Mama :
Nadira 141-1-199
KAIITUIUSZ -02NPM :
2206058053 Uggs Temu 8
3 1) let
fix
,y)
= ✗2y
+Fy
dit
:Find
each value a)f- 1211 ) b) f- 13107
Jawab Jawab:
a)
f- (2/1)=221
+VT
=4-11--5 d)
K= -2 = ✗2b) f- 13101
=320
+ro
=is
• K=-4 → -4 =
2) 1¥
y
=-4×2
Jdwab
a)
f- (
×,y )
= 6-✗-24
• K = -I -p y = -✗2* mlsal 2-= FIX>Y ) 0 = 0
2- = 6-✗-24 • IT = O -D
bidang ✗y → 2-=0
bldang
✗2- →9=0bldangyz
-☐ ✗=O • IT = I -D I = ✗2 0=6 - ✗-zy 2- = 6-✗ 2- = 6- 24Ts
✗ = 6-24 • ✗ --O -D 2-= 6 • 2=0 -☐ 9=3
Y=
✗2• ✗=O →
y
=3 • 2=0-☐✗=6 •
9=0-177--6
•K=4
-☐4
= ✗2-y
•
9=0
-☐ ✗= 62-
^
4y=X
': kurva •
y
= ✗L@ -
it 4
•6 •
y=✗2
=D
- •> y . •^^
. .
9=1-4×2
;
• > y% %
• •/
.L ✗ >
☒
✗
0 a • •
b)
f(×>4)
= 16 -✗2-yz
* mlsal 2- = f-(Z,y
)
2- = 16 -✗2-YZ, ,, o o • ◦
2-2=16-✗2-
y2 9=-112
y=-1-4×2
✗
2+42+-22=16
bidding
✗y-D-2=0 bldang ✗2-→y=0 bidang yz-D ✗= 0✗
2+92=16
✗2+2-2--16YZ
-1-22=16b)
K= 2- = ✗<+y
-✗=O → y=-14 11=0 -D 2-=-1-4 9=0 → 2-=-1-4 • k= -4 -D Y = -✗2-
4
•
y=0
-☐✗ = -14 7--0-1>✗= -1-4 2-=0 -by=-1-4 • K= -I - DY
= -✗2- I4)
nz n k = O -D Y = -✗£
y=-✗
2-4
• IT = I -☐
Y
= I-✗2" "
""" "
"
="
"/
' ¥ "" 9k
. . . .
4
4
E-
" "war
4-
4
✗
<
9=4
-✗2•
dz dy (3×2+4.2)
-"3=-1313×2+925
"? 29
=
-24
'
33 (3×2+42)
" AJawab:
④ FIX
,y) :(2×-414
(=) •
8¥ / 2×-414--412×-913.2
=812×-9 ) % dlk
:362=4×2+942
Plane ✗ =3 at ( 31212
)
•
J
-2 (2x-g) 4=412×-413
. -I =-412×-4131
,dit
:Find
the slope OFthetangent
tody
curve OF intersection OF the 362- =② FIX
>g) =(4×-42)%2 4×2+942
= . ..?
⇐
) •d¥ 14×-9213/2=3,2 (4×-92)
"? 4=6 4×-92
, Jawab:•
362=4×2+942
_☐sybtltusi ✗=3•
07
(4×-421312=3/2
(4×-92)"≥ .-29
=-3y 4×-92 362=41312-1942
Oy
i2- =
3%+93-692
④ f(
×,y )
= ✗2-YZ
µ
(a-f)'
=a-f'
z = I -
y2
✗
Y
U= ✗2-92-1>41--211 4-
•
8¥ (
✗2✗-4
Y")
=# ¥-2 (
✗2×-4
=✗ → ✓'=L •(=) find
-2 = the1+42
slope at the point (31212 )
:( ty ) /
2X-✗ -✗1.1×2-441
24-
01--12
= ✗
2+4.2 dy
✗
24
µU'
=-24
•
¥ (+2×-12)=1 ;) ! :(
✗2-92
Y)→v
' -- Id± OU
( 3,212) =2-
2 =↳
=
( t ) (-29.9-11×2-94) y2
i. the slope OF thetangent
to the curve= -y2. ✗2
OF
Interaction of the given survace and the✗y2 4
Plane at the Point
1312,2 )
is11
4
FIX
,g) = @✗ cosy (a.f)'=a.f'•
¥gle×
cosy)
= cosy.yz(
ex)
= cosy .@× ,•
d
-2(
excosy )
= ex .dg±y
(cosy)
= e.×. -sing ,
Oy
⑤ FIX
>g) =EY
sin ×(a.f)'=a.f'
•
dz (
e.YSMX)
=EY
.dt (
sine)
= EY . cos✗ 11Ox dx
•
dz (
@YSMX)
=sina.dz ( EY )
= sin×. EYd- y dy µ
6
f- (
×,y)
=(3×2+92)
_' '3•
dz dx (13×2+92)
_"3)
=-1-3 3×2+925%3
. 6✗= - 6x
3
(3×2-142)<113
= -2X
3