P – O – amine choline
- O
O
P penyusun fosfolipid dalam biomembran Digliseride – P – O
O-
O
Asam amino / Amin /
Alkohol
2. Transfer energi
• Ester fosfat (C-P) dan Fosfat kaya energi (P-P) merupakan
energi metabolisme dalam sel
Ada 50 ester teridentifikasi, yang terbentuk dr fosfat, gula dan alkohol
contohnya : - glukosa 6 fosfat dan fosfogliseraldehide
Reaksi transfer E terjadi dlm reaksi fosforilasi Adenosin ~ P ~ P ~ P
ATP
Adenosin~P ~P
ADP
HO – R P – O – R E dipindahkan dengan group fosforil ke
senyawa lain dan menyebabkan senyawa aktif Macam-macam ikatan pyrofosfat kaya
1. ATP sintesa pati
2. UTP sintesa sukrosa 3. GTP sintesa sellulosa
Ciri ikatan fosfat kaya E pada sel yang aktif bermetabolisme
daur ulang (turn over) sangat tinggi
Sel bervacuola
2 pool fosfat
Metabolic pool
Citoplasma didominasi kloroplas ester fosfat
Nonmetabolic pool vacuola
Pi Dominan
PERANAN P DALAM SEL
Suplai P terganggu pertumbuhan terhambat
pelepasan P dr vacuola tertekan
Suplai P
Cukup 85 – 95 % Pi dalam vacuola
Diganggu [ P dlm vacuola] tajam [ P dlm sitosol] kecil
~ 6 mM <3mM
PERAN PENGATURAN dr Pi
• Fungsi Pi
• 1. Pool metabolik
• 2. Pool non metabolik.
Fungsi P dalam pool metabolic
P terlibat dalam reaksi enzymatik.
Pi juga mengatur rekasi enzim kunci.
Pi dapat sebagai substrat (bahan) atau hasil akhir contoh ATP ADP + Pi
Kompartementasi (perpindahan tempat) Pi
penting utk mengatur jalur metabolisme dalam sitoplasma dan kloroplas
FUNGSI P DALAM METABOLISME
Pi vacuola Pi sitoplasma Aktif fosfofruktokinase
(enzym yg mengatur masuknya Senyawa ke jalur glicolisis)
respiratori burst
Pemasakan buah cepat Sitoplasma
Vacuola
Pi
Pi <<< kematangan tertunda
Contoh. Dalam jaringan buah tomat
Pi
1. Sintesa pati
ADP – glucosa +Pi aktif pyrofosforilasi
triosefosfat aktif
(TP) (PGA)
Ratio Pi/TP laju sintesa pati (kloroplas) Tinggi enzym ADP – G terhambat
glyseraldehide – 3 phosphat 2. Pelepasan TP
dihidroksiaseton – phospaat (produk fiksasi CO2)
meninggalkan kloroplas
Pelepasan diatur fosfat translokator (dlm membran kloroplas) Pertukaran Pi dengan TP
Serapan Pi ke Kloroplas mengatur pelepasan fotosintat ke sitoplasma
Mekanisme pengaturannya :
Jika serapan Pi ke kloroplast tinggi banyak TP yang keluar dari kloroplas ( [ TP ] dalam stroma rendah)
bahan
TP adalah sintesa pati
aktivator Sintesa pati <<<
PERANAN Pi dalam Fotosintesis
Jika [ Pi ] dalam kloroplas >>>
TP (bahan utk RuBP) keluar ke sitoplasma TP dalam stroma <<<
RuBP <<< (penerima CO2) Fiksasi CO2 <<<
Konsentrasi P eksternal yang tinggi juga menghambat fiksasi CO2.
3. Pi dalam fotosintesis dan metabolisme karbohidrat
Hub. Antara fiksasi C, pembentukan pati dlm Kloroplas sebagai fungsi konsentrasi P external
Konsentrasi P Lar External (mM) 0.15 0.65 1.0 2.0 3.5
Total C Fixation
Incorp into starch 11.0 2.6
13.6 0.4
10.9 0.1
7.1 0.1
3.3 0.1
Pi dan metabolisme karbohidrat dan transport sukrosa
• ATP-UTP heksosa dan sukrosa ( Karbohidrat )
Pi membentuk ATP / ADP. UTP
- perlu utk sintesa hexosa/sucrosa - perlu utk sucrosa proton
cotransport dlm phloem
• P<<< transport E dr kloroplas bag lain
• sintesa protein & as nukleat
• pati & sukrosa akumulasi
• gula fosfat dan adenilat
Pi dengan metabolisme karbohidrat
P >>> kandungan pati dalam daun <<<
P<<< leaf expansion
[ C ] dlm daun eksport C dr daun
Akumulasi karbohodrat
P <<< kurang sensitif thd UV – B light akumulasi “flavenoids”
daun lebih tebal
kurang peka thd chy UV – B proses fotosintesis
sugar starch protein
Suplai P, Pertumb Tan, Komposisi Tan
P pertumbuhan optimal 0.3 – 0.5 % d w of plant P <<< -pertumbuhan terhambat
-warna kemerah-merahan antocyamin
-daun warna hijau gelap
-perpanjangan sel daun terhambat -klorofil/unit luas daun tinggi
-eff.fotosintesis/unit luas daun rendah
-respirasi, fotosintesis, pembelahan sel Level P suplai selama reproduktif
- mengatur ratio pati/sukrosa dlm daun - mengatur pembagian fotosintat antara daun dan organ reproduktif
Tan legum yg – P
suplai karbohidrat ke nodul <<<
muncul gejala kekurangan N P keseimbangan fitohormon P <<< daun <<<
saat pembungaan tertunda P <<< pembentukan buah & biji
hasil <<<
qualitas <<<
P in Plant Nutrition
• Essential to plants and animals
• ATP, DNA, RNA
• Critical to energy flow in cells
• Usually 0.2 to 0.4% of dry matter
• Mycorrhizae critical to P uptake in most plants
• exudates
Phosphorus Sources
• Inorganic P Sources
• Rock Phosphate
• Bone Meal
• P fertilizer
• Organic-based P sources
• Green Manures - ?
• Manures
• Composts
• Composted Manures
• Composted Plant Biomass
Rock Phosphate as a P Source
• Rock phosphate (RP) is a slowly soluble P source from mined phosphate (calcium phosphates).
• Solubility is highly dependant on several factors
• Soil type
• Low pH
• Low Ca
• Low P fixing Capacity
Rock phosphate mine in India
Rock Phosphate as a P Source
• Phosphorus availability – relative response approaches 1:1
• Optimum soil and RP source
Source: Correa et al., 2005.
Sci. Agric. 62:159-164
Fertilizer P
• Rock phosphate contains hydroxyapatite and fluoroapatite that are not very soluble
• Treat with sulfuric and phosphoric acid to make triplesuperphosphate, which is very soluble
BFA Pupuk P BFA
H2SO4 H2SO4 H2SO4 H2SO4 H2SO4 H2SO4
H3PO4 H3PO4
NH3
NH3 NH3
Normal Super Fosfat
0-20-0
TSP 0-46-0
Superfosfat beramonia
8-16-0 SP 36
0-36-0
Amonium Fosfat 11-55-0 18-46-0
Asam Super Fosfat
Amonium Polifosfat
Fosfat nitrat
Amonium Fosfat 11-55-0 18-46-0
NH3
NH3
HCl
Soil Phosphorus
• Derived from P bearing rocks & minerals
• Different forms: organic/inorganic, soluble/insoluble
• Very reactive: Fe, Al, Ca
• Limiting nutrient in many unfertilized,
acid soils
Inorganic fertilizers
• All mineral fertilizers originate from
mined geologic formations of the mineral apatite (rock phosphate).
• Rock Phosphate (0-20-0).
• Finely ground rock phosphate was
one of the first inorganic P fertilizer
used.
Inorganic fertilizers
• Its low P2O5 analysis and low solubility were
associated with high rates and costs when it was used.
• Although very little rock phosphate is currently used, it can be an important source of P on soils that have a high P fixing capacity or a single application is
desired to correct a severe soil deficiency in a small area such as a home landscape.
• Application to highly acid soils?
PUPUK P
• DSP (Double superfosfat) / DS / Ca(H2PO4)2
• TSP (Triple superphosphate) / TS / Ca(H2PO4)2
• SP-36
• FMP (Fused Magnesium Phosphate)
• Agrophos
• Fosfat cirebon
• Serbuk thomas
• Citraphos / CIRP
Common phosphate fertilizers with ammonium
• Monoammonium phosphate (MAP)
• NH4H2PO4
• pH of 0.1M solution is 4.0
• H2PO4- ↔ HPO42- + H+
• Diammonium phosphate (DAP)
• (NH4)2HPO4
• pH of 0.1M solution is 7.8
• HPO42- ↔ H2PO4- + OH-
• Ammonium polyphosphate (APP)
• pH 6.0 – 6.5
• Hydrolysis reaction
Sauchelli, 1965
Photos courtesy of Agrium
Crop absorption of soil-P.
Crop absorption of soil-P.
Absorption is from just a thin cylinder of soil
around each root.
CaHPO4 + H2O <== = (dissolves slowly) Ca2+ + HPO42-
Plant uptake of broadcast, incorporated P Fertilizer.
Plant uptake of broadcast, incorporated P Fertilizer.
P Fertilizer
•Only 10 to 15 % of incorporated P fertilizer is absorbed by crop.
•85 to 90 % of P fertilizer reacts with soil to “build up” soil test.
Plant uptake of banded P Fertilizer.
Plant uptake of banded P Fertilizer.
Most of fertilizer P is used by crop and there is little soil test build-up.
Banded P-fertilizer Banded P-fertilizer Expanded sorption
Important P Considerations
• Banding reduces P fixation
• Immobile in soil under most conditions
• High levels - get movement of organics
• phospholipids, inositol phosphates, etc.
• could tie up Zn, but manure supplies Zn
• Erosion loss - greatest concern
• Conversions%P2O5 -> %P * 2.29
Methods of P fertilization
• Most common application of P fertilizers: Broadcast fertilizer over the soil surface and then incorporate it with a tillage
operation.
•
• Alternative: Band with the seed, or two inches below and to the side of the seed at planting.
• Broadcast-incorporation is less time consuming and is popular when large acreages must be fertilized and planted in a short period of time, or labor is scarce.
Methods of nutrient placement Methods of nutrient placement
Broadcasting
Broadcast TSP followed by “listing” (making beds)
Maricopa, AZ
Preplant Applications
• Broadcast
• Uniform distribution of dry or liquid
materials over the soil surface
• Can be mechanically incorporated
• Can be incorporated by rain or irrigation
Liquid manure from hog feeding being pumped onto farmland in Iowa, USDA-NRCS
Band Application
Surface band near transplanted broccoli, sprinkler-irrigated
Oregon
“Side-dressing” lettuce with liquid N fertilizer, Yuma
Nutrient Considerations
• Phosphorus
• Banding minimizes soil:fertilizer contact
• Minimizes reversion
• Banding is generally more efficient in soils with lower amounts of available P
• At higher levels of available P banding and broadcasting result in similar efficiencies
• Apply just before or at planting
• Less time for reversion to occur
Model Response Curve
Amount of Input Crop Response Maximum Profit
Maximum Yield
Fertilizer Application
1. Preplant Application
-Lime, sulfur, superphosphate, gypsum, dolomite 2. Dry Application
- Fertilizers with solubility <20 g/100 ml - Top dressing
- Do not apply lime with phosphorus 3. Liquid Feeding
- Use soluble fertilizers
- Constant feeding vs intermittent feeding
P Based Application Rate
• Soil Test Phosphorus (STP)
• Application based upon soil test analysis, and crop P needs, based on university
recommendations
• Fertility strategy
• Buildup low P soils
• Maintenance
• Drawdown
TERIMA KASIH