• Tidak ada hasil yang ditemukan

Solving a System of Linear Equations Using Gaussian Elimination

N/A
N/A
21-096 Anggi Dwi Anggraeny

Academic year: 2024

Membagikan "Solving a System of Linear Equations Using Gaussian Elimination"

Copied!
16
0
0

Teks penuh

(1)

So

al 5 x 5

A B

D C

E 200

100 400

100 100

500 250 150

100 150

50

50

(2)

100 + 200 + 400 + TB – 4TA = 0 >>> 4TA – TB = 700

100 + 500 + TA + TD – 4TB = 0 >>> -TA + 4TB - TD = 600 100 + 100 + 100 + TD – 4TC = 0 >>> 4TC – TD = 300

50 + TB + TC + TE – 4TD = 0 >>> -TB – TC – TE + 4TD = 50

250 + 150 + 50 + TD – 4TE = 0 >>> -TD + 4TE = 550

[ − 4 0 0 0 1 −1 − 4 0 0 1 − 0 0 4 0 1 − −1 −1 0 4 1 − 0 0 0 4 1 ] [ TD TC TE TA TB ]

=

[ 700 600 300 550 50 ]

[ TD TC TA TB TE ]

=

[ 236,34021 245.36082 111.27577 145.10309 173.77577 ]

(3)

So

al 5 x 5

100 + 350 + TB + TE – 4TA = 0 >>> 4TA – TB - TE = 450 150 + 300 + TA + TC – 4TB = 0 >>> -TA + 4TB – TC = 450 250 + 250 + 250 + TB – 4TC = 0 >>> – TB + 4TC = 750 50 + 120 + 110 + TE – 4TD = 0 >>> 4TD – TE = 280

150 + 80 + TA + TD – 4TE = 0 >>> -TA - TD + 4TE = 230

[ −1 − 4 0 0 1 − − 4 0 0 1 1 −1 0 4 0 0 − 0 0 0 4 1 − −1 0 0 4 1 ] [ TD TC TE TA TB ]

=

[ 450 450 750 280 230 ] [ TD TC TA TB TE ]

=

[ 201.92308 223.84615 243.46154 103.46154 133.84615 ]

A

B

D

C

E 100

150 350

300

110

250

250

50

120

250

80

150

(4)

So

al 5 x 5

40 + 30 + TB + TC – 4TA = 0 >>> 4TA – TB - TC = 70 50 + 90 + 10 + TA – 4TB = 0 >>> -TA + 4TB = 150 50 + 15 + TA + TE – 4TC = 0 >>> –TA + 4TC - TE = 65 75 + 40 + 35 + TE – 4TD = 0 >>> 4TD – TE = 150 45 + 80 + TC + TD – 4TE = 0 >>> -TC - TD + 4TE =125

[

−1−1400 −14000 −1−1040 −10004 −1−1004

] [

TDTCTETATB

]

=

[

1501501257065

] [

TDTCTATBTE

]

=

[

39.20512847.30128239.51923150.96794953.871795

]

A

B

D

C

E 40

50

35

10 30

15

75

50 40

90

80

45

(5)

SCILAB MATRIKS 5X5

(6)
(7)
(8)

So

al 6 x 6

100 + 300 + TB + TD - 4TA = 0 >>> 4TA - TB – TD = 400 150 + 200 + TA + TC – 4TB = 0 >>> 4TB – TA – TC = 350 100 + 150 + TB + TD – 4TC = 0 >>> - TB + 4TC – TD = 250 200 + TA + TC + TE - 4TD = 0 >>> - TA – TC – TE + 4TD = 200 200 + 250 + TD + TF – 4TE = 0 >>> - TD + 4TE – TF = 450 100 + 150 + 200 + TE – 4TF = 0 >>> - TE + 4TF = 450

[

400001 −1−14000 040001 −1−1−1040 000411 −100004

] [

TDTCTETFTATB

]

=

[

400350250200450450

] [

TDTCTFTATBTE

]

=

[

163.39286159.82143125.89286156.2593.75175

]

A

100

250

200 100

200 200

150

100 200

150 300

150

D

F

E

C

B

(9)

So

al 6 x 6

40 + 30 + 50 + TB - 4TA = 0 >>> 4TA - TB = 120

TA + TC + TD + TE – 4TB = 0 >>> 4TB – TA – TC – TD – TE = 0 75 + 55 + TB + TF – 4TC = 0 >>> 4TC – TB – TF = 130

25 + 25 + 10 + TB - 4TD = 0 >>> 4TD – TB = 65 70 + 16 + TB + TF – 4TE = 0 >>> 4TE – TB – TF = 86 5 + 5 + TC + TE – 4TF = 0 >>> 4TF – TC – TE = 10

[

−140000 −140111 −1−10400 −100400 −1−10004 000411

] [

TDTCTETFTATB

]

=

[

1201306586100

]

A

5 70

40

75 25

55

100 20

10

30

50

D

F E

B C

16

5

(10)

[

TDTCTFTATBTE

]

=

[

39.33841537.35365947.74390225.58841536.74390223.621951

]

So

al 6 x 6

(11)

SCILAB MATRIKS 6x6

(12)
(13)

So

al 7 x 7

400 + 100 + 150 + TB - 4TA = 0 >>> 4TA - TB = 650

TA + TC + TD + TE – 4TB = 0 >>> – TA + 4TB – TC - TD – TE = 0 100 + TB + TF + TG – 4TC = 0 >>> - TB + 4TC - TF - TG = 100 200 + 25 + 150 + TB - 4TD = 0 >>> - TB + 4TD = 375

200 + 70 + TB + TF – 4TE = 0 >>> - TB + 4TE – TF = 270 50 + 50 + TC + TE – 4TF = 0 >>> - TC - TE + 4TF = 100 50 + 150 + 250 + TC – 4TG = 0 >>> - TC + 4TG = 450

[ −1 4 0 0 0 0 0 −1 −1 −1 −1 4 0 0 −1 − −1 0 4 0 0 1 −1 0 0 4 0 0 0 −1 − 0 0 0 4 0 1 −1 −1 −1 0 0 4 0 −1 0 0 0 0 0 4 ] [ TC TD TF TG TA TB TE ]

=

[ 650 100 375 270 100 450 0 ] [ TC TD TF TG TA TB TE ]

=

[ 205.82448 173.29792 126.89506 137.07448 133.33912 90.058543 144.22376 ]

A

50 70

400

250 25

200 100

150

100

150

D

F E

B C

200

50

G 150

50

(14)

So

al 7 x 7 A

50 70

400

250 25

200 100

150

100

150

D

F E

B C

200

50

G 150

50

(15)

So

al 8 x 8

100 + 100 + 150 + TB - 4TA = 0 >>> 4TA - TB = 350

TA + TC + TD + TH – 4TB = 0 >>> – TA + 4TB – TC – TD - TH = 0 70 + 20 + 20 + TB – 4TC = 0 >>> - TB + 4TC = 110

200 + 100 + TB + TE - 4TD = 0 >>> - TB – TE + 4TD = 300 250 + 100 + TD + TG – 4TE = 0 >>> - TD + 4TE – TG = 350 50 + 20 + 100 + TG – 4TF = 0 >>> - TG + 4TF = 170 50 + 25 + TE + TF – 4TG = 0 >>> - TE – TF + 4TG = 75 100 + 50 + 25 + TB – 4 TH = 0 >>> - TB + 4TH = 175

[ − 4 0 0 0 0 0 0 1 −1 −1 − − 4 0 0 0 1 1 − 0 4 0 0 0 0 0 1 − −1 0 0 4 0 0 0 1 − −1 0 0 0 4 0 0 1 −1 0 0 0 0 0 4 0 −1 − 0 0 0 0 4 0 1 − 0 0 0 0 0 0 4 1 ] [ TC TD TG TH TB TE TF TA ]

=

[ 350 110 300 350 170 175 25 75 ]

A 100

25 25

100

150

B

20

G 50

50 C

D E

20 20 F 100

100 250

200 100

70

H 50

100

(16)

[ TC TD TG TH TB TE TF TA ]

=

[ 97.751705 51.937926 133.94304 138.02046 59.534697 68.138789 68.187926 111.93793 ]

Referensi

Dokumen terkait

This paper discusses how MS Excel spreadsheet application can help student to understand the concept easily and visually to solve linear equations using

SOR iterative method for the linear rational finite difference solution of second- order Fredholm integro-differential equations ABSTRACT In this paper, a new three-point linear

Half-Sweep Refinement of SOR Iterative Method via Linear Rational Finite Difference Approximation for Second-Order Linear Fredholm Integro-Differential Equations ABSTRACT The

133, 2013, pages 19-23 Accurate and effective method to smoothen grasping force signal of glovemap using gaussian filter Abstract This paper presents the use of Gaussian

To solve the large system of linear equation, the solutions can be obtained by three iterative methods which are Jacobi‐Davidson JD method, Gauss‐Seidel GS method and Successive

Enhancing Machine Learning Accuracy in Detecting Preventable Diseases using Backward Elimination Method Muhammad Dliyauddin, Guruh Fajar Shidik, Affandy, M Arief Soeleman* Faculty

The use of the Adomian decomposition method , both for systems of linear and nonlinear Fredholm integral equations of the second kind, drive a good approximation to the solution but