Contents lists available atScienceDirect
Expert Systems With Applications
journal homepage:www.elsevier.com/locate/eswa
Scheduling identical parallel machines involving flexible maintenance activities
Chunhao Li
a, Feng Wang
a, Jatinder N.D. Gupta
b, Tsui-Ping Chung
c,βaSchool of Business and Management, Jilin University, Changchun, China
bCollege of Business, University of Alabama in Huntsville, Huntsville, AL, USA
cSchool of Business, Northeast Normal University, Changchun, China
A R T I C L E I N F O
Keywords:
Identical parallel machines Flexible maintenance scheduling Critical machine deterioration Irregular framework Metaheuristics
A B S T R A C T
Motivated by a practical situation in chip manufacturing process, for the first time in the literature, this paper considers an identical parallel-machine scheduling problem with new flexible maintenance activities to minimize makespan where a maintenance activity is needed if and only if the machine capability has deteriorated by a critical value. To address the proposed problem, a mixed integer linear programming model and a lower bound are established. Since this problem is NP-hard, a combined constructive heuristic algorithm with six priority rules is developed. In order to improve the solution obtained by the proposed combined heuristic algorithm, an embedded learning mechanism is combined with the existing artificial immune system (AIS) algorithm to help self-adjust and modify the search direction. The effectiveness of the proposed combined constructive heuristic and the AIS algorithms is empirically tested on the randomly generated problem instances. These computational results show that the proposed AIS algorithm can generate better near-optimal solutions than several adaptations of the existing algorithms.
1. Introduction
Drivenbythetransformationandupgradingofdigitaltechnology, anincreasingnumberofmanufacturingcompanieshopetogainmore intelligentcontrolovertheirproductionprocessestoimproveefficiency and reducecosts. As an example of this phenomenon, considerthe wafer cleaning and machine maintenance scheduling problem of a leading chip manufacturer wherein the basicfundamental building blockofchips,siliconwafersundergohundredsoftediousprocessing steps. In between these steps, the wafer requires multiple cleaning operationsto remove contaminants,suchas organicfilms, particles, andmetalions(Chenetal.,2023).Thesecontaminantsareremoved from the wafer surface with a cleaning agent. As more wafers are cleaned,contaminationbuilds upin thecleaningmachine.Oncethe amountofcontaminationhasgoneoverboard,itwilldamagethewafer during cleaning. Therefore, it is critical to perform timely mainte- nanceactivitiesonthemachinetochangethecleaningagent.Because different wafers have unequal levels of contamination, the time it takes to reach the contamination accumulation threshold can vary withdifferentwafercleaningsequences.Asaresult,thetimeinterval between required maintenance activities is irregular (Chung et al., 2019).Therefore, whileschedulingjobs,decisions in suchsituations
β Correspondenceto:SchoolofBusiness,NortheastNormalUniversity,No.5268,Renminstreet,Changchun,130024,China.
E-mailaddresses: [email protected](C.Li),[email protected](F.Wang),[email protected](J.N.D.Gupta),[email protected](T.-P.Chung).
requires a simultaneousconsideration of maintenanceactivities and scheduling.
The problem of simultaneously considering job scheduling and maintenanceactivitiesoutlinedabove alsoexistsin severalotherin- dustries,suchastheautomotiveindustry(Wockeretal.,2024),steel plant (Zhang et al., 2020), and plastic industry (Fu et al., 2019).
WhileGeurtsenetal.(2023b)classifythecurrentmaintenanceplan- ning literature into four main categories according to the type of maintenanceactivity andthe timingat which theknowledge about thepreventive maintenanceinterval is known, Chung et al.(2019), Pangetal.(2021),andZhangandChen(2022)examinemaintenance scheduling based on machine contamination levels in conjunction commonlyfoundinpractice.
Toillustrate themaintenance schedulingbased on machine con- taminationlevelsandthedifferencesbetweenthisstudyandexisting researchthatsimultaneouslyconsidersjobschedulingandmaintenance activities, an example from everyday life may be helpful. We are usuallyrequiredtochangetheautomotiveoilafter6monthsor5000 kilometers of driving. However, theaging of automotive oilis also relatedtothedrivingenvironment anddriving habits.Hencetheoil changeinanautomobileisbasedontheagingoftheoilratherthan anyfixedtime-intervalormileagedriven.Translatingthisexampleto
https://doi.org/10.1016/j.eswa.2024.125722
Received13May2024;Receivedinrevisedform3November2024;Accepted4November2024 Expert Systems With Applications 263 (2025) 125722
Available online 14 November 2024
0957-4174/Β© 2024 Elsevier Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
themanufacturingsituation,itisclearthatthemachinecontamination dependsonthejobsbeingprocessedandhencemaintenanceactivities areflexibleintime.However,asshownbytherelevantliteraturere- viewinSection2,theexitingliteraturedoesnotinvestigatescheduling withflexiblemaintenanceactivitieswithvariousjobavailabilityand processingconstraintsfoundinpractice.Therefore,thispaperstudies theidentical parallel-machineschedulingproblemwitharbitraryjob releasedatesandflexiblemaintenancebasedontheaccumulatedma- chinecontamination.Indoingso,thecontributionsofthispaperareas follows:
(1) Weintroducecontaminationaccumulation-basedflexiblemain- tenancetotheschedulingproblemforthefirsttimeonparallel machineswitharbitraryjobreleasedates.
(2) Weproposeamixed integerlinearprogrammingmodelanda newlowerboundfortheproblem.
(3) Wedesignacombinedheuristicalgorithm(CHA)withaneffec- tivedispatchingrule.TheproposedCHAcanobtainoptimalor near-optimalsolutionsforthesmall-sizeproblemwithverylittle timeconsumption.
(4) Wecombine an embeddedlearning mechanism with existing artificialimmunesystemalgorithmstohelpthealgorithmself- adjustandmodifysearchdirections.Usingtheembeddedlearn- ingmechanism,ourproposedalgorithmcandynamicallyselect theappropriatelocalsearchoperatorsandpopulationregenera- tionmethodsaccordingtotheirperformanceindices.
The rest of this paper is organized as follows. Section 2briefly reviews the relevant literature.Section 3 provides a detailed delin- eationof aMILPmodelanddevelopsalowerboundtoevaluatethe performanceoftheheuristicsandalgorithms.InSection4,acombined heuristicalgorithmincludingsixpriorityrulesandadispatchingrule isproposedforobtainingnearoptimalsolutions.Section5presentsan auto-revisingimmunoglobulin-basedartificialimmunesystem(A-IAIS) algorithmtoimproveinitialsolutionscreatedbythecombinedheuristic algorithm.Theresults ofcomputationalexperiments arediscussedin Section 6. Finally,Section 7concludes thepaperwith some fruitful directionsforfutureresearch.
2. Relevantliteraturereview
Since the seminal work of Graham (1966) to solve the identi- calparallel-machineschedulingproblems,schedulingwithavailability constraints has attracted significant attention during the past three decades(Iskandarnia&Harrath,2019;Kaabi&Harrath,2014;Nguyen etal.,2023).However,thesesurveysdonotincludethemaintenance activitiessuchascleaning,lubrication,inspection,repair,andoverhaul thatareperformedtoreducethefailurefrequencyofamachine.There- fore,thissectionreviewssomecloselyrelatedstudiesandpresentsthe state of theart in considering productionscheduling problemswith maintenanceactivities.
Geurtsenetal.(2023b)showthatthecurrentmaintenanceplanning literaturecanbeclassifiedintofourmaincategoriesaccordingtothe typeofmaintenanceactivityandthetimingatwhichtheknowledge aboutthepreventivemaintenanceintervalisknown.Thefirstcategory includesresearchwheremaintenancetimemayincreaseovertimeor maintenanceactivitiesmaychangethespeedofthemachine(Alfares etal.,2021;Briskornetal.,2024;Huetal.,2024;Zouetal.,2023).
Thesecond categorycontainsresearch wherea maintenanceactivity should be performedbefore the machineage reachesacertaintime value (Chen et al., 2022; Lei & Yang, 2022; Lin et al., 2023). The thirdcategoryinvolvesliteraturewherethemaintenanceactivitymust beginandendwithinatimewindow(Costa&Fernandez-Viagas,2022;
Geurtsen et al.,2023a; Lee et al., 2015; Yan et al., 2022).The last categorycontainsliteraturewherethemaintenanceactivityisexecuted accordingtotheobjective relatedtothereliabilityor availabilityof
themachines(Alietal.,2024;Anetal., 2023; Chen&Wang,2018;
Gharounetal.,2022).
Ontheotherhand,Chung etal. (2019),Pang etal.(2021),and Zhang and Chen (2022) examine maintenance scheduling based on machinecontaminationlevelscommonlyfoundinpractice.Consider- ingthat this paperstudiesthe identicalparallel-machine scheduling problem with arbitrary job release dates and flexible maintenance basedontheaccumulatedmachinecontamination,theliteraturereview in this section is dividedinto four categories where the scheduling of maintenance activities is based on (1) the machine age, (2) the preventivemaintenance policies,(3)themachinedeterioration rate- modifyingconditions,(4)apredefinedtimewindow,or(5)machine contaminationlevel.
2.1. Maintenanceschedulingbasedonmachineage
Theliterature on maintenance schedulingbased on machineage considers thesituation whereamaintenance activityshouldbe per- formedbeforethemachinereachesacertaintimevalue.Kong etal.
(2020)investigateaschedulingproblemwithdeteriorationandlearn- ingeffecton parallelmachineswhereamaintenanceactivityisper- formedafterafixednumberofbatcheshavebeenprocessed.Maoetal.
(2021) deal witha schedulingproblem ina permutation flowshop, where preventive maintenance activities are performed periodically on all machines. Kim and Kim (2021) consider an environment of unrelatedparallelmachineswheretheexacttimingofmachinebreak- downsisknowninadvance.Chenetal.(2022)exploretheproblemof schedulingjobsonidenticalparallelmachinesthatarenotcontinuously available.Theyassumethatthecontinuousprocessingtimeofparallel machines cannot exceed the predefined cumulative processing time threshold.LeiandYang(2022) giveasurveyofartificialbeecolony algorithms for scheduling jobs on unrelated parallel machines with periodicmaintenanceactivities.Souzaetal.(2022)exploreajobshop schedulingproblemwherepreventivemaintenanceactivitiesareper- formednolaterthanarecommendedage.Linetal.(2023)assumethat themachineisperiodicallyunavailableforagivenperiodoftimeand proposealgorithmsforonlineschedulingofjobsonidenticalparallel batchprocessingmachines.
2.2. Maintenanceschedulingbasedonpreventivemaintenancepolicy Apreventivemaintenancepolicyimpliesthattheintervalbetween twoconsecutivemaintenanceactivitiesisdeterminedbytheconstraints of machine reliabilityand availability.Ruiz andGarcΓa-DΓaz (2007) considervariouspreventivemaintenance strategiestomaximizema- chine availabilityor maintain a minimum level of reliability. Chen andWang(2018)studybothrun-basedpreventivemaintenancewith reliability constraints andsetup time to minimize the makespan in parallelmachinescheduling.Zhouetal.(2021)considerasinglema- chineschedulingproblemwithfixedperiodicpreventivemaintenance and propose an efficient heuristic algorithm to minimize the total weightedcompletion time. Gharoun et al. (2022) investigate a par- allelmachineproductionenvironmentwherepreventivemaintenance activitiesareperformedbasedonmachinereliability.Anetal.(2023) consideramake-to-orderproductionenvironmentanddesignamulti- levelimperfectmaintenancemodelforeachmachine.Ifamachineis designedtoperform overhaul maintenancecycles, theyassume that themachine undergoes preventive maintenancewhenthe reliability reachesathreshold.TheworkbyAlietal.(2024)studiesajobshop schedulingproblemwherebothpreventivemaintenanceandcorrective maintenanceareconsidered.Theyalsoconsiderthesituationwherethe numberofmachinebreakdownsisknowninadvanceorthenumberof breakdownsisrandom.
Expert Systems With Applications 263 (2025) 125722
2.3. Maintenanceschedulingbasedonrate-modifyingactivities
Theliteratureonmaintenanceschedulingwithrate-modifying ac- tivities assumesmachine deterioration. Inotherwords, maintenance durationmayincreaseovertimeormaintenanceactivitiesmaychange the speed of the machine. The study by Zhao et al. (2009) is the firsttoconsidertherate-modifyingactivityontwo-parallelmachines.
They assume that the processing times of jobs depend on whether thejobisprocessed beforeoraftertheactivity.TheworkinAlfares etal.(2021)examinesatwo-machineschedulingproblemwithvariable maintenance activitiesandproposes avariable neighborhoodsearch algorithm. Pang etal. (2021) studythe problemof unrelated paral- lelmachineswithperiodic maintenanceactivities,assumingthatthe processing timeandthe amount of job-induceddirt are determined bytheassignedmachine.Zouetal.(2023)investigatethescheduling of identicalparallel machines,whereeachmachine hasatmost one deteriorating maintenance activity. Ahmadi et al. (2024) explore a parallelsystemschedulingproblemwheremaintenanceactivitiesare scheduledaccordingtothemeanresidualtimeindexandthenumberof failedcomponents.Huetal.(2024)consideraschedulingproblemfor parallelmachineswithdeterioratingjobsandmaintenanceactivities.
They assume that the numberof available maintenanceactivities is limited.
2.4. Maintenanceschedulingbasedontimewindow
The literature on maintenance scheduling in a flexible window examines thesituation wherethemaintenance operationcouldstart andfinishinatimewindow.ThepioneeringstudybyKolenandKroon (1992)considersafixedjobschedulingproblematanairport,where maintenance activities are tobe performed at a fixed start time, a fixed finishtime, andafixed aircrafttype. LeiandLiu(2020)then investigate the problem of scheduling unrelated parallel machines.
Each maintenanceactivity shouldbe performed within apredefined timewindow.Chenetal.(2021)assumethatthecontinuousprocessing timeofamachinecannotexceedthemaintenancethreshold.Yanetal.
(2022)exploreadynamicflexiblejobshopschedulingproblemwhere maintenanceactivitiesareperformedwithinflexibletimewindows.In the workof Costa andFernandez-Viagas (2022),maintenance activ- ities are carried out within a specifictime window.Geurtsen et al.
(2023a)consideraschedulingproblemforunrelatedparallelmachines, whereeach machinerequiresonlyonemaintenanceactivityandthe maintenance activitycan be performed flexiblywithin a giventime window.
2.5. Maintenanceschedulingbasedonmachinecontaminationlevels Theflexible maintenancediscussedin thispaper islike changing theoilinanautomobilebasedontheagingoftheoil,notonafixed timeintervalor mileage.Basedon thesameresearchbackground of flexiblemaintenance,Chungetal.(2019)studyonlyasinglemachine schedulingandignorethesituationwherewafercleaningisperformed inidenticalparallelbathsinawetstation(Kimetal.,2013).Pangetal.
(2021) study the parallel machine maintenancescheduling problem based on contamination accumulationand assume that the amount of contamination in the job is predetermined by the cleaning ma- chine.Similarly,whenstudyingthemachinemaintenancescheduling problem affected by contamination accumulation, Zhang and Chen (2022)assumethatalljobshaveidenticalreleasetimes.However,these assumptionsdonotalwaysholdtrueinpractice.
From the above relevant literature review, it is clear that the schedulingproblemofflexiblemaintenancebasedonthecontamina- tionaccumulationonparallelmachineswitharbitraryjobreleasedates studiedinthispaperhasnotbeenaddressedintheliterature.Therefore, itisnecessaryandusefultoconsidertheproposedproblemespecially intheimplementationofanyintelligentmachinemanagement.
Table1 Notations.
Notations Problemparameters π Thenumberofjobs π Thenumberofmachines π Amaintenanceactivity
π Thepermittedvalueoftheaccumulationofcontamination ππ Theprocessingtimeofeachjobwhereπ=1,2,β¦,π
π‘π Theamountofcontaminationafterprocessingagivenjobπwhere π=1,2,β¦,π
ππ Thereleasedateofeachjobwhereπ=1,2,β¦,π π€ Thefixedprocessingtimeofeachmaintenanceactivity Decisionvariables
π₯πππ Equals1ifjobπisassignedtopositionπonmachineπand0otherwise π¦ππ Equals1ifmaintenanceactivityistakenimmediatelyfollowingposition
πonmachineπand0otherwise Decisiondependentvariables
π Averylargepositivenumber
πππ Theaccumulationofthecontaminationproducedbythejobswhichare sequencedbetweenthelatestmaintenanceactivityandthejobin positionπonmachineπ
ππππ Thestartingtimeformachineπatpositionπ πΆπππ Thecompletiontimeformachineπatpositionπ πΆπ Thecompletiontimeofmachineπwhereπ=1,2,β¦,π
3. Problemformulationandlowerbound
This section defines the problem, formulates the mixed integer linearprogrammingmodeltooptimallysolvethedefinedproblem,and developsalowerboundthatisusefulinevaluatingtheeffectivenessof theproposedalgorithms.Todoso,Table1definesthenotationstorep- resentproblemparameters,decisionvariables,anddecisiondependent variablesusedinthispaper.
3.1. Problemdefinition
Considerthescenariowhereasetπ ={1,2,β¦,π}of πjobsisto beprocessedonaworkcenterwithagivensetπ =(1,2,β¦,π)ofπ identicalparallelmachineswithoutpreemption.Eachjobrequiresonly asingleoperationthatisperformedwithoutinterruptiononanyoneof theπmachines.Amachinecanprocessonlyonejobatanygiventime.
Associatedwitheachjobπβπ isitsreleasedateππ,processingtime (includingits setuptime) ππ, andthemachinecontaminationcaused byitsprocessingπ‘π.Whenthecumulativecontaminationonamachine reachesagivencriticalvalueπ,amaintenanceactivity(π)ofduration π€timeunitsisrequiredbeforethatmachinecanprocessanyjob(i.e.,a machinecannotprocessanyjobduringthemaintenanceactivity).
Giventheabovescenario,theproblemconsideredinthispaperis oneoffindingtheassignmentandschedulingofallπjobsonallπma- chinestominimizemakespan.Followingthethreefieldrepresentation ofschedulingproblems(Lawleretal.,1993),werepresenttheproposed problemasππ||ππ,βπ‘πβ€π,πππ||πΆmax.Intheabovenotation,ππrepre- sentsπidenticalmachinesinparallel.ππreferstothereleasedateand
βπ‘πβ€ π ensures thatanaccumulationofthecontaminationπ‘π(after processingthejobπ)isnomorethanthecriticalvalueπ.πππmeans thatmaintenanceactivitiesareflexibleandoccurperiodically(Chen, 2008).πΆmaxistheobjectivefunctiontominimizethemakespan.Since theπβ₯πΆmaxproblemisknowntobeisNP-hard(Lenstraetal.,1977), theproposedππ||ππ,βπ‘πβ€π,πππ||πΆmax problemasanextensionofthe π β₯ πΆmax problemisalsoNP-hard.Givenits NP-hardnatureandthe fact that no existing solution procedures exist tosolve the studied problem, it is appropriateto formulateit as a mixed integer linear programmingmodel,todeveloplowerboundsonthemakespan,and toproposeheuristicalgorithmstosolvetheππ||ππ,βπ‘πβ€π,πππ||πΆmax problemconsideredinthispaper.Theheuristicalgorithmsareneeded Expert Systems With Applications 263 (2025) 125722
as the existing MILPoptimization procedures arelimited tosolving onlysmall-sizedproblemcontainingnomorethan13jobswhereasthe realisticpracticalscenarioscontainlotmorethan13jobs.
3.2. Mixedintegerlinearprogrammingmodel
InspiredbythemodelinPangetal.(2021),amixedintegerlinear programming (MILP)modelof theππ||ππ,βπ‘πβ€π,πππ||πΆmax problem studiedinthispaperisasfollows:
πππ πΆmax (1)
Subjectto:
βπ
π=1
βπ
π=1
π₯πππ =1 π=1,2,β¦,π
(2)
βπ
π=1
π₯πππβ€1 π=1,2,β¦,π;π=1,2,β¦,π
(3) π1π=
βπ
π=1
π‘ππ₯π1π π=1,2,β¦,π
(4) π(πβ1)π+
βπ π=1
π‘ππ₯πππβ€πππ+ππ¦(πβ1)π π=1,2,β¦,π;π=2,β¦,π (5)
βπ
π=1
π‘ππ₯πππβ€πππ+π(1βπ¦(πβ1)π) π=1,2,β¦,π;π=2,β¦,π (6) πππβ€π π=1,2,β¦,π;π=1,2,β¦,π (7) ππππβ₯
βπ π=1
πππ₯πππ π=1,2,β¦,π;π=1,2,β¦,π (8) ππππβ₯πΆπ(πβ1)π+π¦(πβ1)ππ€ π=1,2,β¦,π;π=2,3,β¦,π (9) πΆπππβ₯ππππ+
βπ
π=1
πππ₯πππ π=1,2,β¦,π;π=1,2,β¦,π (10)
βπ
π=1
π₯πππβ€
βπ
π=1
π₯π(πβ1)π π=1,2,β¦,π;π=2,3,β¦,π (11) πΆmaxβ₯πΆπππ π=1,2,β¦,π;π=1,2,β¦,π (12) Theobjectivefunction(1)representstheminimizationofmakespan.
Constraints(2)and(3)ensurethateach jobisassignedtoa unique positiononauniquemachineandeachpositiononamachineperforms no more than one job. Constraint (4) illustrates the contamination produced bythe first jobon each machine. Constraints (5)and(6) are therestrictionsof the contaminationaccumulationbetween two adjacent maintenance activities. Constraint (7) guarantees that the contaminationaccumulationdoesnot exceed theallowablevalueπ. Constraint(8)specifiesthatthestarttimeforprocessingjobattheπth positiononmachineπwillnotbelessthanthereleasetimeofthejob πassignedtothatposition.Constraint(9)specifiesthatthestarttime forprocessingjobattheπthpositiononmachineπwillbegreaterthan thecompletiontimeofalljobsassignedtomachineπthroughposition πβ1plusanyneededmaintenancetime.Constraint(10)specifiesthat thecompletion timeattheπth positionon machineπ shouldnot be
Table2
ProblemdataforExample1.
Jobπ 1 2 3 4 5 6 7 8 9 10
ππ 5 1 8 3 8 6 6 7 4 2
π‘π 4 3 4 1 4 4 3 3 7 5
ππ 4 9 0 2 7 5 15 7 12 0
less than thesum of thestart time andthe processing timeof the jobassigned tothatposition. Constraint(11) ensures that there are no empty machiningpositions between jobs assignedtoa machine.
Constraint(12)definesthemakespanwhichisequaltothemaximum completiontimeofthemachine.
Example1. Anexamplewithπ=10,π=2,π€=10,andπ=10with problemparametersdetailedinTable2isusedtoillustratethesolution fromtheMILPmodel.AfterexecutingthemodelinILOGOPL3.5.1, theoptimalmakepsanis35whenthesequenceofprocessingjobson machines1and2are{10,4,1,π,2,7,5}and{3,6,π,9,8},respectively whereπ isrepresentsthemaintenanceactivity.Thisoptimalsolution is shown graphically in Fig.1. The computational timerequired to optimallysolvethisexampleprobleminstanceis0.86s.
3.3. Lowerbound
ThefollowingProposition1establishesthelowerbound(LB)ofthe ππ||ππ,βπ‘πβ€π,πππ||πΆmaxproblemconsideredinthispaper.
Proposition1. πΏπ΅=max{minπβπ{ππ}+(βπ
π=1ππ+π€Γmax{ββπ π=1π‘πβπβ
β π,0})βπ,maxπβπ{ππ+ππ}}isalowerboundfortheππ||ππ,βπ‘πβ€π,πππ||
πΆmaxproblem.
Proof. Assumingthatalljobs areassignedtoasinglemachine, the minimumnumberofmaintenanceactivitiesisββπ
π=1π‘πβπβ
.Considering thatthesumofthejobprocessingtimeisβπ
π=1ππandtheprocessing timeofamaintenanceactivityisπ€,theminimumcompletiontimefor thesinglemachineequalsβπ
π=1ππ+π€Γββπ π=1π‘πβπβ
.Furthermore,with πidenticalparallelmachinesavailable,alljobsshouldbedividedinto πsequences.Sinceamaintenanceactivityshouldberemovedifitisat theendofasequence,theminimumnumberofmaintenanceactivities ismax{ββπ
π=1π‘πβπβ
βπ,0}.Thus,theminimumtotalprocessingtimeof maintenanceactivitiesequalsπ€Γmax{ββπ
π=1π‘πβπβ
βπ,0}.Takingthe sumofjobprocessingtimeandtheminimumjobreleasedatesintocon- sideration,therefore,πΏπ΅1=minπβπ{ππ}+(βπ
π=1ππ+π€Γmax{ββπ π=1π‘πβπβ
β π,0})βπ is a lowerbound for theππ||ππ,βπ‘πβ€π,πππ||πΆmax problem.
Sincetheproposedproblemisanextensionoftheππ||ππ||πΆmaxproblem, πΏπ΅2 = maxπβπ{ππ+ππ}, ofππ||ππ||πΆmax isanotherlower boundof the proposedproblem.
Thus,thelowerbound(LB)oftheππ||ππ,βπ‘πβ€π,πππ||πΆmaxproblem consideredinthis paperisπΏπ΅ = max(πΏπ΅1,πΏπ΅2)= max{minπβπ{ππ}+ (βπ
π=1ππ+π€Γmax{ββπ π=1π‘πβπβ
βπ,0})βπ,maxπβπ{ππ+ππ}}. β
Example 2. The problem of Example 1 is used to illustrate the proposed LB. minπβπ{ππ} = 0 and βπ
π=1ππ = 50 are obtained.Since
ββπ π=1π‘πβπβ
= 4 > π, minπβπ{ππ}+(βπ
π=1ππ+π€Γmax{ββπ π=1π‘πβπβ
β π,0})βπ = (50+10Γ2)β2 = 35 can be calculated. Considering the valueof maxπβπ{ππ+ππ} = 21, thelowerbound isobtained byπΏπ΅= max{35,21} = 35.Forthisexample,thelowerbound isequaltothe minimummakespanfoundbyusingtheMILPmodel.
4. Proposedcombinedheuristicalgorithm
Thebasicideaoftheproposedcombinedheuristicalgorithm(CHA) forsolvingtheππ||ππ,βπ‘πβ€π,πππ||πΆmaxproblemistoobtainajoblist byapriorityruleandthenassignjobstotheidenticalparallelmachines byadispatchingrule.
Expert Systems With Applications 263 (2025) 125722
Fig.1. ThesequenceofprocessingjobsontwoparallelmachinesinExample1.
Algorithm SPR:SixPriorityRules
ListCP: Alistπisobtainedbynon-increasingorderofjobβscontaminations,i.e.,π‘π(1)β₯π‘π(2),β¦,β₯π‘π(π).Tiesarebrokeninfavorofajobwithalongerprocessing time.Iftwojobshaveidenticalcontaminationsandprocessingtimes,theonewiththeearlierreleasedateisgivenhigherpriority.
ListCR: Alistπisobtainedbynon-increasingorderofjobβscontaminations,i.e.,π‘π(1)β₯π‘π(2),β¦,β₯π‘π(π).Tiesarebrokeninfavorofajobwithanearlierrelease date.Iftwojobshaveidenticalcontaminationsandreleasedates,theonewiththelongerprocessingtimeisgivenhigherpriority.
ListPC: Alistπisobtainedbysortingjobsinnon-increasingorderoftheirprocessingtimes,i.e.ππ(1)β₯ππ(2),β¦,β₯ππ(π).Tiesarebrokeninfavorofajobwitha largercontamination.Iftwojobshaveidenticalprocessingtimesandcontaminations,theonewiththeearlierreleasedateisgivenhigherpriority.
ListPR: Alistπisobtainedbysortingjobsinnon-increasingorderoftheirprocessingtimes,i.e.ππ(1)β₯ππ(2),β¦,β₯ππ(π).Tiesarebrokeninfavorofajobwith anearlierreleasedate.Iftwojobshaveidenticalprocessingtimesandreleasedates,theonewiththelargercontaminationisgivenhigherpriority.
ListRC: Alistπisobtainedbynon-decreasingorderofjobβsreleasedates,i.e.,ππ(1)β€ππ(2),β¦,β€ππ(π).Tiesarebrokeninfavorofajobwithalargercontamination.
Iftwojobshaveidenticalreleasedatesandcontaminationlevels,theonewiththelongerprocessingtimeisgivenhigherpriority.
ListRP: Alistπisobtainedbynon-decreasingorderofjobβsreleasedates,i.e.,ππ(1)β€ππ(2),β¦,β€ππ(π).Tiesarebrokeninfavorofajobwithalongerprocessing time.Iftwojobshaveidenticalreleasedatesandprocessingtimes,theonewiththelargercontaminationisgivenhigherpriority.
4.1. Sixpriorityrules
Let {π(1),π(2),β¦,π(π)}bea listπ isobtainedbyusing apriority rule.Letπ£πbetheaccumulationofcontaminationbetweentwoadja- centmaintenanceactivitiesonmachineπ.Aconstraintπ‘π(π)+π£πβ€ π is satisfied whena job π(π) is assigned tomachine π. Similarly, let π₯π(π)=πβπ‘π(π)βπ£πbetheremainingpermittedvalueofthecontam- ination beforethenextmaintenanceactivityisperformed. Toobtain thelistπ,CuiandLu(2017) proposeanearliestreleasedate-longest processingtime(ERD-LPT)ruletosolveasinglemachinewithflexible maintenanceandjobsβreleasedates.Bytakingthejobsβcontamination intoconsideration,weproposethefollowingsixpriorityrules,named List CP,List CR,ListPC, ListPR, List RC,andList RPwhereC, P, andRindicatecontaminationtime,processingtime,andreleasedate respectivelyandthesecondletterinthelistnameisthetie-breaking ruleused.
4.2. Dispatchingrule
Letππbethesequenceofjobsandmaintenanceactivitiesprocessed onmachineπβπ.Basedononeoftheabovelists,jobsareassigned tomachinestakingintoaccountthecontaminationaccumulationcon- straint.Thestepsofthedispatchingruleareasfollows.
Using the six priority rules and the above dispatching rule, six heuristicalgorithms,namedCPD,CRD,PCD,PRD,RCD,andRPD,are proposedtosolveππ||ππ,βπ‘πβ€π,πππ||πΆmax.
Example3. ForthejobdataconsideredinExample1,supposethata ListRPwithπ={3,10,4,1,6,5,8,2,9,7}isgiven.Byapplyingtheabove dispatchingrule,thejobsequencesonthetwoparallelmachinescan beobtained.Usingthesimilarprocesstofindfivemoreschedulesusing thealgorithmsCPD,CRD,PCD,PRD,RCD,andRPD,resultsinthesix solutionsshowninTable3below.AlgorithmsRCDandRPDgenerate optimalscheduleswithaminimummakespanof35.
4.3. Combinedheuristicalgorithm
Sincenoneoftheabovesixheuristicalgorithmstheoreticallydom- inateothersintheireffectiveness tofindabetterschedule, thesesix algorithmsarecombined togenerate a better schedule. Specifically, the Combined Heuristic Algorithm (CHA) generates six initial lists basedonthesixpriorityrulesandobtainsthecorrespondingmakespan using the dispatchingrule. Then, the minimum makespanis output as thesolution of theCHA. The steps of this proposed CHA are as follows.
Expert Systems With Applications 263 (2025) 125722
Algorithm D:DispatchingRule
Step0. Letπ={π(1),π(2),β¦,π(π)}bealistofunscheduledjobs,π’=π,andforeachmachineπβπ,π£π=0,πΆπ=0,andππ=β .
Step1. Ifπ=β ,gotoStep5;otherwise,selectfirstjobπ(1)inπandmachineπwiththesmallestπΆπ.Ifπ£π+π‘π(1)>π enterStep2;otherwiseassignjobπ(1)to machineπ,deleteπ(1)fromπ.Letππ=(ππ,π(1)),π’=π’β1,π£π=π£π+π‘π(1),πΆπ=max{πΆπ+ππ(1),ππ(1)+ππ(1)},andrepeatStep1.
Step2. Calculateπ₯π(π)=πβπ‘π(π)βπ£πforπ=2,β¦,π’.Ifthereisatleastonejobπwithπ₯π(π)β₯0,enterStep3;otherwiseassignπtomachineπ,π£π=0,πΆπ=πΆπ+π€, andreturntoStep1.
Step3. Ifthereisatleastonejobπwithππ(π)β€πΆπ,enterStep4;otherwiseassignπ tomachineπ.Letππ=(ππ,π),π£π=0,πΆπ=πΆπ+π€,andreturntoStep1.
Step4. Findajobπ(π)withthesmallestπ₯π(π)andππ(π)β€πΆπ.Assignjobπ(π)tomachineπ,deleteπ(π)fromπ.Letππ=(ππ,π(π)),π’=π’β1,π£π=π£π+π‘π(π), πΆπ=max{πΆπ+ππ(π),ππ(π)+ππ(π)},andreturntoStep1.
Step5. Removethemaintenanceactivityifitisperformedinthelastpositiononeachmachine,updateππforeachmachineπβπ,andSTOP.Inthesolution obtained,ππisthesequenceofjobsandmaintenanceactivitiesassignedtomachineπβπwithmakespanπΆmax=maxπβπ(πΆπ).
Table3
ThesolutionsofheuristicalgorithmsforExamples3and4.
Heuristic Initiallist Sequences Completiontimes Makespan
CPD {9,10,3,5,6,1,8,7,2,4} π1={9,2,π,6,8,7};π2={10,3,4,π,5,1} πΆ1=46;πΆ2=36 46 CRD {9,10,3,1,6,5,8,2,7,4} π1={9,8,π,5,2,7};π2={10,3,4,π,1,6} πΆ1=48;πΆ2=34 48 PCD {3,5,8,6,7,1,9,4,10,2} π1={3,8,2,π,7,1,π,10}π2={5,6,4,π,9} πΆ1=49;πΆ2=38 49 PRD {3,5,8,6,7,1,9,4,10,2} π1={3,8,4,π,7,9,π,2};π2={5,6,π,1,10} πΆ1=49;πΆ2=38 49 RCD {10,3,4,1,6,5,8,2,9,7} π1={10,4,1,π,5,2,7};π2={3,6,π,8,9} πΆ1=35;πΆ2=35 35*
RPD {3,10,4,1,6,5,8,2,9,7} π1={3,6,π,8,9};π2={10,4,1,π,5,2,7} πΆ1=35;πΆ2=35 35*
CHA:CombinedHeuristicAlgorithm
Step1. LetπΆmax(ππ·)bethemakespanoftheschedulegeneratedbyheuristicXD,whereXDisoneofthesixheuristicalgorithmsCPD,CRD,PCD,PRD,RCD, orRPD.
Step2. πΆmax(CHA)=min{πΆmax(πΆππ·),πΆmax(πΆπ π·),πΆmax(ππΆπ·),πΆmax(ππ π·),πΆmax(π πΆπ·),πΆmax(π ππ·)}isselectedasthefinalsolution.
Example4. ConsideragainthesamedetailgiveninExample1.Job schedulesandfinalsolutionsbysixheuristicalgorithmsarepresented inTable3.Thus,theminimummakespanis35,whichisalsothesame asthatobtainedbytheproposedMILPmodelinExample1.
5. Theauto-revisingimmunoglobulin-basedartificialimmunesys- temalgorithm
An immunoglobulin-based artificial immune system algorithm (IAIS) involvesfivecomponents:encoding anddecoding, somaticre- combination, somatic hypermutation, isotype switching, and elimi- nation (Chung & Liao, 2013). In theliterature, IAIS has been used to solve severalproblems and shows better performancethan some algorithms with fixed frameworks (Li et al., 2022; Liu & Chung, 2017).InIAIS,theexploratoryandexploitativeoperatorsareselected randomly inthedynamic operatorselection. However,Davis(1989) revealsthatvariationoperatorswithhighexploratorycapabilityshould be employed in the earlystage, while variation operators used for local fine-tuning are favored in the later stage. Xing et al. (2006) propose a dynamic operator selection method, where the selection probabilitiesofdifferentoperatorsarecalculatedbytheirperformance.
An operator with a higher probability score is more likely to be selected as theoperator in thesubsequent evolution.Following this idea,Fialhoetal.(2008,2010)attempttotackletheoperatorselection problemwithadaptiveparametercontrolmethodsandshow thatthe choiceof thebestoperator toapply shouldbe continuouslyadapted whilesolvingagivenproblem.Consolietal.(2016)usetwodifferent rewardmeasuresincreditassignmentanddynamicallyselectoperators throughouttheoptimizationprocessofthealgorithm.Inspiredbythe ideaofthecreditassignmentusedintheadaptiveoperatorselection, some researchers(Karimi-Mamaghan etal., 2022;Tianet al., 2022) attempttousefitnessimprovementasarewardfordifferentoperators inmachinelearning.Theyshowthehigheffectivenessofthislearning mechanisminsolvingmanyoptimizationproblems.
ToimprovetheIAISalgorithm,alearningmechanismisnecessary.
Itcanrecordtheperformanceofeachoperatorusedduringthesearch process. Using of alocal search operatorwith abetter performance
before exploringthe searchspace hasahigher chanceto be anap- propriate operator in the next generation. Therefore,by combining IAISwiththelearningmechanism,wenowproposeanauto-revising immunoglobulin-basedartificialimmunesystem(A-IAIS)algorithm.To describe the proposed A-IAIS algorithm, we first briefly discuss its components.
5.1. Encodinganddecoding
The purpose of encoding is togenerate an initial population of solutionstobeimproved.Forthispurpose, encodingcompriseslym- phocytesthatarerecognizedbytheirreceptors,i.e.,cellsurface-bound antibodies(Parham,2015).Areceptorrepresentsasequenceof allπ jobs.Inthe proposed A-IAISalgorithm, each possible sequence of π jobs (receptor)is representedbyalist withπjobs generatedby the sixpriorityrulesdescribedearlierinSection4.Thus,thereareatleast π΄=6receptorsinA-IAIS.Additionalrequiredreceptorsarerandomly generated.
Thedispatchingrule,i.e.,ProcedureD,proposedinSection4isused asthe decodingruleto obtaintheassignment andsequenceof jobs andmaintenanceactivitiestoeachmachine(calledaschedule)andto calculatetheobjectivefunctionvalueofthereceptor.
5.2. Somaticrecombination
Insomaticrecombinationoftheadaptiveimmunity,receptorsare expressed as a resultof combinations of gene segments. A receptor withthesmallestmakespanin thecurrent generationis accepted as thestandardreceptor. Forotherreceptors,anumberπ of πjobsare randomlyselectedandtheninsertedintothesequencepositionswhere theyareinthestandardreceptor.
Example5. ForthejobdataconsideredinExample1,supposethat weconsideraselectedreceptor{7,5,9,2,8,6,3,4,10,1}andastandard receptor{3,10,4,1,6,5,8,2,9,7}.Forπ =2numberofjobs,assumethat jobs9and1arerandomlyselected.Jobs9and1areinpositions9and 4respectivelyinthestandardreceptor.Therefore,weinsertjobs1and 9insequencepositions4and9oftheselectedreceptortoobtainanew receptor{7,5,2,1,8,6,3,4,9,10}showninFig.2.
Expert Systems With Applications 263 (2025) 125722
Fig.2. SomaticrecombinationforExample5.
5.3. Somatichypermutation
Theinitialproductionoflymphocytesisalwaysimmature.There- fore,themainfunctionofsomatichypermutationistofindthepossible positionof external antigens.In ordertosearch abroader area,the inversemutationisusedhere.Forareceptor,letπandπbetworan- domlychosenpositions.Then,anewreceptorisacquiredbyinverting thesequenceofjobsbetween(andincluding)thepositionsπandπ.The inversemutationisnotallowedif|πβπ|<2.
5.4. Performance-basedisotypeswitching
Inthehumanimmunesystem,therearethreeisotypeimmunoglob- ulinoperators,i.e.,IgA,IgE,andIgG.ForA-IAIS,therefore,thereare alsothreeoperators.Eachoperatorhasadifferentfunctionandcanbe usedtogeneratethemostresponsivereceptors.IgAcanpenetratethe bloodstreamandprotectotherinfectedtissues.Theinsertionmutation isusedherebecauseitcansearchforaremoteneighborofthecurrent receptor. Fora givenreceptor, letπ andπbe therandomly selected joband thesequenceposition. Then,a newreceptoris obtained by inserting job π to sequence position π. As a flexible operator, IgG can accessforeignantigensinthedamagedandinfectedtissues.The pairwise mutationis used in IgGbecause itcan perform a fastand deepsearchforthereceptorβsneighbor.Forareceptor,letπandπbe thetworandomlyselectedsequencepositions.Then,anewreceptoris generatedbyswappingthetwojobsatsequencepositionsπandπ.
Unliketheothertwooperators,IgEcanidentifyanddestroyanti- gens.Thus,bothpairwiseandinsertionmutationsareusedinIgEto escapefrom localoptima. Forthereceptorπ, letπandπ bethetwo randomlyselected sequencepositions.Anewreceptorπβ² is obtained byswapping thetwojobsat sequencepositionsπandπ. Then,letπβ² andπβ²betherandomlyselectedjobandsequencepositioninreceptor πβ².Anewreceptorisobtainedbyinsertingjobπβ²atpositionπβ².
In theIAIS-based algorithms, isotypeswitching is repeatedfor a fixednumberofiterations,withthethreeoperatorsIgA,IgG,andIgE randomlyselectedwithequalprobability.FortheproposedA-IAIS,IgA, IgG, andIgE areselectedwith different probabilities basedon their performance.ππΌππ,whereIgXcan beIgA,IgG,orIgE,is definedas an indexthat can show thechange in performance.If theobjective functioninundertakingIgXisbetterthanthecurrentbestone,ππΌππ = ππΌππ+1.Threeindiceshavethesamevalueintheinitialgeneration.At eachiteration,theselectionprobabilityofeachoperatoriscalculated as ππΌππ = ππΌππβ(ππΌππ΄+ππΌππΊ+ππΌππΈ). According tothe selection probabilityππΌππ,anappropriateoperatorisselectedusingtheroulette- wheelselectionmethod.Thus,anoperatorwithabetterperformance beforewillhaveahigherchancetobeselectedforthenextiteration.
5.5. Auto-revisedregenerationmethods
TheproposedA-IAISisanautorevisingalgorithmwherethebasic ideaisthatduringthesearchprocess,exploringthesearchspacemay beneededinearliergenerationsbutexploitingthebettersolutionmay beneededin latergenerations.Toadaptthesearchmechanism, two methods,namedrandomregenerationmethodandelitebasedregen- erationmethod areproposedtoregenerateinitialsolutions.Thefirst method,the randomregeneration method, i.e.,thecomponent named elimination, is from IAIS where a receptor with the best objective functionisretainedandotherreceptorsarerandomlyregenerated.
Thesecond method is anelite-based regeneration method that can record better receptors in A-IAIS. An elite set with π΄ receptors is initializedbycopyingthereceptorsintheinitialpopulation.Theelite setisdynamicallyupdatedduringthesearchprocess.Thatis,ifthere arenewlygeneratedreceptorswithasmallerobjectivefunctionthan theelitereceptors,thentheworseelitereceptorsarereplacedbynew ones.
Inthecurrentgeneration,onejobofanelitereceptorisrandomly selectedandinsertedintoallpossiblepositions.Sincethereareπjobs inareceptor,πcandidatereceptorsincludingtheelitereceptoritself areobtained.Oneofthesecandidatereceptorswithabetterobjective functionisselectedasthenewreceptor.Repeatingtheabovestepsfor eachoftheπ΄elitereceptors,initialsolutionsofthenextgenerationare obtained.
5.6. Auto-revisedselectionstrategy
Ideally, the random regeneration method should have a higher selectionprobabilitywhenexploring thesearchspace.Similarly, the elitebasedregenerationmethodshouldhaveahigherselectionprob- abilitywhenexploitingthepromisingregions.Therefore,theselection probabilitiesofthesetwomethodsareusedtodecidewhichoneshould beusedinthecurrentgeneration.
Intheinitialgeneration,twomethodshavethesameperformance indicesπ1
πππ‘βππandπ2
πππ‘βππwiththesameselectionprobabilitiesπ1
πππ‘βππ
andπ2
πππ‘βππ calculatedbyππ₯
πππ‘βππ =ππ₯
πππ‘βππβ(ππππ‘βππ1 +π2
πππ‘βππ)where π₯ = 1 or 2. If the current best receptor is changed in the current generation,theperformanceindexoftheusedmethodisincreasedby 1.Thus,ππ₯
πππ‘βππ =ππ₯
πππ‘βππ+1andtheselectionprobabilityofmethod π₯will be higher thanbefore in thenext generation.Based ontheir selectionprobabilities,thesetwomethodsarerandomlyselectedusing theroulette-wheelselectionmethod.
5.7. ProposedA-IAISalgorithm
Theembeddedlearningmechanism usedin theA-IAIS algorithm ensuresthatappropriateisotypeimmunoglobulinoperatorsandpopu- lationregeneration methodsareselectedbasedon theirperformance indicesduringthevariousstagesofthealgorithm.Basedonthecom- ponentdescriptionsabove,theA-IAISalgorithmrepeatsthefollowing stepsuntilthelowerboundoratimelimitofπβ10secondsisreached.
6. Computationalresults
Thissectionreportsthecomputationalresultsfromtheexperimen- tal tests used to evaluate the effectiveness of the proposed MILP Expert Systems With Applications 263 (2025) 125722