sensing and electromagnetic methods in the hard- rock formations of the Cameroon coastal plain (Central Africa):
implications for water borehole location
André Firmin Bon
a,∗, Auguste Ombolo
a, Patrick Mboa Biboum
a, Jacques Mahop Moutlen
b, Guillaume Ewodo Mboudou
aaNational Advanced School of Engineering of Maroua, The University of Maroua. P.O.Box 46, Maroua, Cameroon
bOffice of study, control and expertise in engineering (BEC INGEREX), Littoral, Cameroon
a rt i c l e i nf o
Article history:
Received 13 March 2022 Revised 18 May 2022 Accepted 5 July 2022
Editor: DR B Gyampoh Key words:
Remote sensing Electromagnetic surveys Hydrogeological features Hard-rock aquifer Cameroon coastal plain
a b s t ra c t
Sustainable accesstogroundwater inruralareassuchas the coastalplainof Cameroon (Sub-SaharanAfrica)isanongoingchallengeduetothelackofknowledgeonhydrogeolog- icalfeaturesfavorabletotheidentificationofpotentialgroundwatertargets.Inthisstudy, remote sensingimageryandelectromagneticsurveys wereused toassessthehydrogeo- logicalpotentialoftheNgweilocalityhard-rock.Automaticextractionoflineamentsfrom Landsat-8imagesindicated200lineamentswithatotallengthof293kmcorresponding to0.6 kmoflineament persquarekm, suggestingamedian groundwaterpotential.The maindirectionsareNNW-SSE,N-SandNNE-SSWwhilethesecondarydirectionsareNW- SE;NE-SW andE-W. Surfacegeophysicalinvestigationsshowed anelectromagneticfield of0 to0.57mV.Thesesurfaceandboreholeinvestigationsconfirmedbasement fractur- ingand spatialvariationsinweatheringprofiles whoseaquiferstructureand yields(4.4 m3/honaverage)aresimilartowhatiscommonlyobservedinthehardrockaquifer.The correlation betweenboreholeproductivityandthenearest lineamentsuggeststhatthese lineamentsarenot(atleastnotall)surfacetracesofregionaldiscontinuitiesthatmayact asmajorgroundwaterflowpaths.ThisimpliesthattheproductivityoftheNgweiaquifers appearstobedependentonthefissured/fracturedhorizon,soexplorationshouldbebased onacontextualratherthangeneralapproach.
Analysisoftheconsistencyoftheresultswiththefielddataallowedtoproposeapre- liminary electromagneticlogmodel and alsoshowsthevalueofusingthisapproachto assess the availability of potential groundwaterzones in hardrock areas. However, the methodsusedshouldbesupportedbyfurtherinvestigationstoallowabetterunderstand- ingofthehydrogeologicalcharacteristicsofthispartoftheCentralAfricanbasementso thatnooneisleftbehindintheachievementoftheSDGs.
© 2022PublishedbyElsevierB.V.onbehalfofAfricanInstituteofMathematicalSciences /NextEinsteinInitiative.
ThisisanopenaccessarticleundertheCCBY-NC-NDlicense (http://creativecommons.org/licenses/by-nc-nd/4.0/)
∗Corresponding author.
E-mail address: [email protected] (A.F. Bon) .
https://doi.org/10.1016/j.sciaf.2022.e01272
2468-2276/© 2022 Published by Elsevier B.V. on behalf of African Institute of Mathematical Sciences / Next Einstein Initiative. This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ )
A.F. Bon, A. Ombolo, P.M. Biboum et al. Scientific African 17 (2022) e01272 Introduction
Hard rocks(HR)(plutonic andmetamorphic rocks,withtheexception ofmarbles,asthey canbe karstified)constitute the basementofall continentswithabout35%oftheworld’sHR providedbyAfrica [1,2].Theiraquifers(0-100mdepth) are ofparticularimportanceinthe tropicalandsubtropicalregions,both dueto theirwidespread extentandaccessibility andbecause thereis oftennoother readily availablewater supply,especiallyfor thelarge ruralpopulation(235 million) living onthese geologicalenvironments [3–5].Unlike other typesofaquifers (e.g.,volcanic andsedimentary formations), hard rocksaquifers (HRA)are heterogeneousandhavelowprimary porosity andhydraulic conductivity,requiringspecific knowledge andtechniques ifgroundwater isto be extractedandmanagedeffectivelyespecially in ruralareaswherethe developmentoftheseaquifersasareliablesourceofwatersupplynotoriouslycomplicated[2,3,6–9].
In recentyears,manyconceptual-hydrogeological models havebeen developedforHRA. However, intermsof geome- tryandstructure,two centralconceptsareconsideredrelevantbyalargemajorityofhydrogeologists[1,10]:theconcepts ofhydraulic propertiesdueto weathering(anewconcept)andthose duetotectonic fracturingrevealedby lineaments(a previous concept). The recent concept [1,2,11,12] revealsthat the typical weatheringprofile of HR includes, from top to bottom: (i)asaprolitelayer(consistingofthefineandcoarsesaprolite)withamainlycapacitivefunction(when saturated withwater),surmounted,insomesplace,bytheironorbauxiticduricrust;(ii)afissuredlayer(ofvariablethickness)mainly transmissivebutalsocapacitiveandshowingfractures,inmajority,subhorizontalinthegranitoidswhosedensitydecreases withdepth;andfinally(iii)thefreshbasement,cutbyanetworkofmajorfractures,verydeep(>100m),withakilometer extension,islocallypermeable.Itsstoragecapacityislimitedonalocalandregionalscale[1,12,13].Thisprofilecanbesplit intotwo categories:theprofilefromsingle-phaseweatheringwherelayersarehorizontal[11]andtheprofilefrommulti- phase weatheringwithstratiform layers,the mostrecentofwhichmayfollow thetopography[12].Instead, theprevious concept indicates, withoutanyevidenceofthe genesis ofthefissuredlayerin tectonicallystableterrain [1],that thehy- draulicpropertiesofHRAderivemainlyfromtectonicoriginsandlithostaticdecompression[3,14–18].Thegeometryofthe aquiferiscontrolledbysandy-claylevelsandfracturesofvaryingdirections.
The workcarriedoutby [1]todemonstratethat thehydraulicconductivityofHRAisa consequenceof(paleo)weath- ering processes indicated, independentlyof the concepts, that the fractured/fissured reservoir from which theseaquifers derivetheirproductivity[13]hasingeneralahigherpermeability,althoughboreholeyieldsareusuallylimitedtolessthan 10m3/h[19].Forallconcepts,theheterogeneityoffracturinginfluencestheboreholeyieldandtheiroperationalframework requireswelladaptedtechniques.Forinstance,[1,2]indicatedthatthestrategyforsitingawaterboreholewillbedifferent in thegeneralcase(lookingforthe subhorizontalfractures ofthestratiform fissuredlayer thatwill efficientlybe tapped withverticalboreholes)orwherethislayerhasbeencompletelyremovedbyerosion(searchingforaverticalfissuredlayer located alongbothwallsofa subverticaldiscontinuity).ThismodelhasbeensuccessfullyappliedinvariousHRAinAfrica (includingIvoryCoast,SouthandEastAfrica,BurkinaFaso[7,10,20])andelsewhereintheworld(India,SouthKorea,France, [11,12]).Furthermore,topographyhasbeenshownbymanytobeaparameterinfluencingonboreholeyield,withthecom- monresultthatboreholeslocatedinvalleys(valleysareoftenassociatedwithregionalfracturefeatures)andflatareasshow generallyhigheryieldscomparedtoboreholeslocatedonslopesandhilltopsduetothepresenceofthickerweatheredma- terialsthatallowforgoodrechargeconditions[9,16].However,thiscommonpracticedoesnotaccountfortheeffectsofthe layered organization ofcuirassedpaleosurfaces.Indeed,[20] have shownthatHRA are theproduct oflong-termgeomor- phicevolutionofthelandscapethatoccurredthroughtectonically-controlledcyclesofdeepweatheringanderosion.Ironor bauxiticduricrustthatlocallyoverliesaprolite(acommonfeatureofdeeplyweatheredHRterrains)aregenerallyabsentat lower altitudesandthefissuredlayer isthuscloserto thegroundsurface(sometimesoutcrops)[2,7,12,21].Unfortunately, the resultsare often notsatisfactory (high failure rate)because theinfluence oftopography isoften overridden by addi- tionalfactors[9,19,22].Thispracticeisbasedonthelocationconditions(easieratthebottomoftheslope)and/orthecost ofdrilling(priceper meterdrilled,shallowerdrillingatloweraltitudes)oftheboreholeandnotonthestrategyproposed by [1,2] which,it should be recalled, require additionalknowledge and techniquessuch as lineamentanalysis when the stratiformfissuredlayerhasbeencompletelyremovedbyerosion.
Lineament analysisis a standard technique(in HR areas) that tectonic models rely on for locating fractures(perme- ablestructures,[14,18]andthensitingwater-boreholeswithoutanyprior/exhaustivehydrogeologicalstudy[23].Thiswould resultinhighratesofnegativeboreholesdueto thelackofsubstantialcorrelation betweentectoniclineamentsandfrac- tures [10,23]. Despitethe unresolvedrelationship between lineaments andsubsurfacepermeability, the useof lineament identificationingroundwaterexplorationremains animportantinitialguidefordrillingtarget selectionbytheprojectsu- pervisors duringdrillingcampaigns [9,10,15]. Theseare assumedto be thesurface representationofsubvertical fractures andaredetectablebysuitableprocessingofsatelliteimagesandgeophysicaltechniques[17,22–29].Amongallthegeophys- ical methods,electricalandelectromagnetictechniquesarethemostpopularingroundwaterexploration dueto theclose relationshipbetweenelectricalconductivityandsomehydrogeologicalpropertiesnamelytheporosity,mineralizationofthe groundwater anddegreeof watersaturation[25].Intermsofdata quality,predictive management andcost-effectiveness, someauthorshaveshownthatthecombinationofelectrical/electromagnetic(EM)methodsandremotesensingareeffective ingroundwaterexplorationworkinHRareasandmoreadvantageous(intermsofcostanddatainterpretation)forproject beneficiarycommunities[22–24,27,30]especiallyinruralareaswherehydrogeologicalstudiesaremoredeficient.According to [8],ruralAfricans remainone ofthemostmarginalisedpopulationsin termsofwatersupply,beingalmost fourtimes
populationisestimatedatnearly15,000inhabitantsaccordingtoCentralBureaufortheStudyandCensusofthePopulation of Cameroon.Theproject servedasthebasis fora DesignEngineer thesis(see [33]), unfortunatelythistypeof projectis oftennotsustainableforthebeneficiary populationswhentheimplementationisdonerandomly. Beside,boreholeyieldis frequentlylow intheHRareasnamelyduringthedryperiodswherewatersuppliesdonot havelong-termsustainability.
Toensurethesustainabledevelopmentandmanagementoftheregion’spotentialgroundwaterresources,itisimperativeto locatedrillingsitesandvalidatetheinformationobtainedwiththefieldrealitiesandothersimilarinformation.Thus,inthe contextofpreliminarystudiesandgiventhesocio-economicconditions,theuseofefficientandinexpensiveapproachesfor groundwater explorationcouldbepromising.Theobjectiveofthisworkwastocontribute, throughtheanalysisofremote sensingandelectromagneticdata,tothedeterminationofthehydrogeologicalfeatures likelytoallowtheidentificationof potentially favorablesitesforthelocation anddevelopmentofboreholesinthislocality.Thestudiesfocused ondetermin- ing thestructuralorganization ofthelineamentnetwork, thesubsurfaceelectrical characteristicsandtheimplications for groundwater exploration in thispart ofthe CentralAfricanbasement whereexploration and sustainablemanagement of groundwaterresourcesarefragile.
Materialandmethods
Geographicalandgeologicalsetting
The studyarea islocated intheLittoralregion (southernpartofCameroon)about90km fromtheAtlanticcoast and between latitudes 3°30’and 4°10’N andlongitudes 10°09’ and10°54’E (Fig.1). The climatic indications are those of the climaticstationofthecityofEdéacorrespondingtothehumidtropicaltype(equatorialmonsoon)withfourseasons(with rainfallpresentevenduringthedriestmonth)markedbyameanannualtemperatureof26°Candanaverageannualrainfall of2600mm.Thevegetationcorresponds tothedomainofthedenseombrophilousforest,whichisverysecondarizedand often degraded by human activities [34],particular by thecultivation ofoil palm andcocoa. This zone islocated in the coastalplainofCameroonwithsubmeridianridgesrisingtoabout500m(Fig.1).Thisplaincorresponds toapost-African surfaceandhasanundulating morphologysimilar tothatofthe southernCameroonian plateau(averagealtitude750m), whoselandformcorresponds tothedismantlingofanold ironduricrust undergoingmorehumidclimaticconditions[35]. Thehighaltitudeareasaredominatedbysmoothrockyhillswithlargeconvexslopes(80or100%)relayedbynarrowvalleys (1to2mwide)forthetributariesoftheSanagaRiverinthenorth(flowtowardstheNorthorNorth-West)andmarshyflat valleys (40to50mwide)forthetributariesoftheN’Djiba,asub-tributaryoftheNyongRiverinthesouth(flowtowards theSouthandSouth-East).Thesewide,flat,marshyvalleysareafeatureofthetributariesoftheNyongRiver,whichflows overthesouthernCameroonianplateaubeforeemptyingintotheAtlanticOcean.
Fromageologicalviewpoint,thestudyareaispartoftheNyonggroup(Fig.2)whereseveralpetrographicandstructural studies havebeencarriedout. Thesestudieshaveshownthat theNyonggroupinthe NWcornerofthe CongoCraton in CameroonrepresentsthosepartsoftheArcheancratonthatwereremobilizedduringthePaleoproterozoicEburnean/Trans- Amazonianorogeny[36–39].ThisGroupconsistsofasetofmetasedimentaryandmetaplutonicrockwhoseheterogeneityis alsoobservedattheNgweilocality(Fig.2b,[40]).Theweatheringrocksunderhumidtropicalconditionsresultedinlateritic weatheringprofileswhichfrombottomtotopconsist of[41]:i)aweatheringoralteriticset(isalteritesurmountedby the alloterite); ii)an intermediate orglebular set characterizedby the accumulationof metallic oxyhydroxidesandclay with totallyorpartiallytransformedlithorelictualorganization;andiii)asurfacesoftlevel(soil);whichisclayey-sandytosandy- clayey andmaybeabsentwherethenodularhorizonisdeveloped.However,thetopography,inlinkwiththearchitecture oftherock,determinesthedifferenttypesofsoils[41]:hydromorphicsoilsinthemarshylowlands;erosionhasputlateritic gravelsoutcroppingeverywhereontheslopes(nooverallironorbauxiticduricrustingduetothehumidclimaticconditions, a few residual blocks at the bottom of the slopes); the plateaus and summits have moderately deep and evolved soils (ferralliticsoils).Structurally,[38]showedthattherocksoftheNyongComplexunderwentabrupttectonicscharacterizedby fourdeformationphasesnamely:ductileD1(representedbyasub-E-WS0/1foliation)andD2(representedbyasub-vertical S0/1/2 foliation,L2lineation inferred toD2 are parallel andorientedWSW–ENE to WNW–ESE),ductilobrittleD3 (F3 fold orientedN176/21°andC3SW-NE shear-zones)andpost-orogenic brittleD4 (NE-SW, NNE-SSW,ENE-WSW andE-W).The
A.F. Bon, A. Ombolo, P.M. Biboum et al. Scientific African 17 (2022) e01272
Fig. 1. Map showing the location of the Ngwei District.
Fig. 2. Geological sketch map of the southern Cameroon (A, after Toteu et al., 2006, modified) and Geological sketch map of the study zone (B, after Champetier De Ribes and Reyre, 1959, modified).
NNE-SSWdirection,similartothatoftheSanagainthisdownstreamsector(N070Einitsupstreampart,Sanagafault,[42]), isthetectonicdirectionofthebasementintheNgweilocality.Moreover,theSanagaaccident,whichistheextensionofthe Bozoum-Ndélé accident (CentralAfricanRepublic,seeESM1)isthemostsouthern andthemostcontinuousoftheCentral Africanlineaments[42].ThisdirectionfromPoumaintheNEtoCampointheSWwasindicatedasamajortectoniccorridor intheKribi-Campoarea[38].ThisfaulthasbeenindicatedasacontinuationoftheKribi-CampoFault(KCF)whoseseismic effectssuggestatectonicallyactivezone[42].Thesefracturedrocksformpotentialaquiferswhoseefficientexplorationcan allowforasafe,reliable,andeasilyaccessiblewatersupplyforthepopulationsinthisregionfacingdrinkingwatersupply problems.
Remotesensingdata
The analysisofcertain characteristicsoftheEarth’ssurface, suchassoiltone, textureandpattern,straightnessofriver coursesand vegetationpattern, whoseradiationis measured asspectral bands,allows todetermine thelineaments from satellite images [22,43]. Accordingto some authors[29,44–46], Landsatimagery dataare one ofthe mostinteresting in- formation sources on theEarth surface. In this study,the remote Sensing involved obtaining the Landsat-8 OLI imagery (L8) downloadedwith path186androw58 injanuary 2021on thehttps://earthexplorer.usgs.-gov/ sitebelongingtothe UnitedStatesGeological Survey(USGS).Asreportedby[45],geometriccorrectionoftheacquiredL8dataisoftennotnec- essary since they are alreadygeometrically corrected by USGSin the Universal Transfer Mercator (UTM) projection with theWGS-1984, Zone32Nmapdatum.Based onanumberofprocessingtechniqueslisted intheliterature[43,47–49],the contrast of theBlue, Green, Red, NIR, SWIR1and SWIR2band data, witha spatial resolutionof 30m, wasdigitally en- hanced. Following visual evaluation, theRed band datawas selectedfor thisstudyasit appeared to havegood contrast andbetterdefinitionofgeologicalfeatures(lineaments)comparedtotheother bands.RadiometriccalibrationandtheFast Line-of-SightAtmosphericAnalysisofSpectralHypercubes(FLAASH)atmosphericcorrectionmodelwereappliedusingENVI softwareasdescribedbysomeauthors[18,25,45,50].Imagenormalizationwasthenperformedonthisdatasetinthesame environment, andan additionalsub-setting wasdoneto extract thestudyarea (Fig. 3).The next stepwasthe extraction ofthelineamentswhichcanbedone manuallyorautomatically[44,51].Inthisstudy,automaticlineamentextractionwas performedbyfirstapplyingSobeldirectionalfilteringandthenlineamentdetection.Theautomaticextractionoflineaments wasperformedthroughthemoduleLineofPCIGeomaticasoftware.ThisprocessisbasedontheCannyfilterandincludes the steps thatare managedmainly byseveralparameters such as[26,45]:theRadius filter(RADI),gradient edgethresh-
A.F. Bon, A. Ombolo, P.M. Biboum et al. Scientific African 17 (2022) e01272
Fig. 3. Images of the study area showing contrast and brightness differences.
old (GTHR),thecurve lengththreshold(LTHR),angulardifferencethreshold(ATHR)andlinkingdistancethreshold(DTHR).
The extractedlineamentswereexported asaShpextensionfileandthenimportedintoArcgissoftwareforstatisticaldata processingandanalysis.TherosediagramwasgeneratedfromtheRockworksoftware.Inordertoevaluatethelineaments extractedautomaticallybytheLinemodule,areferencelineamentmapcreatedbasedonthemanual lineamentextraction ofthestudyarea isrequired[45].SincetheNgweidistrictdoesnothaveadetailedgeologicalmap,thereferencemapfor theevaluationwascreatedusingthegeologicalmapofsouthernCameroon(see[36]).Thisgeologicaldataassociatedwith thesurfacetopographyandtheelevationmapwasveryusefultovalidate thelineamentsobtainedautomatically,allowing thedetectionofareaswithabruptchangesindiscontinuitieswhenall thisinformationissuperimposed.Theshadedrelief mapofelevationwasgeneratedfromDigitalElevationModel(DEM)withthehillshademoduleinArcGISsoftware[26].
The geometric parametersof thelineaments,especially thedirections (usingthe directionaldiagram) andthelengths, were statisticallyanalyzed todescribe thestructure ofthe zone.The statisticaldistributionoflineament length datawas evaluated usingtheKolmogorov–Smirnovtest.Thestudyoffracturelengthdistributionwasdone usingthehistogram, cu- mulativefrequenciesandfrequencydensity.Thelineamentdensity(Dl)wascalculatedwiththeLineDensityToolintheGIS environmentusingequation(1)whilethefrequencydensity(Df)wascalculatedfromequation2.
Dl=TotalLineamentLength
(
L)
Studyarea
(
A)
(1)D f= f requency
classamplitude (2)
Geoelectricaldata
The geophysical prospection wasbased on the electromagnetic(E.M) methodwhich is not widely used in hydrogeo- logicalprospection ofcrystallinerocksinCameroon unlikeelectrical resistivity.The datawereobtainedusingPQWT-S300
Fig. 4. Typical movement of M and N Electrode along a measured line.
AutomaticMappingWaterDetectorforDrillingWaterWell.Theinstrumentiswidelyusedintherapidanalysisofgeologi- cal structurechangesindifferentterrainssuchasplains,hills,mountains,plateaus,andbasinstodeterminewelllocations, aquifers, andaquifer depth [30,see alsohttps://www.pqwtcs.com]. A totalnumber offive (5)cross-sectionswere estab- lished acrossfive projectvillages (Fig.1). Themeasurement tranverseswere perpendicularto themajor tectonicaccident direction in thearea, which is also the major directionof the Sanaga River (see section 2.1). Thesedifferent tranverses, T1toT5,correspondedtoNdjockloumbe,Makondo,Makek,NsongdongandMapubirespectively.TheEMmachine(PQWT) was setup ateach site. As described inthe manual, E.M electrode probeM and Nwere placed on the soil at points0 and10 malongthe transverse;theprobes were connectedtotheE.M.consoleby acablethat readstheelectromagnetic pulsegeneratedbythesepoints.TheelectrodesMandNaremoved1mtotherightandtotheside ofthemeasuredline, i.e.Mis movedto 1m,whileNismovedto 11m(Fig.4),the readingsaretaken, thiscontinuesuntilthewholelength is covered.The machine,bypushinga button,automaticallyprocessesthedataandgeneratesgraphsofcurvesandaprofile mapofallthemeasuredpoints(inmV),thedifferentcontrastsandtheprobabledepthofdetectionoftheusefulsubstance (water)canbe obtained.Inthisstudy,onepotential boreholelocation (ineach locality)wasselectedalong thehorizontal axis.Subsequently,ajointanalysisoftheboreholedataandlineamentswasdonetoassesstheimplicationsforgroundwater exploitationandthehydrogeologicalmodel.
Resultsanddiscusion Structuralcharacteristics
Analysisofthestructuralframemap(Fig.5a),whichrepresentsthelineamentsconsideredtobeoftectonicorigin,iden- tified 200 structuralelementscorresponding to 0.4lineaments per square km.The area appearsto havea homogeneous lineamentdistributionbutsomeareasweredevoidoflineaments.Theshapeandlengthshowacomplexityofthesegeolog- icalobjectsandcanthereforepresentawiderangeofhydraulicconductivitiesfrompermeabletoveryimpermeable[1,19].
The totallengthofthemapped lineamentsis292.96km,whichcorresponds to0.6kmoflineaments persquare kmsug- gestingamediangroundwaterpotential[14,18,25].ThislineamentdensityisclosetotheclassicalorderofmagnitudeinHR areas(1to2kmoflineamentsper squarekm,[18]).Thelengthsofthelineamentscanbe groupedintothefollowingfive classes(Fig.6):0.4and0.9km(6.5%);1and1.5Km(64.0%);1.6and2.3km(25.5%);2.4and3Km(3.0%)andfinallyaclass whoselengthsaregreaterthan3.4km(1%).Thelineamentdensitymap(Fig.7)weregroupedintothreeclasses:0.00–0.23 Km/Km2,0.23-0.63 Km/Km2 and0.23-1.73Km/Km2 indicating low,mediumandhighlineamentdensityrespectively[25]. Thisdensitycontrastmayrevealdiscontinuitiesthatmaybemoreusefulforgroundwaterexplorationandlikelytogenerate higherboreholeyields.Aco-existingofproductiveandbarren/non-productivesectorscanalsobeobservedduetothisvery discontinuous distributionoflineament density[52].According to[22] and[25],the occurrenceoflineaments is directly proportional tothegroundwaterpotentialofan area,sincelineamentsrepresentzonesoffaulting andfracturing resulting inincreasedsecondaryporosityandpermeability.Themediumlineamentdensityappearstobemoredominantinthestudy area againsuggestinga mediumgroundwaterpotential.Adjustmenttestswithaconfidencelevelof95.0%(p<0.05)donot statisticallydescribethelength ofthe lineaments.Attemptingtomodelthedistributionofthesefracturesby apowerlaw showsthat onlyfracturesbetween2and2.4Kmare closetothetheoreticalpowerlawlinewitha correlationcoefficient R²=0.98(Fig.8).At bothendsofthe distribution,theexperimental valuesdeviatefromthepower law,possibilydueto effects relatedto oversamplingof smallfractures(<2 km)andalteration of thedistribution oflarge fractures. The value ofthe exponenta(10.52)ofthepowerlawthat indicatestheproportionofsmallfracturestolarge fracturesis moreover inconsistentwiththevaluesofafaultnetworkgenerallybetween1and3[15,18].
TherosediagramshowedthatthemajorlineamentdirectionswereintheNW-NEframeandinclude(Fig.5b):NNW-SSE, N-S,andNNE-SSW)whilethesecondarydirectionswereNW-SE;NE-SWandE-W.Thesedirectionscorrespondtothoseof
A.F. Bon, A. Ombolo, P.M. Biboum et al. Scientific African 17 (2022) e01272
Fig. 5. Lineament map of Ngwei District showing the tranverses and borehole loccation.
Fig. 6. Lineaments’ length histogram.
the brittle phase (D4) determined by [37] in the Nyongcomplex (NyC), inparticular the NNE-SSW direction, which has been describedasthe structuraldirectionofthe area,andalsocorrespond tothoseofthe hydrographicnetwork (Sanaga andNyongrivers,seesectionGeographicalandgeologicalsetting).Accordingto[37],themultiplenatureofD4lithoclases shows that the NyC recorded various post-orogenic brittle tectonic phaseswith a horizontal shortening N176 sub-N-S a sub-vertical extension N084induced bystresses
σ
1 andσ
3, respectively. TheN-S lineamenttrendpatterncoincides with thegeneraldevelopmentofthesub-vertical foliationintheNyCimplyingatectonicoriginofthelineaments.Nevertheless, the factthatthe NNE-SSWdirection(themajor geologicdirectioninthearea,[38])isnot themostdominantshowsthat itisvery unlikely(notall)that theidentifiedlineamentsareassociatedwithtectonicfracturing.Indeed,inrelationto the genesis ofthefractured/fissuredhorizon, [1,2] indicatedthatduringweathering,swellingofferromagnesian minerals(e.g.biotite) createstensioncracks;inaccordance withrockmechanics,theresulting fracturesareperpendicular tothe minor (subvertical)stressandthereforearesubhorizontal(paralleltothesofttopographycontemporaneouswithweathering)and leadtotheformationofthesubhorizontalgranitejoint.
Geophysicalcharacteristics
Theelectromagneticsignaturedepictedonthesubsurfaceprofilemapsofthedifferentsites(Fig.9)indicatedaccording to [27]thepresence ofa heterogeneousformationwiththeintermittentpresence ofshallowaquiferbodies (bluecolored areas). Thesemapsalsoshoweda variationin thelocationsofweatheredzoneswithfractureswithin andbetweensites.
These zones corresponded [33] to location 2 m for transverse T1 (Fig. 9A); locations 3,14 and 20 m for transverse T2 (Fig.9B);locations4and8mfortransverseT3andT5(Fig.9CandE).TransverseT4hadweatheredareaswithinsignificant fractures(Fig.9D).Theselocationsexceeda penetrationdepthof70mbelowthesurfaceintersectingthepointmeasured horizontaltotheexistingtransverse.Theyrepresentpotentialtargets,ofvariableinterest,forwater-boreholesiting.However, boreholesuccessis dueto goodlocation oftheboreholesitingbecauseapoint alongthehorizontalaxiswithpotentially higher groundwater extractionsmay not be chosen [30]. Contraryto the other transverses, T5(Fig. 9E) showeda higher waterpotentialatthesurface(10mdepth)especiallybetweenlocations2and14(seeblueareacircledinred).Thisdepth mayindicatethesub-surfaceaquifersituatedwithintheupperweatheredpart.Theverticalelectromagneticsignatureglob- ally showedan upperzone (0-10m) withhighvalues(0.13 ± 0.14mV) compared to theintermediate zone withunclear boundaries(0.12±0.13mV)(Table1).ThistypeofverticalsignaturehasbeendemonstratedinHRAbyotherauthorsusing electricalresistivitytomography[10,17,26].Thesezoneswereassimilatedtothesaprolite,thefissuredhorizonandthefresh bedrock,respectively.Fromtoptobottom,theconfigurationoftheelectromagneticpattern(bluecolor)isgloballyelongated whateverthedepthindicatingthepresenceofsub-horizontalfaults.Thefracturesappeartobe(sub) horizontalsincethey subsurfaceprofilemapsdonotshow patternssimilar tothoseindicatingthepresenceofverticalfractures[30]orsuchas that correspondingtotheconceptualmodelofaverticaldiscontinuityinhardrock[13,19;seeESM2).Thesemapsmay alsoindicatethattheverticalfractures,ifpresent,arenotsufficientlywaterlogged.
These (sub)horizontal joints (or sheeting fractures) that appear to haveincreasing spacingwith depth havebeen de- scribed insome HRformations elsewhereintheworld(France,USA,India,other Africancountries)[1,3,6,14,22,53].Asre- ported inthe literature,in granites,subhorizontal fracturesappearto be morepermeablethan subvertical fractures(Kxy
≈ 10Kz[2]).[14]statedthathorizontal…sheetingfracturescanbea significantsourceoffreshwater,canoftendominate
A.F. Bon, A. Ombolo, P.M. Biboum et al. Scientific African 17 (2022) e01272
Fig. 7. Lineament density map of the Ngwei District.
Fig. 8. Distribution of fracture lengths: a) cumulative distribution and b) frequency density graph.
Fig. 9. Subsurface Profile Map generated from the Electromagnetic Survey : A = T1 (Ndjockloumbe), B = T2 (Makondo), C = T3 (Makek), D = T4 (Nsongdong) and E = T5 (Mapubi). The dark red vertical bars on the horizontal axis are the locations where the boreholes were drilled. Values on the drilling points represent groundwater levels.
theflowsystem,andmayaccountforthelackofcorrelationbetweenwellyieldsandlineamentsinsomestudies.However, some authorshaveindicatedthattheabsenceofverticaldiscontinuitieslimitsdeepweatheringwithinthem;thismaynot locallyenhancehydrauliccontinuitybetweenthegroundwateraquifersandthesedeepstructures[2,13,16;19].
Implicationsforgroundwaterexploitationandhydrogeologicalmodel
Theimplicationsoftheresultsforgroundwaterexploitationandthehydrogeologicalmodelarebasedonthejointanal- ysis ofstructural/geophysicalcharacteristics andboreholedata (yieldandweatheringprofile) fromthefive localities.The
A.F. Bon, A. Ombolo, P.M. Biboum et al. Scientific African 17 (2022) e01272
Fig. 9. Continued
Fig. 9. Continued
A.F. Bon, A. Ombolo, P.M. Biboum et al. Scientific African 17 (2022) e01272 Table 1
Synthesis of the values (mV) of the different layers whose limits were determined on the basis of the borehole logs. T1 (Ndjockloumbe), T2 (Makondo), T3 (Makek), T4 (Nsongdong) and T5 (Mapubi).
T1 Depth (m) 0-20 20-70 > 70
Minimum 0.00 0.00 0.06
Maximum 0,45 0.42 0.42
Mean 0,21 0.20 0.18
Median 0.20 0.20 0.17
Standard deviation 0.10 0.09 0,08
T2 Depth (m) 0-5 5-70 > 70
Minimum 0.05 0.00 0.00
Maximum 0.32 0,23 0.18
Mean 0.17 0.11 0.11
Median 0.16 0.11 0.11
Standard deviation 0.06 0.06 0.04
T3 Depth (m) 0-17 17-31 > 31
Minimum 0.00 0.00 0.08
Maximum 0.53 0.49 0.57
Mean 0.26 0.25 0.29
Median 0.20 0.28 0.28
Standard deviation 0.10 0.10 0.11
T4 Depth (m) 0-14 14-70 > 70
Minimum 0.000 0.009 0.012
Maximum 0.043 0.043 0.043
Mean 0.024 0.027 0.027
Median 0.026 0.026 0.029
Standard deviation 0.008 0,007 0,007
T5 Depth (m) 0-18 18-57 > 57
Minimum 0.000 0.000 0.003
Maximum 0.034 0.037 0.037
Mean 0.013 0.020 0.021
Median 0.014 0.022 0.022
Standard deviation 0.008 0.008 0.008
numberofboreholes(five)islimitedbutarespatiallyrepresentativeofthestudyarea(Fig.5)andofthetwomainlitholo- giesencounteredinthearea(seeESM3,[33]).Thedistancesoftheseboreholesfromthenearest lineamentare229.26m;
28.4m;807.33m;613.6mand400.3mrespectivelyforNdjockloumbe;Makondo;Makek;NsongdongandMapubilocalities.
Accordingtosomeauthors,theradiusofinfluenceoflineamentsonboreholeproductivitycanbe300m[54],150m[9]and 60 m[14].Theyields ofthesedifferentboreholesare respectively2.85m3/h ;2.92m3/h;4.17m3/h;3.19 m3/hand3.22 m3/h;thecorrespondingdrilled-depthsare80matNdjockloumbe;90matMakondoand81mfortheotherthree.There appears tobe nodependencebetweenboreholes-yield andthedistanceto thenearestlineament sincetheboreholewith highyieldislocatedbetween400and800mfromthenearestlineamentsuggestingthatthehydraulicconductivityof(part of)thishardrockaquiferisduetoweatheringprocesses(productivitydependentonthefracturedhorizon)andnottotec- tonicfractures.Nevertheless,theMakekboreholewiththehighestyield(4.17m3/h)andradiusofinfluence(800m)appears to beassociatedwiththeNNE-SSW direction(parallelto T3,seeFig.5). Thisresultcorroboratesthoseof[54]whofound significantlyloweraverageyieldsforboreholeslocatedwithin50mofthelineamentscomparedtoboreholespositionedat adistancegreaterthan50m;theseaverageyieldswerealsohigheralongaspecificazimuthalsector. Itisrecognisedthat lineamentmappingisoftensubjectiveandprovideslittleinformationonthefracturetype,depth,openingorfillingpotential [23].However,theextenttowhichtheselineamentswouldinfluenceorberelatedtodrillingproductivityinthispartofthe NyongComplex hasnot yetbeenassessed.Itisanimportantstep,thisallowyoubetter understandingthehydrodynamic contextandbuildanaccuratemodel.
The analysisofthe05lithologsrevealedthat theweatheringprofiles havea verticalstructuretypicalinHRareas.This includes,fromtoptobottom(Fig.10A):(i)asaprolitelayer(sandyclaytoclayeysand)surmountedinplacesbyanodular level (iron crust), especially on strong or weak slopes, little marked talwegs. The absence of a typical iron crust could allow a generalizedrecharge[10].The thickness ofthislayer variesbetween0 (wherethe dislocated rockblocks appear or weathering horizon is truncated by erosion) and 18 m; (ii) a fissured layer whose cuttings are distinguished during drillingbyelementsofweatheredrockandfreshrock.Waterstrikesisoftenobservedduringdrillingwithadown-the-hole hammerbutthisrequiresspecialattentionfromthedrillers(inparticular,afterthefirstwaterarrivals).Inthisregard, the waterstrikes havebeenonly indicatedon twoboreholes (Fig.10), whichallows toestimate the thicknessofthefissured layer between13and39 m;and(iii)freshrock.However, the saprolitethickness, thewaterstrikes andthe saturatedor unsaturatedstateofthesaprolitesuggesttwoboreholecontexts[55]:
1) boreholesinanaquifercontextofthe« fissuredwithweatheringcover» type,correspondingtotheMakek,Nsongdong andMapubienvironments;
Fig. 10. Typical examples of the logs of Ngwei boreholes (A) and Electromagnetic log model (B).
Table 2
Borehole data and some data from wells in the vicinity of the boreholes.
Borehole Well
Yield (m 3/h) Depth (m) Static level (m) Weathered zone (m) Depth (m) Static level (m)
Ndjockloumbe (T1) 2.85 80 6.49 20 15 7.5
Makondo (T2) 2.92 90 6.49 5 15 6.7
Makek (T3) 4.17 81 7.69 18 12 7.0
Nsongdong (T4) 3.19 81 5.32 14
Mapubi (T5) 3.22 81 9.47 18
2) boreholesinanaquifercontextofthe« fissuredwithoutweatheringcover» type,corresponding totheMakondoenvi- ronments.
The fact that the productivity ofthe Ngwei aquifers appears to be dependent on the fractured horizonimplies that explorationshouldbebasedonacontextualandnotageneralapproach.
Validationofresultsusingwellandboreholeyielddata
Validationisconsidered an essentialstep toverifytheaccuracyofthe groundwaterpotential modelproduced[25,29].
The resultsofthepresentstudywere comparedtosomeprevious studiescarriedoutinthevicinityorinsimilargeologi- cal environmentsinordertoassessthereliabilityofthestudy.Thedataconsideredwere theboreholedataespecially the well depths, saprolitelayer, yieldandgroundwater depthmeasured duringtheshortrainy season(March-April).Ground- waterlevelisanimportantparameterforunderstandingthehydrogeologicalconditionsofaregion.Itprovidesinformation ongroundwaterdynamics,groundwaterrecharge,borehole/wellrechargeconditionsandisusefulforgroundwatermanage- ment. Welldata (Table2) confirm theexistence oftheshallowaquifer (saprolite)indicatedon thesurfaceprofilemaps; the groundwater level inthe wellsis between6.7and 7.5m.The borehole yieldvaries from2.85to 7.35 m3/h withan average of4.37 m3/h whilethe groundwaterlevel variesfrom5.32to9.47 mwithan average of7.09 m.Severalstudies have reportedgroundwaterpotential in HRareas [7,19,22,56,57]andshowedthat boreholes withyields above6.25m3/h
A.F. Bon, A. Ombolo, P.M. Biboum et al. Scientific African 17 (2022) e01272
aregenerallycharacteristicofhighgroundwaterpotentialzones,whilethosewithyieldsof6.25-3.13m3/hand<3.13m3/h are typicalofmedium andlowgroundwater potentialzones,respectively.Inrelationtothelineamentdensitymap,itwas observedthattheboreholesaregenerallylocatedinthemediumdensityzoneconfirmingthemediumgroundwaterpoten- tialofthestudyareaorthelowtomediumpotentialgenerallyobservedinHRgroundwaterandevenaquifersdevelopedon post-African erosionsurfacesnotablyinMalawi, ZimbabweandUganda[56].The presenceoftwoaquifertypes(borehole contexts)validatestheboreholeyielddataandimpliescontiguouszonesoflowandmediumproductivity.Suchastructure isconsistentwithwhatisknownaboutregionalhydrogeology[52]:dewateringoftheshallowaquiferandlocationofwater inthediscontinuousreservoirformedbythefracturedbasement;coexistenceofpotentiallyaquiferousfracturedsectorsand non-fracturedsectors. However, thepositionofthepiezometriclevel isgenerallylocatedbetweenthealterites(Fig. 10B) indicating thatthelatterarenotdewatered.ThischaracteristiciscommontoHRAdevelopedunderhumidconditionsand is favourableto the installationof type 1boreholes that canbe cased atthe alterites.Onthe other hand,dewatering of thealterites,characteristicofaridenvironments[10,13,52]hasbeenobservedintheMakondoarea(withalowerflowrate) implyingthatthisboreholeisfedbyafewlocalfissuresthataffectthealmostfreshbedrock.Thisimpliesthatthecontext oftheboreholeandthepositionofthepiezometriclevelshouldbetakenintoaccountforasustainableproductivityofthe boreholesinthearea.
Conclusion
Thisstudy,carriedoutinaruralareaofCameroon(CentralAfrica)wherehydrogeologicalstudiesarenonexistent,aimed atdeterminingthehydrogeologicalfeaturesfavorabletotheidentificationofpotentialgroundwatertargets.Tothisend,the application ofthe remote sensing approachand thegeophysical approach (Electromagnetic) were used. Automatic linea- ment extractionshowedthat thetectonic backgroundofthe studyareais characterizedby 200 lineamentswhose orien- tations (NNW-SSE,N-S, NNE-SSW,NW-SE;NE-SW andE-W)are globallycorrelatedwiththe tectonicregime observed in theNyongcomplex.Thetotallengthofthemappedlineaments is292.96km,whichcorrespondsto0.6kmoflineaments per square kmsuggestingamediangroundwaterpotential (based onthelineamentdensityandyields data).The levelof bedrock fracturing isalso visualized on the electromagnetic patternresults,which indicate areasthat mayserve asma- jor preferential groundwaterflowcorridors. Thesefracturesappearto begenerallysub-horizontalsuggestinggroundwater exploitation through verticaldrilling.The yields obtainedfromtheboreholes drilledin thepotentially favorablelocations seem to indicate a non-dependence betweenthe boreholeyield andthe distance to the nearest lineament.These yields andtheresultingweatheringprofileshowedcharacteristicscommontothosegenerallyobservedinhard-rockaquiferswith hydraulic propertieswhoseoriginismorerelatedtoweatheringprocesses.Based onthegeophysicalandboreholedata,a preliminaryconceptualmodeldescribingthevariationoftheEarth’selectromagneticfieldhasbeenproposed.Despitelim- ited boreholedata,theconsistencybetweentheresultsandfieldobservationsconfirmsthevalueofthisstudy(approach) whichcanbeconsideredasaninitialassessmentofthepotentialrelationshipbetweenlineamentsmappedbyLandsat8im- ageanalysis,electromagneticgeophysicsandboreholeproductivity,fromwhichfuturestudiescouldimprove.Thesestudies should bebasedon characterizationofthefracturedhorizon(the zonewheretheHRA owesits productivity)whosecon- trasting geophysicalsignaturehasbeenambiguouslycharacterized.Nevertheless,thepresentstudyhasshowntheinterest ofusingthecombinedremotesensingandelectromagneticmethodtoassesstheavailabilityofpotentialgroundwaterzones inareaswithsimilargeologicalandclimaticconditions.
Compliancewithethicalstandards Funding
Thisresearchreceivednospecificgrantfromanyfundingagencyinthepublic,commercial,ornot-for-profitsectors.
Declarationofcompetinginterest
Theauthorsdeclarethattheyhavenoconflictofinterest.
Acknowledgements
TheauthorsthanktheEditorandthetwoanonymousreviewersfortheirmanyhelpfulsuggestions.
Reference
[1] P. Lachassagne, R. Wyns, B Dewandel, The fracture permeability of hard rock aquifers is due neither to tectonics, nor to unloading, but to weathering processes, Terra Nova 23 (2011) 145–161 .
[2] P. Lachassagne, R.Wyns D.Dewandel, Review: hydrogeology of weathered crystalline/hard-rock aquifers-guidelines for the operational survey and man- agement of their groundwater resources, Hydrogeol. J (2021), doi: 10.1007/s10040- 021- 02339- 7 .
[3] E.P. Wright, The hydrogeology of crystalline basement aquifers in Africa. In:Wright EP, Burgess W (eds) Hydrogeology of crystalline basement aquifers in Africa. Geol Soc Lond Spec Publ 66 (1992) 1–27.
[12] B. Dewandel, R.Wyns P.Lachassagne, J.C. Marechal, N.S. Krishnamurthy, A generalized 3-D geological and hydrogeological conceptual model of granite aquifers controlled by single or multiphase weathering, J. Hydrol. 330 (2006) 260–284 .
[13] B. Dewandel, P. Lachassagne, K. Zaidi Faisal, S. Chandra, A conceptual hydrodynamic model of a geological discontinuity in hard rock aquifers: example of a quartz reef in granitic terrain in South India, J. Hydrol 405 (3–4) (2011) 474–487, doi: 10.1016/j.jhydrol.2011.05.050 .
[14] S.B. Mabee, P.J. Curry, K.C. Hardcastle, Correlation of lineaments to ground water inflows in a bedrock tunnel, Ground Water 40 (2002) 37–43 . [15] M. Razack, T. Lasm, Geostatistical estimation of the transmissivity in a highly fractured metamorphic and crystalline aquifer (Man-Danane Region,
Western Ivory Coast), J. Hydrol. 325 (1-4) (2006) 164–178, doi: 10.1016/j.jhydrol.2005.10.014 .
[16] M. Neves, N. Morales, Well productivity controlling factors in crystalline terrains of southeastern Brazil, Hydrogeol. J. 15 (3) (2007) 471–482, doi: 10.
1007/s10040- 006- 0112- 6 .
[17] A .G. Batte, A . Muwanga, P.W. Sigrist, M. Owor, Vertical electic sounding as an exploration technique to improve on the certainty of groundwater yield in the fractured crystalline basement aquifers of eastern Uganda, Hydrogeol J 16 (2008) 1683–1693, doi: 10.1007/s10040- 008- 0348- 4 .
[18] K.F. Kouamé, T. Lasm, J.R. De Dreuzy, A.G. Akaffou, O. Bour, P. Davy, Contribution d’un modèle hydrogéologique à fractures discrètes à l’étude des aquifères fracturés du socle Archéen de Touba (Nord-Ouest, Côte d’Ivoire), Rev. Sci. Eau /J. Water Sci. 23 (1) (2010) 41–56, doi: 10.7202/038924ar . [19] C. Roques, O. Bour, L. Aquilina, B. Dewandel, S. Leray, JM. Schroetter, L. Longuevergne, T. Le Borgne, R. Hochreutener, T. Labasque, N. Lavenant,
V. Vergnaud-Ayraud, B. Mougin, Hydraulic behavior of a deep sub-vertical fault in crystalline basement and relationships with surrounding com- partments, J Hydrol 509 (2014) 42–54 .
[20] R. Taylor, K. Howard, A tectono-geomorphic model of the hydrogeology of deeply weathered crystalline rock: evidence from Uganda, Hydrogeol. J. 8 (20 0 0) 279–294 .
[21] A.F. Bon, J.R. Ndam Ngoupayou, G. Ewodo Mboudou, G.E. Ekodeck, Caractérisation hydrogéologique des aquifères de socle altéré et fissuré du bassin versant de l’Olézoa à Yaoundé Cameroun, R Sci eau 29 (2) (2016) 149–166, doi: 10.7202/1036545ar .
[22] P. Singh, J. Krishana Thakur, S. Kumar, Delineating groundwater potential zones in a hard-rock terrain using geospatial tool, Hydrological Sciences Journal 58 (1) (2013) 213–223, doi: 10.1080/02626667.2012.745644 .
[23] P. Sander, Lineaments in groundwater exploration: a review of applications and limitations, Hydrogeol. J. 15 (1) (2007) 71–74, doi: 10.1007/
s10 040-0 06-0138-9 .
[24] O. Anomohanran, M.E. Orhiunu, Assessment of groundwater occurrence in Olomoro, Nigeria using borehole logging and electrical resistivity methods, Arabian J. Geosci. 11 (9) (2018), doi: 10.1007/s12517- 018- 3582- 7 .
[25] O.J. Akintorinwa, M.O Atitebi, A .A . Akinlalu, Hydrogeophysical and aquifer vulnerability zonation of a typical basement complex terrain: A case study of Odode Idanre southwestern Nigeria, Heliyon 6 (8) (2020) e04549, doi: 10.1016/j.heliyon.2020.e04 .
[26] D.H. Gouet, A.D. Fofie Kokea, F. Koumetio, D. Yemele, Groundwater prospecting using remote sensing and geoelectrical methods in the North Cameroon (Central Africa) metamorphic formations, Egyptian J. Remote Sens. Space Sci. 24 (2021) 933–943, doi: 10.1016/j.ejrs.2021.10.003 .
[27] P.K. Singh, S. Kumar, U.C. Singh, Groundwater resource evaluation in the Gwalior area, India, using satellite data: an integrated geomorphological and geophysical approach, Hydrogeol J 19 (2011) 1421–1429, doi: 10.1007/s10040- 011- 0758- 6 .
[28] P. Verma, P. Singh, S.K. Srivastava, Impact of land use change dynamics on sustainability of groundwater resources using earth observation data, Environ, Develop and Sustainability (2019), doi: 10.1007/s10668- 019- 00420- 6 .
[29] M Aoudia, A. Issaadi, M. Bersi, D. Maizi, H. Saibi, Aquifer characterization using vertical electrical soundings and remote sensing: A case study of the Chott Ech Chergui Basin, Northwest Algeria, J. African Earth Sci (2020) 103920, doi: 10.1016/j.jafrearsci.2020.103920 .
[30] S.O. Oyegoke, O.O. Ayeni, K.O. Olowe, A.S. Adebanjo, O.O. Fayomi, Effectiveness of geophysical assessment of boreholes drilled in basement complex terrain at Afe Babalola University, using Electromagnetic (E.M.) method, Nigerian J. Technology 39 (1) (2020) 36–41, doi: 10.4314/njt.v39i1.4 . [31] J.R. Ndam Ngoupayou, A.F. Bon, G. Ewodo Mboudou, N. Ngouh Abdou, G.E. Ekodeck, Hydrogeological Characteristics of Shallow Hard Rock Aquifers in
Yaounde (Cameroon, Central), Intechopen (2019), doi: 10.5772/intechopen.84631 .
[32] A.F. Bon, T.A.M. Ngo Ngoss, G. Ewodo Mboudou, L.A. Banakeng, J.R. Ndam Ngoupayou, G.E. Ekodeck, Groundwater flow patterns, hydrogeochemistry and metals background levels of shallow hard rock aquifer in a humid tropical urban area in sub-Saharan Africa- A case study from Olézoa watershed (Yaoundé-Cameroon), J. Hydrol: Regional Studies 37 (2021) 100904 b, doi: 10.1016/j.ejrh.2021.100904 .
[33] P. Mboa Biboum, in: Caracterisation hydrogeophysique des aquiferes dans l’arrondissement de Ngwei, Univ.Maroua/ENSPM, 2021, p. 60. Design Engi- neer thesisp .
[34] R. Letouzey, in: Notice explicative de la carte phytogéographique du Cameroun à l’échelle de 1/50 0 0 0 0, Institut de la Carte Internationale de Végéta- tion, Toulouse, 1985, p. 240 .
[35] D. Bitom, B. Volkoff, A. Beauvais, F. Seyler, P.-D. Ndjigui, Rôle des héritages et du niveau des nappes dans l’évolution des modèles et des sols en zone intertropicale forestière humide, Comptes. Rendus. Geosci. 336 (2004) 1161–1170, doi: 10.1016/j.crte.2004.03.019 .
[36] S.F. Toteu, R. Yongue Fouateu, J. Penaye, J. Tchakounté, A.C. Seme Mouangue, W.R. Van Schmus, E. Deloule, H. Stendal, U-Pb dating of plutonic rocks involved in the nappe tectonic in southern Cameroon: consequence for the Pan-African orogenic evolution of the central African fold belt, J. African Earth Sci 44 (2006) 479–493 .
[37] S. Owona, J. Mvondo Ondoa, M. Tichomirowa, G.E. Ekodeck, The petrostructural characteristics and 207Pb/206Pb zircon data from the Ngomedzap- Akongo area (Nyong complex, SW-Cameroon), J. Geosciences 65 (2020) 201–219, doi: 10.3190/jgeosci.309 .
[38] S.F. Toteu, W.R. Van Schmus, J. Penaye, A. Michard, New U-Pb and Sm-Nd data from north-central Cameroon and its bearing on the pre-Pan African history of central Africa, Precamb. Res. 108 (2001) 45–73 .
[39] C. Lerouge, A. Cocherie, S.F. Toteu, J. Penaye, J.-P. Milési, R. Tchameni, N.E. Nsifa, C.M. Manning, E. Deloule, Shrimp U–Pb zircon age evidence for Paleoproterozoic sedimentation and 2.05Ga syntectonic plutonism in the Nyong Group, South-Western Cameroon: consequences for the Eburnean–
Transamazonian belt of NE Brazil and Central Africa, J. African Earth Sci. 44 (4-5) (2006) 413–427, doi: 10.1016/j.jafrearsci.2005 .
[40] G. Champetier De Ribes, D. Reyre, Carte géologique de réconnaissance du Cameroun, Notice explicative de la feuille géologique Yaoundé-Ouest (1/500 0 0 0), Direction des Mines et de la Géologie du Cameroun (1959) .
A.F. Bon, A. Ombolo, P.M. Biboum et al. Scientific African 17 (2022) e01272
[41] F.X. Humbel, Etude pédologique de trois palmeraies dans la région d’Edéa (Sanaga Maritime) : palmeraie de Song Ndong, Centre ORSTOM de Yaoundé, Fascicule 1 (1965) 143 p .
[42] J.-F. Dumont, Identification par télédétection de l’accident de la Sanaga (Cameroun). Sa position dans le contexte des grands accidents d’Afrique Centrale et de la limite nord du craton congolais, Géodynamique 1 (1) (1986) 13–19 .
[43] M. Dharani, G. Sreenivasulu, Land use and land cover change detection by using principal component analysis and morphological operations in remote sensing applications, Inter. J. Computers and Appl (2019), doi: 10.1080/1206212X.2019.1578068 .
[44] Z. Adiri, A. El Harti, A. Jellouli, R. Lhissou, L. Maacha, M. Azmi, … E.M. Bachaoui, Comparison of Landsat-8, ASTER and Sentinel 1 satellite remote sensing data in automatic lineaments extraction: A case study of Sidi Flah-Bouskour inlier, Moroccan Anti Atlas, Adv Space Res 60 (11) (2017) 2355–
2367, doi: 10.1016/j.asr.2017.09.006 .
[45] A. Javhar, X. Chen, A. Bao, A. Jamshed, M. Yunus, A. Jovid, T. Latipa, Comparison of Multi-Resolution Optical Landsat-8, Sentinel-2 and Radar Sentinel-1 Data for Automatic Lineament Extraction: A Case Study of Alichur Area, SE Pamir, Remote Sensing 11 (7) (2019) 778, doi: 10.3390/rs11070778 . [46] P. Verma, P. Singh, S.K. Srivastava, Development of spatial decision-making for groundwater recharge suitability assessment by considering geoinfor-
matics and field data, Arabian J. Geosci 13 (8) (2020), doi: 10.1007/s12517- 020- 05290- 1 .
[47] A . Ainyyafiatty, N.A . Adnan, Geological Lineament Assessment from Passive and Active Remote Sensing Imageries, Inter. J. Geospatial and Environ.
Research: 8 (2) (2021) .
[48] J.M. Akhir, I. Abdullah, Geological applications of LANDSAT thematic mapper imagery: Mapping and analysis of lineaments in NW Penisula Malaysia, Geospatialworld.net (2009) 1–8 .
[49] A.B. Pour, M. Hashim, C. Makoundi, K. Zaw, Structural Mapping of the Bentong-Raub Suture Zone Using PALSAR Remote Sensing Data, Peninsu- lar Malaysia: Implications for Sediment-hosted/Orogenic Gold Mineral Systems Exploration: Structural mapping of the Bentong-Raub Suture Zone, Malaysia. Resour Geol v. 66 (2016) 368–385, doi: 10.1111/rge.12105 .
[50] J. Aminov, X. Chen, J. Aminov, Y. Mamadjanov, J. Aminov, E. Duulatov, Z. Bakhtiyorov, Evaluation of Remote Sensing Techniques for Lithological Mapping in the Southeastern Pamir using Landsat 8 OLI Data, Int. J. Geoinform. 14 (2018) 1–10 .
[51] S.J.P.H. Coulibaly, J.H.C. Talnan, C. Naga, K.C.A. Kouadio, S.R.M. Dibi, A. Diedhiou, I. Savane, Groundwater exploration using extraction of lineaments from SRTM DEM and water flows in Béré region, Egyptian J. Remote Sens. Space Sci (2021), doi: 10.1016/j.ejrs.2020.07.003 .
[52] P. Gombert, Stratégie de prospection hydrogéologique du socle de la bordure orientale tchadienne par optimisation du nombre et de la profondeur des sondages de reconnaissance. Revue des sciences de l’eau, Journal of Water Science 12 (3) (1999) 597–608, doi: 10.7202/705368a .
[53] R.H. Jahns, Sheet structure in granites, its origin and use as a measure of glacial erosion in New England, J. Geol. 51 (1943) 71–98 .
[54] H. Henriksen, Fracture lineaments and their surroundings with respect to groundwater flow in the bedrock of Sunnfjord, Western Norway, Norwegian J. Geology 86 (2006) 373–386 Trondheim. ISNN 029-196X .
[55] Y. Caballero, P. Lachassagne, B. Ladouche, Contribution à l’évaluation de la ressource en eau des aquifères de socle des roches granitiques de Corse, Rapport final (2006) 87 BRGM/RP-54541-FR66 fig, 4 Ann .
[56] J. Davies, N.S. Robins, Groundwater occurrence north of the Limpopo : are erosion surface the key ? Geological Society of South Africa Groundwater Division Groundwater Conference, 2007 .
[57] O.A. Fashae, M.N. Tijani, A.O. Talabi, O.I. Adedeji, Delineation of groundwater potential zones in the crystalline basement terrain of SW-Nigeria: an integrated GIS and remote sensing approach, Appl Water Sci 4 (1) (2014) 19–38, doi: 10.1007/s13201-013- 0127- 9 .