Contents lists available atScienceDirect
Scientia Horticulturae
j o u r n a l h o m e p a g e :w w w . e l s e v i e r . c o m / l o c a t e / s c i h o r t i
The interaction between arbuscular mycorrhizal fungi and
Piriformospora indica improves the growth and nutrient uptake in micropropagation-derived pineapple plantlets
B.C. Moreira
a, F.C. Mendes
a, I.R. Mendes
a, T.A. Paula
a, P. Prates Junior
a, L.C.C. Salomão
b, S.L. Stürmer
c, W.C. Otoni
d, A. Guarc¸ oni M.
e, M.C.M. Kasuya
a,∗aLaboratóriodeAssociac¸õesMicorrízicas/BIOAGRO,DepartamentodeMicrobiologia,UniversidadeFederaldeVic¸osa,36570-900,Vic¸osa,MG,Brazil
bDepartamentodeFitotecnia,UniversidadeFederaldeVic¸osa,36570-900,Vic¸osa,MG,Brazil
cDepartamentodeCiênciasNaturais,Fundac¸ãoUniversidadeRegionaldeBlumenau,89012-900Blumenau,SC,Brazil
dLaboratóriodeCulturadeTecidos(LCTII)/BIOAGRO,DepartamentodeBiologiaVegetal,UniversidadeFederaldeVic¸osa,36570-900,Vic¸osa,MG,Brazil
eInstitutoCapixabadePesquisa,AssistênciaTécnicaeExtensãoRural,29375-000,VendaNovadoImigrante,ES,Brazil
a r t i c l e i n f o
Articlehistory:
Received14April2015 Receivedinrevisedform 22September2015 Accepted23September2015 Availableonlinexxx
Keywords:
Ananascomosus AMF
P.indica Phosphoruslevels
a b s t r a c t
Arbuscularmycorrhizalfungi(AMF)andPiriformosporaindicaarewellknownforpromotinggrowth, development,andnutrientuptakeandforimprovingplantphotosynthesis.Thesefungirepresentpromis- ingtoolssupportingmicropropagatedplantsduringtheacclimatizationstage,andtheirusecanreduce theapplicationofphosphatefertilizers,providingeconomicandenvironmentalbenefits.Therefore,this studyaimedtoevaluatethebenefitsofinoculationwithAMFandP.indicaforthegrowthofplantletsof theImperialcultivarofpineappleinoculatedduringtheacclimatizationstageandgrownwithdifferent levelsofphosphorus(P).TheexperimentconsistedofsixPlevels(0,20,40,80,160and320mgkg−1soil) withinoculationofClaroideoglomusetunicatum,Dentiscutataheterogama,Rhizophagusclarus,P.indica,a mixtureofallfungi(Mix),orcontrol(noinoculation).Theparametersvegetativegrowth,thenutrient contentsintheplants,photosyntheticefficiency,andthecomponentsofdependenceandcolonization byfungiwereassessed.Thefungalinoculationwaseffectiveforplantletgrowth,especiallyuptoaPdose of40mgkg−1,increasingbothplantbiomassandtheabsorptionofallevaluatednutrients.WithPat 80mgkg−1,onlythetreatmentswithC.etunicatumandMixproducedplantletsofbetterqualitythanthe non-inoculatedcontrol.ThecolonizationbyAMFandP.indicawasnotaffectedbytheadditionofPtothe soil,althoughfungaldependencedecreasedundertheseconditionsandcouldbeconsideredmoderate evenat40mgkg−1forplantsinoculatedwithC.etunicatum,R.clarus,P.indicaorMix.Theinoculation ofpineappleplantletsisapromisingmethodthatcanbeemployedtoproducehigh-qualitypropagative materialforthemarket.
©2015ElsevierB.V.Allrightsreserved.
1. Introduction
Pineapple(Ananascomosus(L.)Merrill;Bromeliaceae)isnative to the southern and southeastern regions of Brazil, Argentina and Uruguay(Melo etal., 2006).It is a cropof great economic importancein manytropical countries(Beand Debergh, 2006), andapproximately23.34milliontonsofthisfruitwereproduced worldwidein2012(FAOSTAT,2014).Brazilianpineappleproduc-
∗ Correspondingauthorat:LaboratóriodeAssociac¸õesMicorrízicas/BIOAGRO, DepartamentodeMicrobiologia,UniversidadeFederaldeVic¸osa,CampusUniver- sitário,AvenidaPeterHenryRolfss/n,UniversidadeFederaldeVic¸osa,36570-900, Vic¸osa,MG,Brazil.Fax:+553138992573.
E-mailaddresses:[email protected],[email protected] (M.C.M.Kasuya).
tioncorrespondsto10.6%oftotalworldwideproduction,occupying the equivalentof 6% of thetotal areaof pineapple plantations worldwide. Brazil ranks third worldwide in the production of pineapplefruit,behindThailandandCostaRica(FAOSTAT,2014).
Pineapple is vegetatively propagated,and thequality of the propagationmaterialsignificantinfluencesplanthealth,develop- mentandyield(BeandDebergh,2006;Kapooretal.,2008;Souza et al., 2013).A wide variety of plant material can beused for propagationofpineapple,includingfruitcrown,lateralbranches (suckersandslips),andseedlingsgrownfromstemsectionsorvia micropropagation(Hepton,2003).Researchhasbeenconducted to enhance themultiplication of pineappleby means of tissue culturetechniques(Smithetal.,2003;Souzaetal.,2013).Pineap- ple explantscan be multiplied in vitro onsolid and liquid MS medium(MurashigeandSkoog,1962)(BeandDebergh,2006;Silva http://dx.doi.org/10.1016/j.scienta.2015.09.032
0304-4238/©2015ElsevierB.V.Allrightsreserved.
etal.,2007).Thismediumcanbesupplementedwithsucroseand cytokininsorauxins(dependingonthepurpose)asa meansto initiateculture,proliferationorgrowthoftheshoots,orevenas a meansof rooting(Smithet al., 2003;Be and Debergh, 2006;
Silvaetal.,2007).Toachievelarge-scaleproductionofpineapple plantletsatareducedcost,Escalonaetal.(1999)proposedmicro- propagationusingtemporaryimmersionsystemsinabioreactor, andthisapproachhasbeenwidelyusedsince.
Micropropagatedplantsare moreuniformand showgreater synchronyoffloweringandfruitinginthefield(Singhetal.,2012).
Micropropagationalsofacilitatestheintroductionofplantletsin newareas(Escalonaetal.,1999),theproductionofhigh-quality materialinanyseason(Chandraetal.,2010),large-scaleproduction andpathogen-freecrops(Routetal.,2006;Souzaetal.,2013).This techniqueisusedtoobtainalargenumberofplantsthataregenet- icallyidenticaltotheparentplant.Forpineapple,thistechnique hasseveraladvantagesoverconventionalmethodsofpropagation, includingarapidandefficientincreaseintheproductionofplantsof selectedvarieties(González-Olmedoetal.,2005;Farahani,2013).
Althoughmicropropagationisefficient,ahighmortalityratehas beenobservedduringtheacclimatizationprocessduetophysiolog- icalchangescausedbytheinvitroenvironment,suchaschanges inthefunctionofthestomataandroots,undevelopedcuticles,and photosyntheticinefficiency(Pospíˇsilováetal.,1999;Hazarikaetal., 2002;Hazarika,2006;Xiaoetal.,2011;KumarandRao,2012;Singh etal.,2012).
Ifestablishedduringtheearlystageofacclimatization,anasso- ciationwithbeneficialfungicanreducethestressofacclimatization andpromotethegrowthofmicropropagatedplants(Kapooretal., 2008;Singhetal.,2012;Yadavetal.,2013a,b).Inoculationwith arbuscularmycorrhizalfungi(AMF)(Glomeromycota)andPirifor- mosporaindica(rootendophyticfungus,Basidiomycota)hasproven tobeapromisingalternativefortheproductionofplantletsofsupe- riorquality(SahayandVarma,1999;Kapooretal.,2008;Yadav etal.,2013a,b).Thesefungihavealsobeenreportedtoincrease plants’nutrientuptake(Smithetal.,2010;Varmaetal.,2012),tol- erancetodroughtandsaltstresses(Augé,2001;Varmaetal.,2012), resistancetotheeffectsofheavymetals(Azcón-Aguilaretal.,1997;
Varmaetal.,2012)andphotosyntheticefficiency(Estrada-Lunaand Davies,2003;Achatzetal.,2010;Boldtetal.,2011;Yadavetal., 2013a,b).
Phosphorus (P) fertilization and phytosanitary control play important roles in the production of high-quality pineapple propagules.ThemanagementofPinthesoilisamajorfactorin achievingsustainableagriculturalsystems(Kahiluotoetal.,2000).
PlantsexposedtohighlevelsofPinthesoilshowreducedmycor- rhizalcolonization(Mengeetal.,1978;Kahiluotoetal.,2000;Grant etal.,2005).Thus,itishighlyimportanttoidentifytheamountof PthatwillmaximizetheeffectofbothAMFandP.indicaandallow properuptakeofthisnutrienttoprovideanadequatenutritional statusfortheplant.Likewise,itishighlyimportanttoestablishan associationwiththesefungithatwillenabletheplanttoextract themaximumbenefitfromthesymbiosis.
Theaimofthisstudywastoobtainhigh-qualitypropagation materialbyevaluatingthebenefitsofinoculationwithAMFand/or P.indicaattheacclimatizationstageandbyexaminingtheroles ofthesefactorsinthegrowth,nutrientuptakeandphotosynthetic efficiencyofpineappleplantletsunderdifferentPlevels.
2. Materialsandmethods
2.1. Invitroculture
Micropropagatedplantletsofpineapple,cultivarImperial,were subcultivated in liquid MS (Murashige and Skoog, 1962) cul-
turemediumformultiplication.Themediumwassupplemented with30gL−1sucrose,1.8mgL−1␣-naphthaleneaceticacid(NAA), 2mgL−1indole-3-butyricacid(IBA),and2.1mgL−1kinetin(KIN) atpH5.5.Theculturesweregrownin250-mLglassjarscontain- ing15mLofculturemediumandsealedwithrigidpolypropylene covers.Cultureswerekeptina growthroomat 26±2◦Cunder a photoperiodof16hlight/8hdarkand underan irradianceof 36molm−2s−1,providedbywhitefluorescentlamps.Subcultures wereperformedevery40d(seeSupplementarymaterial).
2.2. Fungalinoculants
Isolates of AMF Dentiscutata heterogama PNB102A (= Scutel- lospora heterogama), Claroideoglomus etunicatum RJN101A (=
Glomus etunicatum) and Rhizophagus clarus RJN102A (= Glomus clarum)wereobtainedfromtheInternationalCultureCollection ofGlomeromycota(CICG,www.furb.br/cicg)attheUniversidade RegionaldeBlumenau,SantaCatarina,Brazil.Singlecultureswere establishedfollowingtheproceduresadoptedattheCICG.Briefly, sporeswereextractedfromtrapcultures,separatedbymorpho- typesandinoculatedontherootsof15-day-oldSorghumbicolor seedlingsthat hadbeengrown onsterilizedsubstrate.Sorghum seedlingswerethentransplantedtocones(270cm3)inasteril- izedsand:expandedclay:soil (2:2:1v:v:v)mixandgrown for4 monthsundergreenhouseconditions.Afterthatperiod,coneswere checkedforsporulation.Plantswereallowedtodry insitu,and thecontentsofconeswerestoredinziplockplasticbagsat4◦C for6months.TheinvitrocultureofP.indicawasobtainedfrom themicrobialcollectionoftheLaboratoryofMycorrhizalAssoci- ationsofUniversidadeFederaldeVic¸osa—MinasGeraisand was maintainedandmultipliedinKaefermedium(KM)(HillandKaefer, 2001)andstoredinthedarkat30◦C(Kumaretal.,2011)for30d.
2.3. Characteristicsandsoilpreparation
Thesubstratewassterilizedinanautoclavefor1hat121◦C and was composed of a mixture of soil and sand (1:1 v:v) withthefollowingcharacteristics:pH(water)=4.9,P=1.1mgdm−3 (Mehlich 1),K=34mgdm−3, Ca=0.2cmolcdm−3,Mg and Al=0, sumofexchangeablebases (SB)=0.29cmolcdm−3,organicmat- ter (OM)=1.1dagkg−1 and Premaining=6.6mgL−1. Liming was performed according toSouza et al. (1999), following therec- ommendationsforpineapplecultivationtomeettheCaandMg requirements for 2cmolcdm−3. The substrate was moistened, placedinplasticbagsandallowedtorestfor30datroomtempera- ture.Afterthisperiod,phosphorusfertilizationwasperformedfor eachdoseofP(0,20,40,80,160and320mgkg−1 soil)usingan aqueoussolutionofKH2PO4justbeforetransplantationatthetime ofacclimatization.
2.4. Experimentaldesignandinoculation
Theexperimentwithpineappleplantlets(cultivarImperial)was conductedinagreenhouseandconsistedofsixdosesofP(0,20, 40,80,160and320mgkg−1ofsoil)andinoculationwithC.etuni- catum,D.heterogama,R.clarus,P.indica,amixtureofallfungi(Mix) oranon-inoculatedcontrol(Cont).Therewerefourreplicates,and theexperimentswereperformedfollowingacompletelyrandom- izeddesignwitha6×6factorialarrangement(seeSupplementary material).
The50-day-oldplantlets,withanaverageheightof4.4cmand 12–15leaves,weretransplantedintoplasticpotscontaining1kg ofsterilizedsubstrate.Whentheplantletsweretransplanted,the substratewasinoculatedneartheroot,usinganaverageof120 sporesoftheAMFperplantlet.InoculationwithP.indicawasper- formedwithfour1-cmdiscsofKMcontainingfungalstructures
(hyphaeandchlamydospores).IntheMixtreatment,40sporesof eachAMFandtwo1-cmdiscswithKMcontainingP.indicawere usedforinoculation.Controlplantsreceivednofungalinoculum.
Themoistureofthesubstrateinthepotswascorrectedperiodi- callywithdistilledwater.Clark’snutrientsolution(50mL)without Pwasappliedevery20days(Clark,1975).
2.5. Plantgrowthmeasurementsandshootnutrientanalysis At210daftertransplanting,theplantheight(H),thenumber ofleaves(NL),andtheshootdrymatter(SDM)weredetermined.
The SDMwas determinedafter drying toa constant weightat 70◦Cinanovenunderforcedventilation.Thismaterialwasthen groundinaWileymillwitha0.420-mmsieveandsubjectedto nitroperchloricdigestion(JohnsonandUlrich,1959)todetermine theconcentrationsofthenutrientsP,K,Ca,andMg.Thesenutri- ents,exceptP,weremeasuredbyopticalemissionspectrometry withinductivelycoupledplasma(ICP-OES)(Optima8300ICP-OES Spectrometer,PerkinElmer).ForNanalysisoftheshoots,themin- eralizationwasperformeddry,bydirectincinerationofthesample inmuffles,anditscontentwasdeterminedbytheKjeldahlmethod (EMBRAPA,1999).ThePcontentoftheshootswasdeterminedcol- orimetricallybythevitaminCmethodasmodifiedbyBragaand Defelipo(1974).
2.6. Photosyntheticparameters
Thevaluesofthephotosyntheticparameterswereassessedwith aPAMfluorometer[JUNIOR-PAMTeachingChlorophyllFluorome- ter(Walz,Mess-undRegeltechnik)].Thefollowingphotosynthetic parameterswereusedforanalysis:maximumphotochemicaleffi- ciency or maximum quantum yield (Fv/Fm) and quenching or non-photochemicaldissipation(qNandNPQ).Thesevalueswere obtainedfromintermediateandfullyexpandedleaves.Themin- imal fluorescence (Fo) was measured after the application of modulatedlight (<0.1mol photon m−2s−1)toleavesthat had beendark-adaptedforatleast30min.Themaximalfluorescence (Fm)wasobtainedbyimposingapulsesaturationof10,000molm
−2s−1for0.6s.
2.7. Fungalcolonization
Approximately0.5gofrootsystemperplantwasdiaphanized in10%KOH(w:v)for12h,followedbythreesuccessivewashes intapwater.Afterwashing,therootsystemwasplacedinHCl2%
(w:w)for5minandthenwasstainedwith0.05%trypanbluein lactoglycerol(w:v)at70◦Cfor30–40min.Thesamplewasthen storedinlactoglycerol(PhillipsandHayman,1970;Brundrettetal., 1996).Rootcolonizationwasquantifiedbyusingthegridlineinter- sectmethod(Giovannettiand Mosse,1980)withastereoscopic microscope.
The mycorrhizal fungidependence was determined accord- ing to Plenchette et al. (1983) with modifications, using the equation:(FD)={(SDMofinoculatedplants−SDMnon-inoculated plants)/SDMof inoculatedplants}×100. Thesameformulawas usedtocalculatetheP.indicadependence.So,wearedenominating fungaldependence(FD)toreferatbothfungi.
2.8. Statisticalanalysis
Thedata weresubjected toanalysisof variance (ANOVA)at an˛ levelof 5%.Themeanswerecompared usingTukey’s test (p≤0.05).Quantitativedataweresubjectedtoaregressionanal- ysis,andtheregressioncoefficientswereanalyzedusingStudent’s t-test.Thedatarelatingtofungalcolonizationwerefirstnormal- izedviaanarcsin√(x/100)transformationforasubsequentANOVA.
TheFD datawere classifiedaccordingtoHabte andManjunath (1991):>75%=excessivedependence;50–75%=highdependence;
25–50%=moderatedependence;<25%=marginaldependence;and noresponsetoinoculation=independence.
3. Results
3.1. Plantgrowthmeasurements
ThepineappleplantletsrespondedtoinoculationwithbothAMF and P. indica. A quadratic regression model successfully fit the responseofthegrowthparameterstoincreasesintheapplication ofPtothesubstrate(Fig.1).
Ingeneral,theinoculatedplantletsgrewbetterthantheirnon- inoculated counterparts at doses of P up to40mgkg−1 for all treatmentswithfungi(Fig.1).However,withincreasingamountsof Pinthesubstrate,thisgrowthwaslesspronounced.At80mgkg−1 P, only the C. etunicatum and Mix treatments showed positive effects onSDMafterinoculationcompared withthecontrol. At 160mgkg−1,theSDMinthecontroltreatmentwassuperiortothe correspondingvaluesintheothertreatments(Fig.1).
AtlowerdosesofP(0–40mgkg−1P),dependingontheinoc- ulatedfungi,pineappleplantletsshowedasignificantincreasein thegrowthparametersdependingonfungalidentity.Atthedoseof 0mgkg−1,therewereincreasesinHof70.8,53.4,49.5,52.4and65%
inplantletsinoculatedwithP.indica,C.etunicatum,R.clarus,D.het- erogamaandMix,respectively,whereasNLincreasedby24.7,41.1, 51.3,31.4and60.2%,respectively,forthesamefungi.Forthissame doseofP,SDMincreasedby2079.6,1310.4,1456.1,2003.8and 1889.2inresponsetoP.indica,C.etunicatum,R.clarus,D.heterogama andMix,respectively.
At40mgkg−1,thisbenefitwaslower,butincreasesof25.4,27.9, 18.5,1.1and29.4%inHandof10.2,24.9,24.1,4.9and31.5%inNL wereobservedforP.indica,C.etunicatum,R.clarus,D.heterogama andMix,respectively.Further,theSDMincreasedby27.1,43.2,10.7 and45.4%forP.indica,C.etunicatum,R.clarusandMix,respectively.
Atthe40mgkg−1dose,theplantletsinoculatedwithD.heterogama showedadecreaseof17.71%inSDM(Fig.1).Ingeneral,thebest resultsforgrowthparameterswereobservedwhenplants were treatedwiththemixedfungalinoculum,C.etunicatumorR.clarus.
Theplantletsthatreceived80mgkg−1Pandwereinoculated withR.clarusorP.indicashowed19.53%and13.99%decreasesin SDM,respectively.Atthesamedose, theC.etunicatumandMix treatmentsforthesameparametersproducedincreasesinSDMof 4.50%and13.48%,respectively(Fig.1).
3.2. Nutritionalcontentofplants
Thefungal inoculation(AMFand/or P.indica)wasbeneficial (p≤0.05)forthenutritionalstatusofthepineappleplantlets.The increasedPinthesubstrateinfluencedthecontent(mgplant−1) ofPandoftheothermacronutrients,N,K,CaandMg(Fig.2).The levelsofthesenutrientsincreasedwiththeapplicationofhigher dosesofPforalltreatments.Atthelowestdoses(0–40mgkg−1), thetreatmentswithfungishowedhighervaluesthanthosefound inthecontrolplants.AtthehigherdosesofP,increasescompared tothecontrolswereobservedinthecurvesforonlyafewfungal treatments(Fig.2).
GreatereffectsoffungalinoculationonPuptakebyplantswere observedatlowerdosesofP,andthemagnitudeoftheseeffects variedinrelationtothecontroldependingontheinoculatedfun- gus.Atthedoseof 20mgkg−1,the plantletsinoculated withP.
indicashowedanincreaseofapproximately260%overthecontrol, whereasC.etunicatum,R.clarus,D.heterogamaandMixtreatments presentedincreasesof1125,1621,845and2054%,respectively,in
Fig.1.Numberofleaves(NL),plantheight(H)andshootdrymatter(SDM)ofpineappleplantletsmicropropagatedandinoculatedwithC.etunicatum,D.heterogama,R.
clarus,P.indica,Mixorcontrol.Measurementswereobtained210daysafterinoculationinthegreenhousewithdifferentPlevelsinthesoil.◦,*and**,significantat10,5 and1%probability,respectively.
thePcontentperplant.TheincreasedPuptakewasconsiderably lesspronouncedatthehigherPdoseof40mgkg−1.Thesevalues were−2,192,194,4and228%forP.indica,C.etunicatum,R.clarus, D.heterogamaandMix,respectively.Atdosesabove80mgkg−1, onlythefungiC.etunicatum,R.clarus,andMixwereeffectivefor increasingthecontentofP.Atthisdose(80mgkg−1),theC.etuni- catum,R.clarus,andMixtreatmentsproducedgainsof114,80and 139%,respectively,relativetothecontrol(Fig.2).
TheeffectsofthetreatmentsonNcontentweresimilartotheir effectsonPuptake.Atthedoseof0mgkg−1,increasesinNcontent of110,58,84,126and140%wereobservedforthetreatmentswith
P.indica,C.etunicatum,R.clarus,D.heterogamaandMix,respec- tively.ThesevalueswerealsolowerwithincreasingdosesofP, showinggainsinNcontentof13,19,0.8,−0.88and36%,respec- tively,forthesametreatmentsatthedoseof40mgkg−1(Fig.2).
At80mgkg−1,onlytheC.etunicatumandMixtreatmentsshowed significantgainsintheNcontentperplant,namely7.7%forC.etuni- catumand36.6%forMix.Fortheothertreatmentsatthe80mgkg−1 doseand foralltreatments atgreater doses,thecontrol plants showedahighermeanNcontent.
ThelevelsofKandMgwerealsoinfluencedbyfungalinocula- tionandwerehigheratlowerdosesofP.WhenPwasappliedat
Fig.2.Content(mgplant−1)ofP,N,K,MgandCainmicropropagatedpineappleplantletsinoculatedwithC.etunicatum,D.heterogama,R.clarus,P.indica,Mixorcontrol.
Measurementswereobtained210daysafterinoculationinthegreenhousewithdifferentPlevelsinthesoil.◦,*and**,significantat10,5and1%probability,respectively.
20mgkg−1,theplantletsinoculatedwithP.indica,C.etunicatum,R.
clarus,D.heterogamaandMixshowedincreasesof105,161,138,85 and181%inKcontentandof157,211,214,315and374%inMgcon- tent,respectively.At80mgkg−1,mostoftheinoculatedplantlets stillshowedrelativeincreasesintheabsorptionofKof8,36,10, and29%forP.indica,C.etunicatum,R.clarus,andMix,respectively.
OnlytheplantletsinoculatedwithC.etunicatum,D.heterogamaand MixshowedahigherMgcontentthanthecontrols,withgainsof 9,21and38%,respectively,whenPwasappliedat80mgkg−1soil (Fig.2).
TheCacontentwasalsoaffectedbytheinoculationofpineapple plantletswiththesefungi.TheabsorptionofCaincreasedmainly underexposuretolowerdosesofP,reaching91%(P.indica),126%(C.
etunicatum),113%(R.clarus),133%(D.heterogama)and253%(Mix) ofthecontrollevelatadoseof20mgkg−1.ThishighCacontent comparedwiththecontrolalsodecreasedwithincreasingPdoses.
ForCa,thestrongestpositiveresponsesat80mgkg−1werethose forC.etunicatumandMix(Fig.2).
3.3. Measurementsofphotosyntheticparameters
P.indicaandAMFpositivelyinfluencedthephotosyntheticeffi- ciencyoftheplants,especiallyatlowdosesofP(P≤40mgkg−1) (Fig. 3).The Fv/Fm parameter, which indicatestheefficiency at
whichlightenergycapturedinPSIIistransferredtootherdevel- opingphotochemicalreactions,waslowerinthecontrolsthanin theothertreatmentsuptoadoseof40mgkg−1(oruptoadose of320mgkg−1inthecaseoftheP.indicaandMixtreatments).At 80and160mgkg−1,nodifferencesinFv/Fmwerefoundamongthe treatments.Fortheparametersmeasuringtheamountofenergy capturedbyPSIIthatwasdissipatedasheat(qNandNPQ),the controlsweresuperiortomosttreatmentsatvariousdosesofP.
TheMixtreatmentshowedthelowestqNandNPQatvirtuallyallP levels,followedbytheremainingAMF,C.etunicatum,R.clarusand D.heterogama,whichbehavedsimilarly.ThefungusP.indicawas lessefficientthantheAMFinreducingqNandNPQbutwasmore efficientthanthecontrolatdosesof40and80mgkg−1(Fig.3).
3.4. Fungalcolonization
Thefungal colonizationwassuccessful bothfor plants inoc- ulated with AMF and for those inoculated with P. indica, with structurescharacteristicofintraradicularcolonizationobservedin treatedplantsandnocolonizationinthecontrolplants(Fig.4).
Withinthegroupsoftreatedplantsthatreceivedeachindividual AMF,therewasnodifference(p≥0.05)inthepercentageoffun- galcolonization,evenwhenhigherdosesofPwereappliedtothe soil.WhennoPwasadded,MixshowedalowerpercentageofAMF
Fig.3.Maximumphotochemicalefficiency(Fv/Fm)andquenching(qN)ornon-photochemicaldissipation(NPQ)inmicropropagatedpineappleplantletsinoculatedwithC.
etunicatum,D.heterogama,R.clarus,P.indica,Mixorcontrol(notinoculated).Measurementswereobtainedafter210daysofgrowthinthegreenhousewithdifferentPlevels inthesoil.MeansfollowedbythesameletterwithinthesamedoseofPdonotdiffer(Tukey’stest,5%probability).
Table1
PercentageofcolonizationbyP.indicaandmycorrhizalfungiinmicropropagation-derivedpineappleplantletsunderdifferentphosphorus(P)levelsafter210daysof acclimatizationinthegreenhouse.
P(mgkg−1) P.indica R.clarus C.etunicatum D.heterogama Mix
0 20.94±9.54 bA 67.40±10.41 aA 37.64±27.10 abA 57.75±30.66 abA 59.50±11.39 AB
20 22.78±10.12 cA 72.88±7.03 aA 26.11±22.31 cA 45.49±19.06 bcA 67.82±7.58 abAB
40 28.11±6.32 bA 69.41±7.89 aA 46.95±20.54 abA 42.72±27.27 abA 76.50±15.59 aAB
80 27.31±5.81 bA 74.35±3.58 aA 69.08±15.79 aA 37.45±25.82 abA 74.19±9.01 aAB
160 21.13±5.36 dA 71.07±5.76 abA 46.53±13.24 bcA 39.67±23.02 cdA 75.50±3.70 aAB
320 18.71±6.79 bA 69.95±7.43 abA 41.49±31.66 abA 40.56±22.38 bA 81.50±6.56 aA
Meansfollowedbythesamelowercaseletterinthesamerowandmeansfollowedbythesamecapitalletter,inthesamecolumn,donotdifferbyTukeytestat5%probability.
colonizationbutdidnotdifferfromtheotherfungaltreatments underthesameconditionsofPfertilization(Table1).FortheAMF treatmentswiththesamedoseofP,thetreatmentsinoculatedwith MixorR.clarushadthehighestaveragepercentageofmycorrhizal colonizationatthehigherdosesofP(Table1).Furthermore,the
percentageofcolonizationwithP.indicadidnotvarywithincreas- ingdosesofP,andremainedlowerthanthatforAMF-inoculated plants(Table1).
Fig.4. TypicalstructuresobservedinassociationwitharbuscularmycorrhizalfungiandPiriformosporaindica.(A)Controlwithoutfungalcolonization;(B,DandF)colonization witharbuscularmycorrhizalfungi,withthepresenceofarbuscules,vesiclesandhyphae;(C)colonizationwithP.indicaintherootcortex;and(E)colonizationbyP.indica intheroothairs,withhyphaeandchlamydospores.Theassessmentwasperformed210daysafterinoculationinagreenhouseinthepresenceofvariousPlevelsinthesoil.
3.5. Fungaldependence
Thefungaldependenceofthepineappleplantletswasexcessive at0mgkg−1andwasmoderatetohighatdosesof20,40mgkg−1 P in the soil for all fungal treatments (Fig. 5). At 80, 160 and 320mgkg−1Pinthesoil,theplantsdidnotdependonfungalcol- onizationforgrowthanddevelopmentintermsoftheresponseof shootbiomass.
4. Discussion
StudiesontheeffectofAMFontissueculture-derivedpineapple plantletsarescarce.However,paststudiesonthistopichaveused variousAMFspecies,includingClaroideoglomusclaroideum(=Glo- musclaroideum),Rhizophagusfasciculatus(=Glomusfasciculatum) (Gutiérrez-Olivaetal.,2009)andFunneliformismosseae(=Glomus
mosseae)(Rodríguez-Romeroetal.,2011),whichwerenotusedin thecurrentstudy.
Ingeneral,plantscolonizedbyAMFandP.indicashowedbetter growthandincreasedabsorptionofnutrients,especiallyifallfungi wereinoculatedtogether(Mix)andatlowerdosesofP.Positive responsestocolonizationbyAMFhavealreadybeenreportedin pineapple(Gutiérrez-Olivaetal.,2009;Rodríguez-Romeroetal., 2011).Note,however,thatthisstudyisthefirstreportevaluating thecolonizationofP.indicaanditseffectsonpineappleplantlets andshowingroothaircolonization(Fig.4)asnotedbyWalleretal.
(2005).
Strongresponsesinthegrowthanddevelopmentofplantsinoc- ulatedwithAMFhavebeenwelldocumentedforseveralspeciesof plants,e.g.,maize(ZeamaysL.)(Cozzolinoetal.,2013),oregano(Ori- ganumonites),mint(Mentharequienii)(Karagiannidisetal.,2011), papaya(Caricapapaya)andpineapple(Rodríguez-Romeroetal., 2011),includinginmicropropagatedplantssuchasAcoruscalamus
Fig.5. FungaldependenceinpineappleplantletsinoculatedwithC.etunicatum,D.
heterogama,R.clarus,P.indicaandMix.Measurementswereobtained210daysafter inoculationinthegreenhousewithdifferentPlevels.>75%=excessivedependence;
50–75%=high dependence; 25–50%=moderate dependence; <25%=marginal dependence;noresponsetoinoculation=independence.
L.(Yadavetal.,2011),GlycyrrhizaglabraL.(Yadavetal.,2013a)and GloriosasuperbaL.(Yadavetal.,2013b).P.indicainoculationhas beenreportedtobenefitbarley(Hordeumvulgare)(Walleretal., 2005), cabbage(Brassicarapa)(Sunet al.,2010)and beet(Beta vulgaris)(Varmaetal.,2012),particularlyifthesoilPlevelsare low.
Althoughthepositiveresponsesofthegrowthparameterswere stronglyrelatedtothecontrolsatsmallerdosesofP,thegrowth ofinoculatedplantletsatthedoseof80mgkg−1wassuperiorto theirgrowthatthedoseof40mgkg−1.Thisresultindicatesthat bothofthesedoses,whichareabovethatrecommended(approx- imately36mgkg−1)forcultureunderconditionsoflowsoilPin thefield(Souzaetal.,1999),aregoodoptionsfortheproduction ofplantletsinoculatedwiththesefungi.TheincreasesinNL,Hand SDMresultingfromassociationswithAMFand/orP.indica,espe- ciallyatrelativelylowdosesofP,arecloselylinkedwiththefungal colonizationandmorphologyoftheroots.Thepineapplehasashort andcompactrootsystemnearthestem,withmanythickrootsand limitedbranching(d’EeckenbruggeandLeal,2003).Thischaracter- isticindicatesthatfungalcolonizationplaysanimportantrolein theuptakeofwaterandnutrients.Colonizedrootscanexplorea greatervolumeofsoil(SmithandRead,1997)andshowmorethan 100timesthecoverageareaoftherootsofanon-colonizedplant (Sieverding,1991).Moreover,thesmaller-diameterhyphalfungi allowaccesstothesoilmicropores(Grantetal.,2005),andthe broadgrowthofthecolonizedrootsresultsinawell-developed networkofseveralcentimetersinextent,whichcanreachareas wherePisnotdepleted(Smithetal.,2011).Incontrast,plantsnot colonizedwiththesesymbioticfungicannotexploretheseareas.
NutrientabsorptionwasconsiderablyinfluencedbyAMFand P.indica,especiallyuptoaPdoseof40mgkg−1(Fig.2).Thefungi increasedthecontentsofP,N,K,CaandMgcomparedwiththenon- inoculatedcontrols.However,theseedlingsinoculatedwithMix andC.etunicatum,followedbyR.clarus,presentedbetterabsorp- tionformanyofthesenutrients,evenataPdoseof80mgkg−1. Thesebenefits observedin colonized plantlets have oftenbeen describedfortheuptakeofP(Kahiluotoetal.,2000;Yadavetal., 2010;Rodríguez-Romeroetal.,2011;Tongetal.,2013;Xieetal., 2014),ofN(Azcónetal.,2008;Oelmülleretal.,2009;Rodríguez- Romeroetal.,2011;Tongetal.,2013),ofK(Rodríguez-Romero etal.,2011),ofS(Oelmülleretal.,2009),ofCuandZn(Kahiluoto
etal.,2000;Karagiannidisetal.,2011;Tongetal.,2013),andofCa, FeandMn(Karagiannidisetal.,2011).Thesefindingsincludethe resultsofstudiesofpineappleplantlets(Rodríguez-Romeroetal., 2011)andmayvarybasedonthespeciesofplant-colonizingAMF incombinationwiththeconcentrationofPinthesoil(Gutiérrez- Olivaetal.,2009).Inaddition,differencesinthesebenefitsmay dependontheplantvarietystudied(Karagiannidisetal.,2011)or thehosttissueanalyzed(Tongetal.,2013).
For the pineapple plantlets that received more than 160mgPkg−1, the controls presented better growth parame- ters and nutrient contents per plant, indicating that the fungi tend tohave deleteriouseffects onthese characteristicsat this highlevelofPinthesoil.TheincreasingavailabilityofPinsoil, incombinationwiththehighrateofcolonization,canreducethe growthoftheplantduetothehighercostofcarbonsynthesizedby theplanttosupplythefungianddecreasedbenefitsfornutrient absorptionbecausetheiravailability isgreater(Kahiluotoetal., 2000).
AtlowerdosesofP,pineappleplantletsinoculatedwithAMF showedhigher efficiencyof PSIIin capturingenergy, which is senttootherphotosyntheticreactions.However,thecontrolslost moreenergyasheat,showinghigherqNandNPQvaluesthanthe inoculatedplants,particularlyatdosesof20,40and80mgkg−1 (Fig.3).Asaresult,thephotosyntheticrateofinoculatedplantlets washigherthanthatofthecontrols.Thisbehaviorwasalsofound intomatoplantsinoculatedwithF.mosseae(Boldtetal.,2011).In barleyseedlings,ahigherphotosyntheticratewasobservedunder lowlightconditionswhenplantswereinoculatedwithP.indica (Achatzetal.,2010).Investmentsofplantresourcesin thesyn- thesisofphotoassimilatestobetransferredtofungisuchasAMF andP.indicaareoffset,inpart,bythehigherphotosyntheticrates (Balotaetal.,2011;Smithetal.,2011)and/orbysavingsresulting fromthereductioninrootproduction (Smithetal.,2011).Fac- torsthat enhancephotosynthesisbymycorrhizalplants include increasesinthetransportofinorganicelementsfromthesoilto theplant(Soleimanzadeh,2010),inchlorophyllcontent(Estrada- LunaandDavies,2003;Yadavetal.,2013a,b),andintheratesof photosyntheticstorageandexport(Augé,2001).
Thesecharacteristicsofgrowthpromotion,improvednutrient contentandenhancedphotosyntheticefficiencyhavemotivated increasingresearchactivityontheinoculationofplantlets with AMF(Estrada-LunaandDavies,2003;Kapooretal.,2008;Singh etal.,2012;Yadavetal.,2013a,b)andwithP.indica(Sahayand Varma,1999)toaidin theacclimatizationstage.Forpineapple, theinoculated plantletsweremorevigorous andshowedbetter developmentduringthisstage.
Ingeneral,increasesintheavailabilityofsoilPtendtodecrease mycorrhizalcolonization(Kahiluotoetal.,2000;Soleimanzadeh, 2010;Balotaetal.,2011;Smithetal.,2011;Shuklaetal.,2012).This decreaseinrootcolonizationmayberelatedtotheincreasedcon- centrationofPpergramofdrymatterintheplant(Liuetal.,2000).
However,here,inpineappleplantletsexposedtothesametreat- ments,thepercentagesoffungalcolonizationremainedhigh,even athighdosesofP(Table1).Similarresultswerenotedinthestud- iesofXavierandGermida(1997),Cozzolinoetal.(2013)andTong etal.(2013),andthecolonizationpercentagesweremuchhigher thanthatfoundbyRodríguez-Romeroetal.(2011)inpineapple.
Thismaybeduetothedilutioneffectofthenutrientsinplanttis- sue,inwhichincreasedabsorptionproducesahigheramountof biomassratherthanagreaterconcentrationofnutrients,increasing theexudationofcarbohydratesandthusstimulatingmycorrhizal colonization(Liuetal.,2000;Azcónetal.,2003).
Foralmostallevaluatedparameters,thetreatmentcontaining amixtureofallfungiwasmoreeffectiveinpromotingthegrowth oftheplantlets,whichhasbeenobservedinthestudiesofYadav etal.(2011)andYadavetal.(2013a,b).Thecomplementaryeffect
ofdifferentspeciesallocatedindifferentorders(Glomeralesand Diversisporales—Redeckeretal.,2013)hasbeenshowntohavea positiverelationshipwithbiomassproductioninPlantagolanceo- lata(MaheraliandKlironomos,2007).BecausedifferentAMFmay transmitdifferentamountsofPtotheplant,theireffectsonplant growthmaybedifferent(Shuklaetal.,2012).However,because theplantscanbecolonizedsimultaneouslybyfungifromdiffer- enttaxa(Smithetal.,2011),thebeneficialcharacteristicsofeach funguscouldpotentiallybeexploitedbytheplant.Thispatternis observedunderfieldconditions,inwhichthesumofallthebene- fitsofcolonizationbydifferentfungicontributestothesuccessof mycorrhizaeinfacilitatinggrowthandreproduction(Smithetal., 2011).
ThedecreaseobservedinfungaldependencewithincreasingP levelssuggeststhattheeffectoffungalinoculationismorepro- nouncedatlowerdosesofP(Kahiluotoetal.,2000;Balotaetal., 2011).However,evenwithnodependenceoftheplantletsatthe 80mgkg−1doseandmoderatedependenceatthe40mgkg−1dose forC.etunicatumandMix,thehighrateofcolonizationunderthese conditionsishighlysignificantforpineapplecultivationbecause therecommendedsoilPlevelforthiscultureinsoilswithalowP levelisapproximately35mgkg−1 (Souzaetal.,1999).Thiseffect maybemoresignificantunderfieldconditions,wherethesoilisless homogeneousandmycorrhizalassociationcanimprovenutrient absorption.
Inthefield,pineappleis considerednon-responsivetophos- phatefertilizationintermsoffruitproduction(Spironelloetal., 2004; Guarc¸oni M. and Ventura, 2011; Caetano et al., 2013), withmycorrhizalcolonizationconsideredoneofthemainfactors responsibleforthesupplyofPtoplants(Guarc¸oniM.andVentura, 2011).Therefore,inviewoftheimportanceofPnutritioninthe earlystagesofcropdevelopment,theroleofmycorrhizalassocia- tionattheseedlingstageremainstobeestablishedinthecontextof theexplorationoftheoverallproductivepotentialofplants(Grant etal.,2005).
For pineapple plantlets, inoculation withAMF and P. indica confersmanybenefitsanddoesnotinterferewiththeprocessof producingpropagativematerialovertime.Inaddition,itdoesnot addalabor-intensivecomponenttotheproductionchainbecause theinoculationmethodissimpleandplantletsmustremaininthe greenhouseforapproximatelysixmonths(Farahani,2013).
5. Conclusions
MicropropagatedpineappleplantletscolonizedbyAMFandP.
indicashowenhancedgrowth,nutrientuptakeandphotosynthetic efficiency,particularlyatlow soilPlevels(≤40mgkg−1).AtaP levelequivalenttotherecommendedfertilizationrate(35mgkg−1 inthefield),inoculatedplantletsarebetternourishedandvigor- ous,especiallywheninoculatedwithC.etunicatumorMix.Further fieldevaluationsareneededtodeterminewhetherinoculationdur- ingtheseedlingstageisreflectedinproductivityorcanserveasa meanstoreducechemicalfertilization.Suchoutcomeswouldresult notonlyintheoptimaluseoffertilizerbutalsoineconomicbenefits fortheproducers.
Acknowledgments
TheauthorsthanktheConselhoNacionaldeDesenvolvimento CientíficoeTecnológico(CNPq),Coordenac¸ãodeAperfeic¸oamento de Pessoal de Nível Superior (CAPES), Fundac¸ão de Amparo à PesquisadoEstadodeMinasGerais(FAPEMIG)andFundac¸ãode AmparoàPesquisaeInovac¸ãodoEstadodeSantaCatarina(FAPESC) forfinancialsupport.TheauthorsalsothankUniversidadeRegional de Blumenau-Santa Catarinafor providing theinoculum main-
tainedattheInternationalCultureCollectionofGlomeromycota (CICG).
AppendixA. Supplementarydata
Supplementarydataassociatedwiththisarticlecanbefound, intheonlineversion,athttp://dx.doi.org/10.1016/j.scienta.2015.
09.032.
References
Achatz,B.,Rüden,S.,Andrade,D.,Neumann,E.,Pons-Kühnemann,J.,Kogel,K.H., Franken,P.,Waller,F.,2010.RootcolonizationbyPiriformosporaindica enhancesgrainyieldinbarleyunderdiversenutrientregimesbyaccelerating plantdevelopment.PlantSoil333,59–70.
Augé,R.M.,2001.Waterrelations,droughtandvesicular-arbuscularmycorrhizal symbiosis.Mycorrhiza11,3–42.
Azcón,R.,Ambrosano,E.,Charest,C.,2003.Nutrientacquisitioninmycorrhizal lettuceplantsunderdifferentphosphorusandnitrogenconcentration.Plant Sci.165,1137–1145.
Azcón,R.,Rodríguez,R.,Amora-Lazcano,E.,Ambrosano,E.,2008.Uptakeand metabolismofnitrateinmycorrhizalplantsasaffectedbywateravailability andNconcentrationinsoil.Eur.J.SoilSci.59,131–138.
Azcón-Aguilar,C.,Cantos,M.,Troncoso,A.,Barea,J.M.,1997.Beneficialeffect arbuscularmycorrhizasonacclimatizationofmicropropagatedcassava plantlets.Sci.Hortic.72,63–71.
Balota,E.L.,Machineski,O.,Truber,P.V.,Scherer,A.,Souza,F.S.,2011.Physicnut plantspresenthighmycorrhizaldependencyunderconditionsoflow phosphateavailability.Braz.J.PlantPhysiol.23,33–44.
Be,L.V.,Debergh,P.C.,2006.Potentiallow-costmicropropagationofpineapple (Ananascomosus).S.Afr.J.Bot.72,191–194.
Boldt,K.,Pörs,Y.,Haupt,B.,Bitterlich,M.,Kühn,C.,Grimm,B.,Franken,P.,2011.
Photochemicalprocesses,carbonassimilationandRNAaccumulationof sucrosetransportergenesintomatoarbuscularmycorrhiza.J.PlantPhysiol.
168,1256–1263.
Braga,J.M.,Defelipo,B.V.,1974.Determinac¸ãoespectofotométricadefósforoem extratosdesoloseplanta.Rev.Ceres21,73–85.
Brundrett,M.,Bougher,N.,Dell,B.,Grove,T.,Malajczuk,N.,1996.Workingwith MycorrhizasinForestryandAgriculture.ACIARMonograph.
Caetano,L.C.S.,Ventura,J.A.,Costa,A.F.S.,Guarc¸oni,R.C.,2013.Efeitodaadubac¸ão comnitrogêniofósforoepotássionodesenvolvimentonaproduc¸ãoena qualidadedefrutosdoabacaxi‘Vitória’.Rev.Bras.Frutic.35,883–890.
Chandra,S.,Bandopadhyay,R.,Kumar,V.,Chandra,R.,2010.Acclimatizationof tissueculturedplantlets:fromlaboratorytoland.Biotechnol.Lett.32, 1199–1205.
Clark,R.B.,1975.Characterizationofphosphatasesofintactmaizeroots.J.Agric.
FoodChem.23,458–460.
Cozzolino,V.,DiMeo,V.,Piccolo,A.,2013.Impactofarbuscularmycorrhizalfungi applicationsonmaizeproductionandsoilphosphorusavailability.J.Geochem.
Explor.129,40–44.
d’Eeckenbrugge,G.C.,Leal,F.,2003.Morphology,anatomyandtaxonomy.In:
Bartholomew,D.P.,Paull,R.E.,Rohrbach,K.G.(Eds.),ThePineapple:Botany, ProductionandUses.CABIPublishing,Wallingford,U.K,pp.13–32.
EmpresaBrasileiradePesquisaAgropecuária—EMBRAPA,1999.Manualdeanálises químicasdesolos,plantasefertilizantes.CentroNacionaldePesquisadeSolos, RiodeJaneiro.
Escalona,M.,Lorenzo,J.C.,González,B.,Daquinta,M.,González,J.L.,Desjardins,Y., Borroto,C.G.,1999.Pineapple(AnanascomosusL.Merr.)micropropagationin temporaryimmersionsystems.PlantCellRep.18,743–748.
Estrada-Luna,A.A.,Davies,J.F.T.,2003.Arbuscularmycorrhizalfungiinfluence waterrelations,gasexchange,abscisicacidandgrowthofmicropropagated chileanchopepper(Capsicumannuum)plantletsduringacclimatizationand post-acclimatization.J.PlantPhysiol.160,1073–1083.
FAOSTATAcessoemjulhode,2014.Disponívelem:<http://faostat.fao.org/site/
339/default.aspx/>.
Farahani,F.,2013.Growth,floweringandfruitinginvitropineapple(Ananas comosusL.)ingreenhouseconditions.Afr.J.Biotechnol.12(15),1774–1781.
Giovannetti,M.,Mosse,B.,1980.Anevaluationoftechniquesformeasuring vesiculararbuscularmycorrhizalinfectioninroots.NewPhytol.84,489–500.
González-Olmedo,J.L.,Fundora,Z.,Molina,L.A.,Abdulnour,J.,Desjardins,Y., Escalona,A.,2005.Newcontributionstopropagationofpineapple(Ananas comosusL.Merr.)intemporaryimmersionbioreactors.InVitroCell.Dev.Biol.
Plant41(1),87–90.
Grant,C.,Bittman,S.,Montreal,M.,Plenchette,C.,Morel,C.,2005.Soilandfertilizer phosphorus:effectsonplantPsupplyandmycorrhizaldevelopment.Can.J.
PlantSci.85,3–14.
Guarc¸oniM,A.,Ventura,J.A.,2011.Adubac¸ãoN-P-Keodesenvolvimento, ProdutividadeequalidadedosfrutosdoAbacaxi‘GOLD’(MD-2).Rev.Bras.
Cienc.Solo35,1367–1376.
Gutiérrez-Oliva,V.F.,Abud-Archila,M.,Flores-Pérez,A.,Alvarez-Solis,J.D., Gutiérrez-Miceli,F.A.,2009.Influenciadeloshongosmicorrizicosarbusculares sobreelcrecimientodevitroplantulasdepi ˜na(Ananascomosus(L.)Merr.)Con diferentesnivelesdefosforo.GayanaBot.66(1),1–9.