• Tidak ada hasil yang ditemukan

Supplementary Table 1: References Receptor Citation ADRB1

N/A
N/A
Protected

Academic year: 2024

Membagikan "Supplementary Table 1: References Receptor Citation ADRB1"

Copied!
8
0
0

Teks penuh

(1)

Supplementary Table 1: References Receptor Citation

ADRB1 Baker JG, Proudman RG, Hawley NC, Fischer PM, Hill SJ. Role of key transmembrane residues in agonist and antagonist actions at the two conformations of the human beta1-adrenoceptor. Mol Pharmacol 2008; 74(5): 1246-1260.

Baker JG, Proudman RG, Hill SJ. Salmeterol's extreme beta2 selectivity is due to residues in both extracellular loops and

transmembrane domains. Mol Pharmacol 2015; 87(1): 103-120.

Behr B, Hoffmann C, Ottolina G, Klotz KN. Novel mutants of the human beta1-adrenergic receptor reveal amino acids relevant for receptor activation. J Biol Chem 2006; 281(26): 18120-18125.

Isogaya M, Sugimoto Y, Tanimura R, Tanaka R, Kikkawa H, Nagao T, et al. Binding pockets of the beta(1)- and beta(2)-adrenergic receptors for subtype-selective agonists. Mol

Pharmacol 1999; 56(5): 875-885.

Rathz DA, Brown KM, Kramer LA, Liggett SB. Amino acid 49 polymorphisms of the human beta1-adrenergic receptor affect agonist-promoted trafficking. J Cardiovasc

Pharmacol 2002; 39(2): 155-160.

Rezmann-Vitti LA, Louis SN, Nero TL, Jackman GP, Iakovidis D, Machida CA, et al. Agonist binding and activation of the rat beta(1)-adrenergic receptor: role of Trp(134(3.28)),

Ser(190(4.57)) and Tyr(356(7.43)). Biochem Pharmacol 2004; 68(4): 675-688.

Rezmann-Vitti LA, Louis SN, Nero TL, Jackman GP, Machida CA, Louis WJ. Site-directed mutagenesis of the rat beta1-

adrenoceptor. Involvement of Tyr356 (7.43) in (+/-

)cyanopindolol but not (+/-)[125Iodo]cyanopindolol binding. Eur J Med Chem 2004; 39(7): 625-631.

Rezmann-Vitti LA, Nero TL, Jackman GP, Machida CA, Duke BJ, Louis WJ, et al. Role of Tyr(356(7.43)) and Ser(190(4.57)) in antagonist binding in the rat beta1-adrenergic receptor. J Med Chem 2006; 49(12): 3467-3477.

ADRB2 Arakawa M, Chakraborty R, Upadhyaya J, Eilers M, Reeves PJ, Smith SO, et al. Structural and functional roles of small group- conserved amino acids present on helix-H7 in the beta(2)-

adrenergic receptor. Biochim Biophys Acta 2011; 1808(4): 1170- 1178.

Arakawa M, Yanamala N, Upadhyaya J, Halayko A, Klein- Seetharaman J, Chelikani P. The importance of valine 114 in ligand binding in beta(2)-adrenergic receptor. Protein

Sci 2010; 19(1): 85-93.

(2)

Baker JG, Proudman RG, Hill SJ. Salmeterol's extreme beta2 selectivity is due to residues in both extracellular loops and

transmembrane domains. Mol Pharmacol 2015; 87(1): 103-120.

Chung FZ, Wang CD, Potter PC, Venter JC, Fraser CM. Site- directed mutagenesis and continuous expression of human beta- adrenergic receptors. Identification of a conserved aspartate residue involved in agonist binding and receptor activation. J Biol Chem 1988; 263(9): 4052-4055.

Del Carmine R, Molinari P, Sbraccia M, Ambrosio C, Costa T.

"Induced-fit" mechanism for catecholamine binding to the beta2- adrenergic receptor. Mol Pharmacol 2004; 66(2): 356-363.

Fraser CM, Chung FZ, Wang CD, Venter JC. Site-directed

mutagenesis of human beta-adrenergic receptors: substitution of aspartic acid-130 by asparagine produces a receptor with high- affinity agonist binding that is uncoupled from adenylate

cyclase. Proc Natl Acad Sci U S A 1988; 85(15): 5478-5482.

Green SA, Cole G, Jacinto M, Innis M, Liggett SB. A polymorphism of the human beta 2-adrenergic receptor within the fourth

transmembrane domain alters ligand binding and functional properties of the receptor. J Biol Chem 1993; 268(31): 23116- 23121.

Green SA, Rathz DA, Schuster AJ, Liggett SB. The Ile164 beta(2)- adrenoceptor polymorphism alters salmeterol exosite binding and conventional agonist coupling to G(s). Eur J

Pharmacol 2001; 421(3): 141-147.

Isogaya M, Sugimoto Y, Tanimura R, Tanaka R, Kikkawa H, Nagao T, et al. Binding pockets of the beta(1)- and beta(2)-adrenergic receptors for subtype-selective agonists. Mol

Pharmacol 1999; 56(5): 875-885.

Kikkawa H, Isogaya M, Nagao T, Kurose H. The role of the

seventh transmembrane region in high affinity binding of a beta 2-selective agonist TA-2005. Mol Pharmacol 1998; 53(1): 128- 134.

Kikkawa H, Kurose H, Isogaya M, Sato Y, Nagao T. Differential contribution of two serine residues of wild type and constitutively active beta2-adrenoceptors to the interaction with beta2-selective agonists. Br J Pharmacol 1997; 121(6): 1059-1064.

Noda K, Saad Y, Graham RM, Karnik SS. The high affinity state of the beta 2-adrenergic receptor requires unique interaction

between conserved and non-conserved extracellular loop cysteines. J Biol Chem 1994; 269(9): 6743-6752.

Pooput C, Rosemond E, Karpiak J, Deflorian F, Vilar S, Costanzi S, et al. Structural basis of the selectivity of the beta(2)-adrenergic

(3)

receptor for fluorinated catecholamines. Bioorg Med Chem 2009; 17(23): 7987-7992.

Suryanarayana S, Kobilka BK. Amino acid substitutions at position 312 in the seventh hydrophobic segment of the beta 2-adrenergic receptor modify ligand-binding specificity. Mol

Pharmacol 1993; 44(1): 111-114.

Wieland K, Zuurmond HM, Krasel C, Ijzerman AP, Lohse MJ.

Involvement of Asn-293 in stereospecific agonist recognition and in activation of the beta 2-adrenergic receptor. Proc Natl Acad Sci U S A 1996; 93(17): 9276-9281.

DRD2 Al-Fulaij MA, Ren Y, Beinborn M, Kopin AS. Identification of amino acid determinants of dopamine 2 receptor synthetic agonist

function. J Pharmacol Exp Ther 2007; 321(1): 298-307.

Cho W, Taylor LP, Mansour A, Akil H. Hydrophobic residues of the D2 dopamine receptor are important for binding and signal

transduction. J Neurochem 1995; 65(5): 2105-2115.

Cox BA, Henningsen RA, Spanoyannis A, Neve RL, Neve KA.

Contributions of conserved serine residues to the interactions of ligands with dopamine D2 receptors. J

Neurochem 1992; 59(2): 627-635.

Cravchik A, Sibley DR, Gejman PV. Analysis of neuroleptic binding affinities and potencies for the different human D2 dopamine receptor missense variants. Pharmacogenetics 1999; 9(1): 17- 23.

Ehrlich K, Gotz A, Bollinger S, Tschammer N, Bettinetti L, Harterich S, et al. Dopamine D2, D3, and D4 selective

phenylpiperazines as molecular probes to explore the origins of subtype specific receptor binding. J Med

Chem 2009; 52(15): 4923-4935.

Ericksen SS, Cummings DF, Teer ME, Amdani S, Schetz JA. Ring substituents on substituted benzamide ligands indirectly mediate interactions with position 7.39 of transmembrane helix 7 of the D4 dopamine receptor. J Pharmacol Exp Ther 2012; 342(2): 472- 485.

Ericksen SS, Cummings DF, Weinstein H, Schetz JA. Ligand selectivity of D2 dopamine receptors is modulated by changes in local dynamics produced by sodium binding. J Pharmacol Exp Ther 2009; 328(1): 40-54.

Fowler JC, Bhattacharya S, Urban JD, Vaidehi N, Mailman RB.

Receptor conformations involved in dopamine D(2L) receptor functional selectivity induced by selected transmembrane-5 serine mutations. Mol Pharmacol 2012; 81(6): 820-831.

(4)

Lan H, Durand CJ, Teeter MM, Neve KA. Structural determinants of pharmacological specificity between D(1) and D(2) dopamine receptors. Mol Pharmacol 2006; 69(1): 185-194.

Mansour A, Meng F, Meador-Woodruff JH, Taylor LP, Civelli O, Akil H. Site-directed mutagenesis of the human dopamine D2

receptor. Eur J Pharmacol 1992; 227(2): 205-214.

Michino M, Donthamsetti P, Beuming T, Banala A, Duan L, Roux T, et al. A single glycine in extracellular loop 1 is the critical determinant for pharmacological specificity of dopamine D2 and D3 receptors. Mol Pharmacol 2013; 84(6): 854-864.

Simpson MM, Ballesteros JA, Chiappa V, Chen J, Suehiro M, Hartman DS, et al. Dopamine D4/D2 receptor selectivity is determined by A divergent aromatic microdomain contained within the second, third, and seventh membrane-spanning segments. Mol Pharmacol 1999; 56(6): 1116-1126.

Tschammer N, Bollinger S, Kenakin T, Gmeiner P. Histidine 6.55 is a major determinant of ligand-biased signaling in dopamine D2L receptor. Mol Pharmacol 2011; 79(3): 575-585.

Tschammer N, Dorfler M, Hubner H, Gmeiner P. Engineering a GPCR-ligand pair that simulates the activation of D(2L) by Dopamine. ACS Chem Neurosci 2010; 1(1): 25-35.

Wilcox RE, Huang WH, Brusniak MY, Wilcox DM, Pearlman RS, Teeter MM, et al. CoMFA-based prediction of agonist affinities at recombinant wild type versus serine to alanine point mutated D2 dopamine receptors. J Med Chem 2000; 43(16): 3005-3019.

Woodward R, Coley C, Daniell S, Naylor LH, Strange PG.

Investigation of the role of conserved serine residues in the long form of the rat D2 dopamine receptor using site-directed

mutagenesis. J Neurochem 1996; 66(1): 394-402.

Woodward R, Daniell SJ, Strange PG, Naylor LH. Structural

studies on D2 dopamine receptors: mutation of a histidine residue specifically affects the binding of a subgroup of substituted

benzamide drugs. J Neurochem 1994; 62(5): 1664-1669.

AGTR1 Bhuiyan MA, Hossain M, Ishiguro M, Nakamura T, Nagatomo T.

Engineered mutation of some important amino acids in

angiotensin II type 1 (AT1) receptor increases the binding affinity of AT1-receptor antagonists. J Pharmacol Sci 2010; 113(1): 57- 65.

Clement M, Martin SS, Beaulieu ME, Chamberland C, Lavigne P, Leduc R, et al. Determining the environment of the ligand binding pocket of the human angiotensin II type I (hAT1) receptor using the methionine proximity assay. J Biol

Chem 2005; 280(29): 27121-27129.

(5)

Correa SA, Zalcberg H, Han SW, Oliveira L, Costa-Neto CM, Paiva AC, et al. Aliphatic amino acids in helix VI of the AT(1) receptor play a relevant role in agonist binding and activity. Regul

Pept 2002; 106(1-3): 33-38.

Costa-Neto CM, Miyakawa AA, Oliveira L, Hjorth SA, Schwartz TW, Paiva AC. Mutational analysis of the interaction of the N- and C-terminal ends of angiotensin II with the rat AT(1A) receptor. Br J Pharmacol 2000; 130(6): 1263-1268.

Dascal D, Nirula V, Lawus K, Yoo SE, Walsh TF, Sandberg K.

Shared determinants of receptor binding for subtype selective, and dual endothelin-angiotensin antagonists on the AT1

angiotensin II receptor. FEBS Lett 1998; 423(1): 15-18.

Fierens FL, Vanderheyden PM, Gaborik Z, Minh TL, Backer JP, Hunyady L, et al. Lys(199) mutation of the human angiotensin type 1 receptor differentially affects the binding of surmountable and insurmountable non-peptide antagonists. J Renin Angiotensin Aldosterone Syst 2000; 1(3): 283-288.

Groblewski T, Maigret B, Nouet S, Larguier R, Lombard C, Bonnafous JC, et al. Amino acids of the third transmembrane domain of the AT1A angiotensin II receptor are involved in the differential recognition of peptide and nonpeptide

ligands. Biochem Biophys Res Commun 1995; 209(1): 153-160.

Han HM, Shimuta SI, Kanashiro CA, Oliveira L, Han SW, Paiva AC.

Residues Val254, His256, and Phe259 of the angiotensin II AT1 receptor are not involved in ligand binding but participate in signal transduction. Mol Endocrinol 1998; 12(6): 810-814.

Hunyady L, Ji H, Jagadeesh G, Zhang M, Gaborik Z, Mihalik B, et al. Dependence of AT1 angiotensin receptor function on adjacent asparagine residues in the seventh transmembrane helix. Mol Pharmacol 1998; 54(2): 427-434.

Ji H, Leung M, Zhang Y, Catt KJ, Sandberg K. Differential structural requirements for specific binding of nonpeptide and peptide antagonists to the AT1 angiotensin receptor.

Identification of amino acid residues that determine binding of the antihypertensive drug losartan. J Biol

Chem 1994; 269(24): 16533-16536.

Le MT, Vanderheyden PM, Szaszak M, Hunyady L, Kersemans V, Vauquelin G. Peptide and nonpeptide antagonist interaction with constitutively active human AT1 receptors. Biochem

Pharmacol 2003; 65(8): 1329-1338.

Miura S, Kiya Y, Kanazawa T, Imaizumi S, Fujino M, Matsuo Y, et al. Differential bonding interactions of inverse agonists of

angiotensin II type 1 receptor in stabilizing the inactive state. Mol Endocrinol 2008; 22(1): 139-146.

(6)

Monnot C, Bihoreau C, Conchon S, Curnow KM, Corvol P, Clauser E. Polar residues in the transmembrane domains of the type 1 angiotensin II receptor are required for binding and coupling.

Reconstitution of the binding site by co-expression of two deficient mutants. J Biol Chem 1996; 271(3): 1507-1513.

Nirula V, Zheng W, Sothinathan R, Sandberg K. Interaction of biphenylimidazole and imidazoleacrylic acid nonpeptide

antagonists with valine 108 in TM III of the AT1 angiotensin receptor. Br J Pharmacol 1996; 119(8): 1505-1507.

Noda K, Feng YH, Liu XP, Saad Y, Husain A, Karnik SS. The active state of the AT1 angiotensin receptor is generated by angiotensin II induction. Biochemistry 1996; 35(51): 16435-16442.

Noda K, Saad Y, Kinoshita A, Boyle TP, Graham RM, Husain A, et al. Tetrazole and carboxylate groups of angiotensin receptor antagonists bind to the same subsite by different mechanisms. J Biol Chem 1995; 270(5): 2284-2289.

Ohyama K, Yamano Y, Sano T, Nakagomi Y, Hamakubo T, Morishima I, et al. Disulfide bridges in extracellular domains of angiotensin II receptor type IA. Regul Pept 1995; 57(2): 141- 147.

Perlman S, Costa-Neto CM, Miyakawa AA, Schambye HT, Hjorth SA, Paiva AC, et al. Dual agonistic and antagonistic property of nonpeptide angiotensin AT1 ligands: susceptibility to receptor mutations. Mol Pharmacol 1997; 51(2): 301-311.

Perlman S, Schambye HT, Rivero RA, Greenlee WJ, Hjorth SA, Schwartz TW. Non-peptide angiotensin agonist. Functional and molecular interaction with the AT1 receptor. J Biol

Chem 1995; 270(4): 1493-1496.

Santos EL, Pesquero JB, Oliveira L, Paiva AC, Costa-Neto CM.

Mutagenesis of the AT1 receptor reveals different binding modes of angiotensin II and [Sar1]-angiotensin II. Regul

Pept 2004; 119(3): 183-188.

Schambye HT, Hjorth SA, Bergsma DJ, Sathe G, Schwartz TW.

Differentiation between binding sites for angiotensin II and nonpeptide antagonists on the angiotensin II type 1

receptors. Proc Natl Acad Sci U S A 1994; 91(15): 7046-7050.

Schambye HT, Hjorth SA, Weinstock J, Schwartz TW. Interaction between the nonpeptide angiotensin antagonist SKF-108,566 and histidine 256 (HisVI:16) of the angiotensin type 1 receptor. Mol Pharmacol 1995; 47(3): 425-431.

Takezako T, Gogonea C, Saad Y, Noda K, Karnik SS. "Network leaning" as a mechanism of insurmountable antagonism of the angiotensin II type 1 receptor by non-peptide antagonists. J Biol Chem 2004; 279(15): 15248-15257.

(7)

Takezako T, Unal H, Karnik SS, Node K. Structure-Function Basis of Attenuated Inverse Agonism of Angiotensin II Type 1 Receptor Blockers for Active-State Angiotensin II Type 1 Receptor. Mol Pharmacol 2015; 88(3): 488-501.

Yamano Y, Ohyama K, Kikyo M, Sano T, Nakagomi Y, Inoue Y, et al. Mutagenesis and the molecular modeling of the rat angiotensin II receptor (AT1). J Biol Chem 1995; 270(23): 14024-14030.

Zhang H, Unal H, Desnoyer R, Han GW, Patel N, Katritch V, et al.

Structural Basis for Ligand Recognition and Functional Selectivity at Angiotensin Receptor. J Biol Chem 2015; 290(49): 29127- 29139.

OPRM1 Beyer A, Koch T, Schroder H, Schulz S, Hollt V. Effect of the A118G polymorphism on binding affinity, potency and agonist- mediated endocytosis, desensitization, and resensitization of the human mu-opioid receptor. J Neurochem 2004; 89(3): 553-560.

Bonner G, Meng F, Akil H. Selectivity of mu-opioid receptor determined by interfacial residues near third extracellular loop. Eur J Pharmacol 2000; 403(1-2): 37-44.

Bot G, Blake AD, Li S, Reisine T. Mutagenesis of a single amino acid in the rat mu-opioid receptor discriminates ligand binding. J Neurochem 1998; 70(1): 358-365.

Fukuda K, Terasako K, Kato S, Mori K. Identification of the amino acid residues involved in selective agonist binding in the first extracellular loop of the delta- and mu-opioid receptors. FEBS Lett 1995; 373(2): 177-181.

Gaibelet G, Capeyrou R, Dietrich G, Emorine LJ. Identification in the mu-opioid receptor of cysteine residues responsible for inactivation of ligand binding by thiol alkylating and reducing agents. FEBS Lett 1997; 408(2): 135-140.

Hothersall JD, Torella R, Humphreys S, Hooley M, Brown A, McMurray G, et al. Residues W320 and Y328 within the binding site of the mu-opioid receptor influence opiate ligand

bias. Neuropharmacology 2017; 118: 46-58.

Jones RM, Hjorth SA, Schwartz TW, Portoghese PS. Mutational evidence for a common kappa antagonist binding pocket in the wild-type kappa and mutant mu[K303E] opioid receptors. J Med Chem 1998; 41(25): 4911-4914.

Larson DL, Jones RM, Hjorth SA, Schwartz TW, Portoghese PS.

Binding of norbinaltorphimine (norBNI) congeners to wild-type and mutant mu and kappa opioid receptors: molecular

recognition loci for the pharmacophore and address components of kappa antagonists. J Med Chem 2000; 43(8): 1573-1576.

(8)

Li JG, Chen C, Yin J, Rice K, Zhang Y, Matecka D, et al. ASP147 in the third transmembrane helix of the rat mu opioid receptor

forms ion-pairing with morphine and naltrexone. Life Sci 1999; 65(2): 175-185.

Mansour A, Taylor LP, Fine JL, Thompson RC, Hoversten MT, Mosberg HI, et al. Key residues defining the mu-opioid receptor binding pocket: a site-directed mutagenesis study. J

Neurochem 1997; 68(1): 344-353.

Metzger TG, Paterlini MG, Ferguson DM, Portoghese PS.

Investigation of the selectivity of oxymorphone- and naltrexone- derived ligands via site-directed mutagenesis of opioid receptors:

exploring the "address" recognition locus. J Med Chem 2001; 44(6): 857-862.

Mosberg HI, Fowler CB. Development and validation of opioid ligand-receptor interaction models: the structural basis of mu vs delta selectivity. J Pept Res 2002; 60(6): 329-335.

Seki T, Awamura S, Kimura C, Ide S, Sakano K, Minami M, et al.

Pharmacological properties of TRK-820 on cloned mu-, delta- and kappa-opioid receptors and nociceptin receptor. Eur J

Pharmacol 1999; 376(1-2): 159-167.

Spivak CE, Beglan CL, Seidleck BK, Hirshbein LD, Blaschak CJ, Uhl GR, et al. Naloxone activation of mu-opioid receptors mutated at a histidine residue lining the opioid binding cavity. Mol

Pharmacol 1997; 52(6): 983-992.

Xu H, Lu YF, Partilla JS, Zheng QX, Wang JB, Brine GA, et al.

Opioid peptide receptor studies, 11: involvement of Tyr148, Trp318 and His319 of the rat mu-opioid receptor in binding of mu-selective ligands. Synapse 1999; 32(1): 23-28.

Xu W, Ozdener F, Li JG, Chen C, de Riel JK, Weinstein H, et al.

Functional role of the spatial proximity of Asp114(2.50) in TMH 2 and Asn332(7.49) in TMH 7 of the mu opioid receptor. FEBS Lett 1999; 447(2-3): 318-324.

Zaidi SA, Arnatt CK, He H, Selley DE, Mosier PD, Kellogg GE, et al. Binding mode characterization of 6alpha- and 6beta-N-

heterocyclic substituted naltrexamine derivatives via docking in opioid receptor crystal structures and site-directed mutagenesis studies: application of the 'message-address' concept in

development of mu opioid receptor selective antagonists. Bioorg Med Chem 2013; 21(21): 6405-6413.

Referensi

Dokumen terkait