Research on Power Load
Forecasting based on Machine learning
Reinhard Philip Panjaitan (200402103)
# Import library yang diperlukan import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score import matplotlib.pyplot as plt
# Baca dataset (pastikan sesuaikan path file) data = pd.read_csv('path/to/your/dataset.csv')
# Melihat beberapa baris pertama dari dataset print(data.head())
# Pilih fitur dan target
X = data[['Feature1', 'Feature2', 'Feature3']] # Sesuaikan dengan nama fitur pada dataset Anda
y = data['Power_Load'] # Sesuaikan dengan nama target pada dataset Anda
# Bagi dataset menjadi data pelatihan dan data pengujian
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Membuat model regresi linier model = LinearRegression()
# Melatih model
model.fit(X_train, y_train)
# Memprediksi power load untuk data pengujian y_pred = model.predict(X_test)
# Evaluasi model
mse = mean_squared_error(y_test, y_pred) r2 = r2_score(y_test, y_pred)
print(f'Mean Squared Error: {mse}') print(f'R-squared: {r2}')
# Visualisasi hasil prediksi
plt.scatter(X_test['Feature1'], y_test, color='black', label='Actual Power Load')
plt.scatter(X_test['Feature1'], y_pred, color='blue', label='Predicted Power Load') plt.xlabel('Feature1')
plt.ylabel('Power Load') plt.legend()
plt.show()