• Tidak ada hasil yang ditemukan

Studi molekular mekanisme reaksi α-pinene menjadi terpineol dan turunannya

N/A
N/A
Protected

Academic year: 2024

Membagikan "Studi molekular mekanisme reaksi α-pinene menjadi terpineol dan turunannya"

Copied!
5
0
0

Teks penuh

(1)

47

BAB V

KESIMPULAN DAN SARAN

5.1 Kesimpulan

1. Reaksi α-pinene membutuhkan energi yang cukup besar sehingga diperlukannya katalis asam. Energi yang cukup besar ini dibutuhkan untuk membentuk karbokation dimana karbokation memiliki peran penting dalam reaksi α-pinene.

2. Reaksi hidrasi α-pinene bersaing dengan reaksi isomerisasi α-pinene karena kedua reaksi memiliki tahapan mekanisme reaksi yang sama yaitu karbokation dimana karbokation yang berperan penting adalah pinanyl carbocation. Pinanyl carbocation merupakan karbokation kunci dimana penyusunan ulang dari karbokation yang akan mengarahkan ke arah mana reaksi terjadi.

3. berdasarkan hasil pemodelan molekular pada penelitian ini , karbokation yang lebih mudah stabil adalah isobornyl dan fenchyl sehingga kedua karbokation ini lebih mudah terbentuk dimana produk akhir mengarah pada borneol dan fenchol.

5.2 Saran

1. Kajian lebih lanjut mengenai peta mekanisme khususnya pada pemodelan transition state dapat dilakukan pada studi selanjutnya.

2. Eksperimen reaksi α-pinene dapat dilakukan kembali dengan menggunakan beberapa katalis asam lain untuk mendukung hasil kajian teoritis pada studi selanjutnya.

3. Metode solvent lain seperti IEFPCM-DMSO atau gas-phase dapat dilakukan untuk memperjelas kecenderungan data dan menyempurnakan penelitian ini.

(2)

48

DAFTAR PUSTAKA

Aguirre, M., De La Torre-Sa'enz, L., Flores, W., Robau-Sa'nchez, A., & Elgue'zabal, A.

(2005). Synthesis of Terpineol from Alpha Pinene by Homogenous Acid Catalysis.

Catalysis Today, 310-314, 107-108.

Anonim. (2017, Februari 1). alpha-Terpineol. Diambil kembali dari PubChem:

https://pubchem.ncbi.nlm.nih.gov/compound/alpha-TERPINEOL#section=Top Anonim. (2017, Februari 1). Synthesis of longer chain tertiary alcohols. Diambil kembali

dari Science Madness:

http://www.sciencemadness.org/talk/viewthread.php?tid=15171&page=9

Anonim. (2017, Februari 1). Terpentin. Diambil kembali dari Kementrian BUMN:

http://www.bumn.go.id/perhutani/halaman/147

Aue, D. H. (2011). Carbocations. Computational Molecular Science, 487-508.

Balazs, S., & Zsolt, J. (2011). The Study of Alpha Pinene Isomerization In Acidic Hetereogeneous Catalysis. Cluj-Napoca: Babes-Bolyai University, Faculty of Chemistry and Chemical Engineering.

Budiman, A. (2009). Development of Indonesian's Turpentine into its Valuable Derivatives.

Indonesian Ministry of Research and Technology. Yogyakarta: UGM.

Budiman, A., Arifta, T. I., Diana, & Sutijan. (2015). Continuous Production of Alpha Terpineol from Alpha Pinene Isolated from Indonesian Crude Turpentine. Modern Applied Science, 9, 226.

Castro, I., & Castro, F. (1997). Energy Diagrams for Enzyme Catalysed Reactions: a Confusing Point in the Textbooks. Biochemical Education, 25, 87-89.

Comelli, N., Avila, M. C., Volzone, C., & Ponzi, M. (2013). Hydration of alpha pinene catalyzed by acid clays. Central European Journal of Chemistry, 689-697.

Ebmeyer, F. (2001). Theoretical Investigations Towards an Understanding of the Alpha Pinene/Camphene Rearrangement. Jurnal of Molecular Structure, 582, 251-255.

Gajewski, J. J., & Hawkins, C. M. (1986). Gas-Phase Pyrolysis of Isotopically and Stereochemically Labeled Alpha Pinene: Evidence for a Nonrandomized Intermediate. Journal American Chemical Society, 838-839.

Gajewski, J. J., & Hawkins, C. M. (2018, Januari 2). National Institute of Standards and Technology. Diambil kembali dari Kinetics Database:

http://kinetics.nist.gov/kinetics/Detail?id=1986GAJ/HAW838:2

Gillespie, R., & Popelier, P. L. (2001). Chemical Bonding and Molecular Geometry : From Lewis to Electron Density. New York: Oxford University Press, Inc.

Gray, H. B. (1965). Electrons and Chemical Bonding. New York: W.A. Benjamin, Inc.

(3)

49

Gscheidmeier, M., & Fleig, H. (1996). Turpentines. In: Ullman’s Encyclopedia of Industrial Chemistry, Elvers, B. and S. Hawkins, Eds. New York: VCH Publishers.

Hajslova, J., & Cajka, T. (2007). Gas Chromatography-Mass Spectrometry (GC-MS). Food Toxican Analysis, 419-473.

Hammond, G. S. (1955). A Correlation of Reaction Rates. Journal of The American Chemical Society, 334-338.

Havenith, M. (2002). Infrared Spectroscopy of Molecular Clusters, An Introduction to Intermolecular Forces. Springer Tracts in Modern Physics, 176.

Herrlinger, R., & Garber, N. (1959). United States of America Paten No. 724,274.

Hinchliffe, A. (2008). Molecular Modelling for Beginners Second Edition. United Kingdom:

John Wiley & Sons, Inc.

Holguin, N. F., Elguezabal, A. A., Valdez, L. M., & Mitnik, D. G. (2008). Theoretical Study of Chemical Reactivity of the Main Species in the Alpha Pinene Isomerization Reaction. Journal of Molecular Structure: THEOCHEM, 81-88.

Jespersen, N., Brady, J., & Hyslop, A. (2012). Chemistry The Molecular Nature of Matter 6th Edition. USA: John Wiley & Sons, Inc.

Kitson, F. G., Larsen, B. S., & McEwen, C. N. (1996). Gas Chromatography and Mass Spectrometry: A Practical Guide. USA: Academis Press.

Laidler, K. J., & King, M. C. (1983). The Development of Transition-State Theory.

J.Phys.Chem, 87, 2657-2664.

Liu, S.-W., Yu, S.-T., Liu, F.-S., Xie, C.-X., Li, L., & Ji, K.-H. (2007). Reactions of alpha pinene using acidic ionic liquids as catalysts. Journal of Molecular Catalysis, 177- 181.

London, F. (1937). The General Theory of Intermolecular Forces.

doi:10.1039/TF937330008B

McMaster, M. C. (2008). GC/MS : A Practical User's Guide Second Edition. New Jersey:

John Wiley & Sons, Inc.

McMurry, J. (2012). Organic Chemistry 8th Edition. USA: Brooks/Cole Cengange.

Monteiro, J., & Veloso, C. (2004). Catalytic Conversion of Terpenes Into Fine Chemicals.

Topics in Catalysis, 27, 1-4.

Olah, G. A., Prakash, G., Molnar, A., & Sommer, J. (2009). Superacid Chemistry: Second Edition. USA: Wiley.

Pakdel, H., Sarron, S., & Roy, C. (2001). Alpha Terpineol from Hydration of Crude Sulfate Turpentine Oil. J.Agric.Food Chem, 4337-4341,49.

Pan, Y. X., & Liu, C. J. (2007). Study on Pathways of Partial Oxidation of DME under Cold Plasma Condition. Fuel Process Technology, 88(10), 967-976.

(4)

Pan, Y. X., Han, Y., & Liu, C. J. (2007). DFT Study on Pathways for Steam Reforming of Dimethyl Ether under Cold Plasma Condition: A DFT Study. Fuel, 86(15), 2300- 2307.

Pitarokili, D., Couladis, M., Panayoutaro, N., & Tzakou, O. (2002). Composition and Antifungal Activity on Soil-Borne Pathogens of Essential Oil of Silvia Sclarea from Greece. Journal of Agricultural and Food Chemistry, 50, 6688-6691.

Prakoso, T., Hanley, J., Soebianta, M. N., Soerawidjaja, T. H., & Indarto, A. (2017).

Synthesis of Terpineol from Alpha Pinene using Low-price Acid Catalyst. Catalyst Letter, 1-7.

Santiago, R. M., & Indarto, A. (2008). A Density Functional Theory Study of Phenyl Formation Initiated by Ethynyl Radical (C2H•) and Ethyne (C2H2). J Mol Model, 1203-1208.

Sheffield, D. H., & Brunswick, G. (1939). United States of America Paten No. 167,674.

Silvestre, A. J., & Gandini, A. (2008). Terpenes: Major Sources, Properties and Applications. Monomers, Polymers, and Composites from Renewable Resources, 19.

Smith, J. G. (2010). Organic Chemistry Third Edition. Hawaii: McGraw-Hill Education.

Solomons, G., Fryhle, C., & Snyder, S. (2014). Organic Chemistry 11th Edition. USA: John Wiley & Sons, Inc.

Stashenko, E., & Martinez, J. R. (2014). Gas Chromatography-Mass Spectrometry. Intech.

Stoker, H. S. (2007). General, Organic, and Biological 4th Edition. Boston: Houghton Mifflin Company.

Stone, A. (2013). The Theory of Intermolecular Forces Second Edition. United Kingdom:

Oxford University Press.

Sukarno, A., Hardiyanto, E. B., Marsoem, S. N., & Na'iem, M. (2015). Oleoresin Production, Turpentine Yield and Components of Pinus merkusii from Various Indonesian Provenances. Journal of Tropical Forest Science, 136.

Utami, H., Budiman, A., Sutijan, Roto, & Sediawan, W. B. (2011). Heterogeneous Kinetics of Hydration of Alpha Pinene for Alpha Terpineol Production : Non-Ideal Approach.

World Academy of Science, Engineering, and Technology, 872-875.

Wiyono , B., Tachibana, S., & Tinambunan, D. (2006). Chemical Composition of Indonesia Pinus merkusii Turpentine Oils, Gum Oleoresins, and Resins from Sumatra and Java.

Pakistan Journal of Biological Science, 7.

Wiyono, B., & Silitonga, T. (1989). Percobaan Frasionasi-Distilasi Minyak Terpentin dari Pinus Merkusii Jung Et De Vriese. Jurnal Penelitian Hasil Hutan Vol.6 No.4, 231- 234.

Yang, Y., Choi, W., Clark, J., & Ahn, Y. (2004). Ovicidal and Adulticital Activity of Eucalyptus Globules Leaf Oil Terpenoid against Pediculus Humanus Capitis.

Journal of Agricultural and Food Chemistry, 52, 2507-2511.

(5)

51

Young, D. C. (2001). Computational Chemistry: A Practical Guide for Applying Techniques to Real-World Problems. New York: John Wiley & Sons, Inc.

Referensi

Dokumen terkait

Merujuk pada hasil perhitungan model, reaksi siklisasi untuk membentuk senyawa radikal phenylvynil 6 dari 5 memiliki kemungkinan lebih rendah karena energi aktivasi yang sangat besar