Recombinant DNA Technology
Basic Principles of Recombinant DNA Genetic manipulation techniques
Genetic Modified Organisms
Siti Nur Jannah
Introduction
•
Biotechnology may be defined as “the method by which a living organism or its parts are used to change or toincorporate a particular character to another living organism”
•
Genetic recombination is the exchange of information between two DNA segments.•
This is a common occurrence within the same species.•
But by artificial means, when a gene of one species intransferred to another living organism, it is called recombinant DNA technology.
•
In common, this is known as genetic engineering.Definition of recombinant DNA
•
The use of technology to manipulate genes is called genetic engineering or recombinant DNA technology (rDNA technology).•
rDNA technology is a field of molecular biology in which scientists manipulate DNA to form new syntheticmolecules, called chimeras.
•
Production of a unique DNA molecule by joining together two or more DNA fragments not normally associated with each other•
DNA fragments are usually derived from different biological sourcesDefinition of recombinant DNA technology
•
A series of procedures used to recombine DNA segments.Under certain conditions, a recombinant DNA molecule can enter a cell and replicate.
Basic principle of recombinant DNA technology
• The DNA is inserted into another DNA molecule called ‘vector’
• The recombinant vector is then introduced
into a host cell where it replicates itself, the
gene is then produced
Several key players:
• 1. restriction enzymes. Cut DNA at specific sequences. e.g. EcoR1 cuts at GAATTC and BamH1 cuts at GGATCC. Used by bacteria to destroy invading DNA: their own DNA has been modified
(methylated) at the corresponding sequences by a methylase.
• 2. Plasmids: independently replicating DNA circles (only circles replicate in bacteria). Foreign DNA can be inserted into a plasmid and replicated. Plasmids for cloning carry drug resistance genes that are used for selection. –Spread antibiotic resistance genes between bacterial species
• 3. DNA ligase. Attaches 2 pieces of DNA together.
• 4. transformation: DNA manipulated in vitro can be put back into the living cells by a simple process . –The transformed DNA
replicates and expresses its genes.
• Step 1: rDNA technology begins with the isolation of the gene of interest (foreign DNA). The gene is then inserted into a vector and cloned. A vector is a piece of DNA that is capable of independent growth. The commonly used vectors are bacterial plasmids and viral phages.
• The gene of interest is integrated into the plasmid (A plasmid is a small DNA molecule within a cell that is physically separated from a chromosomal DNA and can replicate independently. They are most commonly found in bacteria as small, circular, double-stranded DNA molecules
Schematic Diagram of Molecular Cloning
Perbanyakan DNA dengan PCR
(Polymerase Chain Reaction)
Denature (95 C)
3 Min 1 Min
1 Min
1 Min 10 Min
Annealing (60 C)
Extention (72 C)
Fig . Conditions for PCR
1. Takara LA Taq (5units/μl) 0.5μl 2. 2 x GC buffer I/II 25μl 3. DNTP Mixture (2.5 mM) 8 μl 4. DNA Template (0.5μg) 5 μl 5. Primer 1 (10 pmol) 1 μl 6. Primer 2 (10 pmol) 1 μl 7. Milli Q up to total volume 50μl
PCR Reaction 4 C ~
Memotong DNA
•
Menggunakan enzim endonuklease restriksi•
Ujung “lengket” (sticky ends)•
Ujung “tumpul” (blunt ends)•
Penamaan enzim•
EcoRI•
E = genus (Escherichia)•
co = species (coli)•
R = strain•
I = # of enzymeUjung “lengket” dan “tumpul”
(Blunt & Sticky ends)
Penyambungan (pasting) DNA
•
Pembentukan ikatan- H pada ujung-ujung yang komplemen(sticky ends)
•
Ligase membentuk ikatan fosfodiester untuk merekatkan benang-benang DNAVektor untuk Mengklon
Diperlukan suatu wahana ( vehicle )
untuk memasukkan suatu potongan
DNA ke dalam sel agar DNA tersebut
dapat disimpan dan diperbanyak di
dalam sel tersebut
Karakteristik vektor yang baik
•
Stabil•
Dapat bereplikasi sendiri•
Kecil•
Mudah diisolasi•
Mempunyai berbagai situs pemotongan tunggal•
Mudah dideteksi.Plasmid
DNA bukan kromosom
(extrachromosomal DNA) yang secara alami dimiliki suatu jasad
•
Bentuknya benang ganda (double strands DNA, dsDNA
) sirkularPlasmid buatan (
Artificial plasmids
) dapat dibuatdengan menambahkan potongan-potongan DNA lain
Vektor untuk Mengklon
Plasmid dapat dimodifikasi untuk mampu membawa potongan DNA lain ke dalam sel bila memiliki:
•
Replikator (origin of replication)•
Penanda (Marker
) yang mudah diseleksi(misalnya gen ketahanan terhadap antibiotik)
•
Situs untuk mengklon (potongan DNA yang memiliki urutan basa nukleotida yang menjadi sasaran enzim restriksi tetapi tidak terletak di dalam daerah replikator atau penandaPlasmid yang Dimiliki oleh
Escherichia coli
Berasal dari plasmid alami E. coli Potongan DNA tambahan
Potongan DNA tambahan
Kloning Terorientasi
Bila diinginkan untuk menginsersikan potongan DNA asing dengan orientasi tertentu
• Dilakukan dengan memotong DNA vektor maupun DNA sumber gen yang dikehendaki menggunakan dua enzim restriksi yang
berbeda
Vektor untuk Mengklon
1 Vektor berupa plasmid
2 Vektor berupa bakteriofaga 3 Cosmid
4 BACs (Bacterial Artificial Chromosome)
& YAC (Yeast Artificial Chromosome)
1. Memiliki origin of replication dari inang yang dituju, sehingga memungkinkan replikasi secara independen terhadap genom inang.
2. Memiliki penanda selektif: Memudahkan seleksi sel pembawa plasmid tersisipi DNA asing
ketahanan terhadap antibiotik ganda penapisan biru-putih
3. Memiliki banyak situs pengkloningan (multiple cloning sites, MCS)
4. Mudah diisolasi dari sel inang.
Vektor berupa Plasmid
Vektor berupa Plasmid
Vektor berupa Plasmid
• Keunggulan:
•
Kecil, mudah pengerjaannya•
Strategi seleksi mudah•
Berguna untuk mengklon potongan DNA ukuran kecil (< 10kbp)• Kelemahan:
•
Kurang bermanfaat untuk mengklon potongan DNA ukuran besar (> 10kbp)Bakteriofaga ( l phage)
Vektor berupa bakteriofaga ( l vectors )
Vektor berupa Bakteriofaga
• Keunggulan:
•
Bermanfaat untuk mengklon potongan DNA ukuran besar (10 - 23 kbp)•
Seleksi berdasar ukuran• Kelemahan:
•
Lebih sulit pengerjaannyaVektor Cosmid
• Keunggulan:
• Bermanfaat untuk mengklon potongan DNA berukuran sangat besar (32 - 47 kbp)
• Seleksi berdasar ukuran
• Pengerjaan seperti plasmid
• Kelemahan:
• Tidak terlalu mudah untuk mengerjakan plasmid dengan ukuran sangat besar (~ 50 kbp)
Gabungan sifat vektor plasmid dan sifat berguna
dari situs l cos (dihilangkan pada vektor l)
Vektor Cosmid
Vektor BAC
• Replikasi dimediasi ori S dan ori E
• par A and par B
mengendalikan agar hanya terdapat satu vektor dalam sel
• Menggunakan
penanda ketahanan terhadap
Khloramfenikol
RVecktor YAC
• Dapat disisipi gen asing 200 - 2000 kbp dan dimasukkan ke dalam yeast
telomere centromere telomere
ARS URA3 HIS3
replication origin
markers large inserts
BACs dan YACs
•
Keunggulan:• Dapat digunakan untuk mengklon potongan DNA dengan ukuran sangat besar (100 - 2,000 kbp)
• Penting digunakan dalam proyek penetapan urutan basa nukleotida total genom
•
Kelemahan:• Tidak mudah mengerjakan molekul DNA dengan ukuran sangat besar
BACs : Bacterial Artificial Chromosomes
YACs : Yeast Artificial Chromosomes
Memilih Vektor
•
Ukuran DNA yang disisipkan•
Ukuran vektor•
Situs enzim restriksi yang tersedia•
Jumlah salinan (copy number)•
Efisiensi kloning•
Kemampuan untuk menapis DNA sisipanCara Mengklon DNA
•
Isolasi vektor kloning (plasmid bacterial) & DNA sumber gen•
Pemotongan DNA sumber gen& vektor kloning
menggunakan enzim restriksi yang sama
•
Penyisipan potongan DNA sumber gen ke dalam vektor kloning yang telah dipotong menggunakan enzim restriksi yang sama; potongandisambung dengan bantuan enzim DNA ligase
Cara Mengklon DNA (2)
•
Vektor kloning yang telah tersisipi potongan DNA dimasukkan ke dalam sel inang (transformasi sel inang)•
Penapisan sel pengklon (dan gen yangdimasukkan)
•
Identifikasi sel pengklon pembawa gen yangdikehendaki
•
Transformation- process of introducing free DNA into bacteriaCompetent cell- a cell that is capable of taking up DNA.
Electroporation- The use of an electric shock to momentarily open or disrupt cell walls.
Transformation
Memudahkan seleksi sel pembawa plasmid tersisipi DNA asing
❑ ketahanan terhadap antibiotik ganda
❑ penapisan biru-putih
Penanda selektif
Penapisan biru putih
•
To perform blue-white screening after transformation, X- Gal is added along with Isopropyl β-D1-thiogalactopyranoside (IPTG), an inducer of lacZ ω gene expression. The blue colonies contain bacteria with
functional β-galactosidase, indicating the plasmid taken up during transformation did not contain the DNA of interest.
•
Isopropyl β-D1-thiogalactopyranoside (IPTG)Dalam proses transformasi, sel kompeten yg dicampur dengan molekul DNA mengalami :
1. Sel Kompeten yang tidak kemasukan molekul DNA apapun 2. Sel kompeten kemasukan DNA yg tidak membawa gen X 3. Sel kompeten kemasukan DNA vektor yg membawa gen X
Bisa dilihat dari seluruh cawan A (media padat LBA) tumbuh semua yg membawa atau tidak membawa gen X.
Pada cawan B (media LBA yg diberi antibiotik), semua sel kompeten yang kosong akan mati. Karena hanya sel kompeten yg membawa plasmid resisten thd antibiotik yg hidup.
Dan pada cawn C (media LBA yg ditambah IPTG dan X-gal), warna putih koloni karena adanya kerusakan pada gen Lac-Z yg disisipi oleh gen X sedang warna biru membawa DNA plasmid tetapi tidak membawa gen X karena IPTG dan X-Gal bereaksi dg produk gen Lac-Z memberikan warna biru.
Penapisan Klon
•
Medium pertumbuhan diberi antibiotik yang sesuai dengan sifatketahanan yang digunakan sebagai penanda, misalnya Kanamisin
•
Bakteri di paruh cawan petri sebelah kananmemiliki plasmid dengan penanda ketahanan
terhadap Kanamisin(Kanr), yang di sebelah kiri tidak memilikinya
Penapisan warna koloni Biru/Putih
lacZ insert
Enzim tidak berfungsi
X-gal produk
lacZ
Enzim berfungsi
X-gal produk
Penapisan Koloni Bakteri pembawa
Plasmid Rekombinan
Hibridisasi Koloni
•
Dapat dilakukan jika memiliki DNA pelacak•
Bagian dari gen yang dikehendaki•
Bagian dari gen yang mirip dari jasad lain•
Oligonukleotida sintetikMolecular Farming
•
The use of agricultural plants for the production of useful molecules for non food, feed or fiberapplications.
•
Plants are already grown to produce valuable molecules, including many drugs.•
Molecular farming is different because the plants are genetically engineered (GE) to produce themolecules we want them to.
•
Agro bacterium tumefacians is abacterium that causes a disease known as crown gall in plants.
•
Infects plants by transferring its genetic material into plant cell.•
Agrobacterium transformation is the most common technique for genetically engineered plantsAgroBacterium Transformation
Examples of GMO’s
•
In 1994, the Flavr Savr tomato was introduced as the first GM food. It is supposed to be“tastier, firmer and fresher” than the average tomato.•
Golden rice – enriched rice containing beta-carotene (Vitamin A). This vitamin is not found in normal rice.•
Bt corn – corn containing a chemical normally found in bacteria (Bacillus thuringiensis). This is toxic to insects, not humans.Insects try to eat the plant and die.
•
Herbicide resistant plants (roundup ready corn). These plants are immune to a certain herbicide, so they live while all theother plants in the field are killed.
Image credit: Microsoft clipart
The Next Test Is The Field
Non-transgenics
Transgenics
Herbicide Resistance
Agrobacterium
A natural DNA delivery system
• A plant pathogen found in nature
• Hormone genes expressed and galls form at infection site
• Delivers DNA that encodes for plant hormones
• Infects many plant species
Gall on stem
Gall on leaf
• DNA incorporates into plant chromosome
Benefits #1
• Increased crop productivity
• This includes herbicide tolerance,
• pest and disease resistance
• E.g. “Roundup ready” crops, and BT corn.
• Could mean using less spray
Image credit: http://www.public-domain-photos.com/& Microsoft clipart
Benefits #2
•
Cold tolerance• plants developed to tolerate cold temperatures
• & withstand unexpected frost
• could destroy seedlings
•
Drought & salinity tolerance• currently inhospitable regions can now be cultivated
Image credit: http://www.public-domain-photos.com/
Benefits #3
• Improved nutrition
• crops like rice are a staple in developing countries
•
nutritionally inadequate!• GM "golden rice" is high in beta- carotene (vitamin A)
•
Reduces eye-related problems like blindness due to malnutritionImage credit: http://www.public-domain-photos.com/& Microsoft clipart
Challenges
•
Human health risks•
introducing a gene into a plant may create a new allergen or cause anallergic reaction in
susceptible individuals
•
For example, inserting genes from a nut into another plant could be dangerous for people who are allergic to nutsImage credit: Microsoft clipart
Challenges
• “
Superweeds”•
gene transfer to non-target species where herbicide tolerant plants crossbreed withweeds potentially creating herbicide resistant weeds.
•
Some Western Canadian farmers are calling Monsanto’s round-up ready canola asuperweed.
Image credit: Microsoft clipart