• Tidak ada hasil yang ditemukan

The interaction between arbuscular mycorrhizal fungi and j.scienta.2015.09.032

N/A
N/A
kurniawahyu

Academic year: 2024

Membagikan "The interaction between arbuscular mycorrhizal fungi and j.scienta.2015.09.032"

Copied!
10
0
0

Teks penuh

(1)

Contents lists available atScienceDirect

Scientia Horticulturae

j o u r n a l h o m e p a g e :w w w . e l s e v i e r . c o m / l o c a t e / s c i h o r t i

The interaction between arbuscular mycorrhizal fungi and

Piriformospora indica improves the growth and nutrient uptake in micropropagation-derived pineapple plantlets

B.C. Moreira

a

, F.C. Mendes

a

, I.R. Mendes

a

, T.A. Paula

a

, P. Prates Junior

a

, L.C.C. Salomão

b

, S.L. Stürmer

c

, W.C. Otoni

d

, A. Guarc¸ oni M.

e

, M.C.M. Kasuya

a,∗

aLaboratóriodeAssociac¸õesMicorrízicas/BIOAGRO,DepartamentodeMicrobiologia,UniversidadeFederaldeVic¸osa,36570-900,Vic¸osa,MG,Brazil

bDepartamentodeFitotecnia,UniversidadeFederaldeVic¸osa,36570-900,Vic¸osa,MG,Brazil

cDepartamentodeCiênciasNaturais,Fundac¸ãoUniversidadeRegionaldeBlumenau,89012-900Blumenau,SC,Brazil

dLaboratóriodeCulturadeTecidos(LCTII)/BIOAGRO,DepartamentodeBiologiaVegetal,UniversidadeFederaldeVic¸osa,36570-900,Vic¸osa,MG,Brazil

eInstitutoCapixabadePesquisa,AssistênciaTécnicaeExtensãoRural,29375-000,VendaNovadoImigrante,ES,Brazil

a r t i c l e i n f o

Articlehistory:

Received14April2015 Receivedinrevisedform 22September2015 Accepted23September2015 Availableonlinexxx

Keywords:

Ananascomosus AMF

P.indica Phosphoruslevels

a b s t r a c t

Arbuscularmycorrhizalfungi(AMF)andPiriformosporaindicaarewellknownforpromotinggrowth, development,andnutrientuptakeandforimprovingplantphotosynthesis.Thesefungirepresentpromis- ingtoolssupportingmicropropagatedplantsduringtheacclimatizationstage,andtheirusecanreduce theapplicationofphosphatefertilizers,providingeconomicandenvironmentalbenefits.Therefore,this studyaimedtoevaluatethebenefitsofinoculationwithAMFandP.indicaforthegrowthofplantletsof theImperialcultivarofpineappleinoculatedduringtheacclimatizationstageandgrownwithdifferent levelsofphosphorus(P).TheexperimentconsistedofsixPlevels(0,20,40,80,160and320mgkg1soil) withinoculationofClaroideoglomusetunicatum,Dentiscutataheterogama,Rhizophagusclarus,P.indica,a mixtureofallfungi(Mix),orcontrol(noinoculation).Theparametersvegetativegrowth,thenutrient contentsintheplants,photosyntheticefficiency,andthecomponentsofdependenceandcolonization byfungiwereassessed.Thefungalinoculationwaseffectiveforplantletgrowth,especiallyuptoaPdose of40mgkg1,increasingbothplantbiomassandtheabsorptionofallevaluatednutrients.WithPat 80mgkg1,onlythetreatmentswithC.etunicatumandMixproducedplantletsofbetterqualitythanthe non-inoculatedcontrol.ThecolonizationbyAMFandP.indicawasnotaffectedbytheadditionofPtothe soil,althoughfungaldependencedecreasedundertheseconditionsandcouldbeconsideredmoderate evenat40mgkg1forplantsinoculatedwithC.etunicatum,R.clarus,P.indicaorMix.Theinoculation ofpineappleplantletsisapromisingmethodthatcanbeemployedtoproducehigh-qualitypropagative materialforthemarket.

©2015ElsevierB.V.Allrightsreserved.

1. Introduction

Pineapple(Ananascomosus(L.)Merrill;Bromeliaceae)isnative to the southern and southeastern regions of Brazil, Argentina and Uruguay(Melo etal., 2006).It is a cropof great economic importancein manytropical countries(Beand Debergh, 2006), andapproximately23.34milliontonsofthisfruitwereproduced worldwidein2012(FAOSTAT,2014).Brazilianpineappleproduc-

Correspondingauthorat:LaboratóriodeAssociac¸õesMicorrízicas/BIOAGRO, DepartamentodeMicrobiologia,UniversidadeFederaldeVic¸osa,CampusUniver- sitário,AvenidaPeterHenryRolfss/n,UniversidadeFederaldeVic¸osa,36570-900, Vic¸osa,MG,Brazil.Fax:+553138992573.

E-mailaddresses:[email protected],[email protected] (M.C.M.Kasuya).

tioncorrespondsto10.6%oftotalworldwideproduction,occupying the equivalentof 6% of thetotal areaof pineapple plantations worldwide. Brazil ranks third worldwide in the production of pineapplefruit,behindThailandandCostaRica(FAOSTAT,2014).

Pineapple is vegetatively propagated,and thequality of the propagationmaterialsignificantinfluencesplanthealth,develop- mentandyield(BeandDebergh,2006;Kapooretal.,2008;Souza et al., 2013).A wide variety of plant material can beused for propagationofpineapple,includingfruitcrown,lateralbranches (suckersandslips),andseedlingsgrownfromstemsectionsorvia micropropagation(Hepton,2003).Researchhasbeenconducted to enhance themultiplication of pineappleby means of tissue culturetechniques(Smithetal.,2003;Souzaetal.,2013).Pineap- ple explantscan be multiplied in vitro onsolid and liquid MS medium(MurashigeandSkoog,1962)(BeandDebergh,2006;Silva http://dx.doi.org/10.1016/j.scienta.2015.09.032

0304-4238/©2015ElsevierB.V.Allrightsreserved.

(2)

etal.,2007).Thismediumcanbesupplementedwithsucroseand cytokininsorauxins(dependingonthepurpose)asa meansto initiateculture,proliferationorgrowthoftheshoots,orevenas a meansof rooting(Smithet al., 2003;Be and Debergh, 2006;

Silvaetal.,2007).Toachievelarge-scaleproductionofpineapple plantletsatareducedcost,Escalonaetal.(1999)proposedmicro- propagationusingtemporaryimmersionsystemsinabioreactor, andthisapproachhasbeenwidelyusedsince.

Micropropagatedplantsare moreuniformand showgreater synchronyoffloweringandfruitinginthefield(Singhetal.,2012).

Micropropagationalsofacilitatestheintroductionofplantletsin newareas(Escalonaetal.,1999),theproductionofhigh-quality materialinanyseason(Chandraetal.,2010),large-scaleproduction andpathogen-freecrops(Routetal.,2006;Souzaetal.,2013).This techniqueisusedtoobtainalargenumberofplantsthataregenet- icallyidenticaltotheparentplant.Forpineapple,thistechnique hasseveraladvantagesoverconventionalmethodsofpropagation, includingarapidandefficientincreaseintheproductionofplantsof selectedvarieties(González-Olmedoetal.,2005;Farahani,2013).

Althoughmicropropagationisefficient,ahighmortalityratehas beenobservedduringtheacclimatizationprocessduetophysiolog- icalchangescausedbytheinvitroenvironment,suchaschanges inthefunctionofthestomataandroots,undevelopedcuticles,and photosyntheticinefficiency(Pospíˇsilováetal.,1999;Hazarikaetal., 2002;Hazarika,2006;Xiaoetal.,2011;KumarandRao,2012;Singh etal.,2012).

Ifestablishedduringtheearlystageofacclimatization,anasso- ciationwithbeneficialfungicanreducethestressofacclimatization andpromotethegrowthofmicropropagatedplants(Kapooretal., 2008;Singhetal.,2012;Yadavetal.,2013a,b).Inoculationwith arbuscularmycorrhizalfungi(AMF)(Glomeromycota)andPirifor- mosporaindica(rootendophyticfungus,Basidiomycota)hasproven tobeapromisingalternativefortheproductionofplantletsofsupe- riorquality(SahayandVarma,1999;Kapooretal.,2008;Yadav etal.,2013a,b).Thesefungihavealsobeenreportedtoincrease plants’nutrientuptake(Smithetal.,2010;Varmaetal.,2012),tol- erancetodroughtandsaltstresses(Augé,2001;Varmaetal.,2012), resistancetotheeffectsofheavymetals(Azcón-Aguilaretal.,1997;

Varmaetal.,2012)andphotosyntheticefficiency(Estrada-Lunaand Davies,2003;Achatzetal.,2010;Boldtetal.,2011;Yadavetal., 2013a,b).

Phosphorus (P) fertilization and phytosanitary control play important roles in the production of high-quality pineapple propagules.ThemanagementofPinthesoilisamajorfactorin achievingsustainableagriculturalsystems(Kahiluotoetal.,2000).

PlantsexposedtohighlevelsofPinthesoilshowreducedmycor- rhizalcolonization(Mengeetal.,1978;Kahiluotoetal.,2000;Grant etal.,2005).Thus,itishighlyimportanttoidentifytheamountof PthatwillmaximizetheeffectofbothAMFandP.indicaandallow properuptakeofthisnutrienttoprovideanadequatenutritional statusfortheplant.Likewise,itishighlyimportanttoestablishan associationwiththesefungithatwillenabletheplanttoextract themaximumbenefitfromthesymbiosis.

Theaimofthisstudywastoobtainhigh-qualitypropagation materialbyevaluatingthebenefitsofinoculationwithAMFand/or P.indicaattheacclimatizationstageandbyexaminingtheroles ofthesefactorsinthegrowth,nutrientuptakeandphotosynthetic efficiencyofpineappleplantletsunderdifferentPlevels.

2. Materialsandmethods

2.1. Invitroculture

Micropropagatedplantletsofpineapple,cultivarImperial,were subcultivated in liquid MS (Murashige and Skoog, 1962) cul-

turemediumformultiplication.Themediumwassupplemented with30gL−1sucrose,1.8mgL−1␣-naphthaleneaceticacid(NAA), 2mgL1indole-3-butyricacid(IBA),and2.1mgL1kinetin(KIN) atpH5.5.Theculturesweregrownin250-mLglassjarscontain- ing15mLofculturemediumandsealedwithrigidpolypropylene covers.Cultureswerekeptina growthroomat 26±2Cunder a photoperiodof16hlight/8hdarkand underan irradianceof 36␮molm−2s−1,providedbywhitefluorescentlamps.Subcultures wereperformedevery40d(seeSupplementarymaterial).

2.2. Fungalinoculants

Isolates of AMF Dentiscutata heterogama PNB102A (= Scutel- lospora heterogama), Claroideoglomus etunicatum RJN101A (=

Glomus etunicatum) and Rhizophagus clarus RJN102A (= Glomus clarum)wereobtainedfromtheInternationalCultureCollection ofGlomeromycota(CICG,www.furb.br/cicg)attheUniversidade RegionaldeBlumenau,SantaCatarina,Brazil.Singlecultureswere establishedfollowingtheproceduresadoptedattheCICG.Briefly, sporeswereextractedfromtrapcultures,separatedbymorpho- typesandinoculatedontherootsof15-day-oldSorghumbicolor seedlingsthat hadbeengrown onsterilizedsubstrate.Sorghum seedlingswerethentransplantedtocones(270cm3)inasteril- izedsand:expandedclay:soil (2:2:1v:v:v)mixandgrown for4 monthsundergreenhouseconditions.Afterthatperiod,coneswere checkedforsporulation.Plantswereallowedtodry insitu,and thecontentsofconeswerestoredinziplockplasticbagsat4C for6months.TheinvitrocultureofP.indicawasobtainedfrom themicrobialcollectionoftheLaboratoryofMycorrhizalAssoci- ationsofUniversidadeFederaldeVic¸osa—MinasGeraisand was maintainedandmultipliedinKaefermedium(KM)(HillandKaefer, 2001)andstoredinthedarkat30C(Kumaretal.,2011)for30d.

2.3. Characteristicsandsoilpreparation

Thesubstratewassterilizedinanautoclavefor1hat121C and was composed of a mixture of soil and sand (1:1 v:v) withthefollowingcharacteristics:pH(water)=4.9,P=1.1mgdm−3 (Mehlich 1),K=34mgdm3, Ca=0.2cmolcdm3,Mg and Al=0, sumofexchangeablebases (SB)=0.29cmolcdm−3,organicmat- ter (OM)=1.1dagkg−1 and Premaining=6.6mgL−1. Liming was performed according toSouza et al. (1999), following therec- ommendationsforpineapplecultivationtomeettheCaandMg requirements for 2cmolcdm−3. The substrate was moistened, placedinplasticbagsandallowedtorestfor30datroomtempera- ture.Afterthisperiod,phosphorusfertilizationwasperformedfor eachdoseofP(0,20,40,80,160and320mgkg−1 soil)usingan aqueoussolutionofKH2PO4justbeforetransplantationatthetime ofacclimatization.

2.4. Experimentaldesignandinoculation

Theexperimentwithpineappleplantlets(cultivarImperial)was conductedinagreenhouseandconsistedofsixdosesofP(0,20, 40,80,160and320mgkg1ofsoil)andinoculationwithC.etuni- catum,D.heterogama,R.clarus,P.indica,amixtureofallfungi(Mix) oranon-inoculatedcontrol(Cont).Therewerefourreplicates,and theexperimentswereperformedfollowingacompletelyrandom- izeddesignwitha6×6factorialarrangement(seeSupplementary material).

The50-day-oldplantlets,withanaverageheightof4.4cmand 12–15leaves,weretransplantedintoplasticpotscontaining1kg ofsterilizedsubstrate.Whentheplantletsweretransplanted,the substratewasinoculatedneartheroot,usinganaverageof120 sporesoftheAMFperplantlet.InoculationwithP.indicawasper- formedwithfour1-cmdiscsofKMcontainingfungalstructures

(3)

(hyphaeandchlamydospores).IntheMixtreatment,40sporesof eachAMFandtwo1-cmdiscswithKMcontainingP.indicawere usedforinoculation.Controlplantsreceivednofungalinoculum.

Themoistureofthesubstrateinthepotswascorrectedperiodi- callywithdistilledwater.Clark’snutrientsolution(50mL)without Pwasappliedevery20days(Clark,1975).

2.5. Plantgrowthmeasurementsandshootnutrientanalysis At210daftertransplanting,theplantheight(H),thenumber ofleaves(NL),andtheshootdrymatter(SDM)weredetermined.

The SDMwas determinedafter drying toa constant weightat 70Cinanovenunderforcedventilation.Thismaterialwasthen groundinaWileymillwitha0.420-mmsieveandsubjectedto nitroperchloricdigestion(JohnsonandUlrich,1959)todetermine theconcentrationsofthenutrientsP,K,Ca,andMg.Thesenutri- ents,exceptP,weremeasuredbyopticalemissionspectrometry withinductivelycoupledplasma(ICP-OES)(Optima8300ICP-OES Spectrometer,PerkinElmer).ForNanalysisoftheshoots,themin- eralizationwasperformeddry,bydirectincinerationofthesample inmuffles,anditscontentwasdeterminedbytheKjeldahlmethod (EMBRAPA,1999).ThePcontentoftheshootswasdeterminedcol- orimetricallybythevitaminCmethodasmodifiedbyBragaand Defelipo(1974).

2.6. Photosyntheticparameters

Thevaluesofthephotosyntheticparameterswereassessedwith aPAMfluorometer[JUNIOR-PAMTeachingChlorophyllFluorome- ter(Walz,Mess-undRegeltechnik)].Thefollowingphotosynthetic parameterswereusedforanalysis:maximumphotochemicaleffi- ciency or maximum quantum yield (Fv/Fm) and quenching or non-photochemicaldissipation(qNandNPQ).Thesevalueswere obtainedfromintermediateandfullyexpandedleaves.Themin- imal fluorescence (Fo) was measured after the application of modulatedlight (<0.1␮mol photon m2s1)toleavesthat had beendark-adaptedforatleast30min.Themaximalfluorescence (Fm)wasobtainedbyimposingapulsesaturationof10,000␮molm

2s1for0.6s.

2.7. Fungalcolonization

Approximately0.5gofrootsystemperplantwasdiaphanized in10%KOH(w:v)for12h,followedbythreesuccessivewashes intapwater.Afterwashing,therootsystemwasplacedinHCl2%

(w:w)for5minandthenwasstainedwith0.05%trypanbluein lactoglycerol(w:v)at70Cfor30–40min.Thesamplewasthen storedinlactoglycerol(PhillipsandHayman,1970;Brundrettetal., 1996).Rootcolonizationwasquantifiedbyusingthegridlineinter- sectmethod(Giovannettiand Mosse,1980)withastereoscopic microscope.

The mycorrhizal fungidependence was determined accord- ing to Plenchette et al. (1983) with modifications, using the equation:(FD)={(SDMofinoculatedplants−SDMnon-inoculated plants)/SDMof inoculatedplants}×100. Thesameformulawas usedtocalculatetheP.indicadependence.So,wearedenominating fungaldependence(FD)toreferatbothfungi.

2.8. Statisticalanalysis

Thedata weresubjected toanalysisof variance (ANOVA)at an˛ levelof 5%.Themeanswerecompared usingTukey’s test (p≤0.05).Quantitativedataweresubjectedtoaregressionanal- ysis,andtheregressioncoefficientswereanalyzedusingStudent’s t-test.Thedatarelatingtofungalcolonizationwerefirstnormal- izedviaanarcsin√(x/100)transformationforasubsequentANOVA.

TheFD datawere classifiedaccordingtoHabte andManjunath (1991):>75%=excessivedependence;50–75%=highdependence;

25–50%=moderatedependence;<25%=marginaldependence;and noresponsetoinoculation=independence.

3. Results

3.1. Plantgrowthmeasurements

ThepineappleplantletsrespondedtoinoculationwithbothAMF and P. indica. A quadratic regression model successfully fit the responseofthegrowthparameterstoincreasesintheapplication ofPtothesubstrate(Fig.1).

Ingeneral,theinoculatedplantletsgrewbetterthantheirnon- inoculated counterparts at doses of P up to40mgkg−1 for all treatmentswithfungi(Fig.1).However,withincreasingamountsof Pinthesubstrate,thisgrowthwaslesspronounced.At80mgkg1 P, only the C. etunicatum and Mix treatments showed positive effects onSDMafterinoculationcompared withthecontrol. At 160mgkg1,theSDMinthecontroltreatmentwassuperiortothe correspondingvaluesintheothertreatments(Fig.1).

AtlowerdosesofP(0–40mgkg−1P),dependingontheinoc- ulatedfungi,pineappleplantletsshowedasignificantincreasein thegrowthparametersdependingonfungalidentity.Atthedoseof 0mgkg−1,therewereincreasesinHof70.8,53.4,49.5,52.4and65%

inplantletsinoculatedwithP.indica,C.etunicatum,R.clarus,D.het- erogamaandMix,respectively,whereasNLincreasedby24.7,41.1, 51.3,31.4and60.2%,respectively,forthesamefungi.Forthissame doseofP,SDMincreasedby2079.6,1310.4,1456.1,2003.8and 1889.2inresponsetoP.indica,C.etunicatum,R.clarus,D.heterogama andMix,respectively.

At40mgkg−1,thisbenefitwaslower,butincreasesof25.4,27.9, 18.5,1.1and29.4%inHandof10.2,24.9,24.1,4.9and31.5%inNL wereobservedforP.indica,C.etunicatum,R.clarus,D.heterogama andMix,respectively.Further,theSDMincreasedby27.1,43.2,10.7 and45.4%forP.indica,C.etunicatum,R.clarusandMix,respectively.

Atthe40mgkg1dose,theplantletsinoculatedwithD.heterogama showedadecreaseof17.71%inSDM(Fig.1).Ingeneral,thebest resultsforgrowthparameterswereobservedwhenplants were treatedwiththemixedfungalinoculum,C.etunicatumorR.clarus.

Theplantletsthatreceived80mgkg−1Pandwereinoculated withR.clarusorP.indicashowed19.53%and13.99%decreasesin SDM,respectively.Atthesamedose, theC.etunicatumandMix treatmentsforthesameparametersproducedincreasesinSDMof 4.50%and13.48%,respectively(Fig.1).

3.2. Nutritionalcontentofplants

Thefungal inoculation(AMFand/or P.indica)wasbeneficial (p≤0.05)forthenutritionalstatusofthepineappleplantlets.The increasedPinthesubstrateinfluencedthecontent(mgplant1) ofPandoftheothermacronutrients,N,K,CaandMg(Fig.2).The levelsofthesenutrientsincreasedwiththeapplicationofhigher dosesofPforalltreatments.Atthelowestdoses(0–40mgkg1), thetreatmentswithfungishowedhighervaluesthanthosefound inthecontrolplants.AtthehigherdosesofP,increasescompared tothecontrolswereobservedinthecurvesforonlyafewfungal treatments(Fig.2).

GreatereffectsoffungalinoculationonPuptakebyplantswere observedatlowerdosesofP,andthemagnitudeoftheseeffects variedinrelationtothecontroldependingontheinoculatedfun- gus.Atthedoseof 20mgkg−1,the plantletsinoculated withP.

indicashowedanincreaseofapproximately260%overthecontrol, whereasC.etunicatum,R.clarus,D.heterogamaandMixtreatments presentedincreasesof1125,1621,845and2054%,respectively,in

(4)

Fig.1.Numberofleaves(NL),plantheight(H)andshootdrymatter(SDM)ofpineappleplantletsmicropropagatedandinoculatedwithC.etunicatum,D.heterogama,R.

clarus,P.indica,Mixorcontrol.Measurementswereobtained210daysafterinoculationinthegreenhousewithdifferentPlevelsinthesoil.,*and**,significantat10,5 and1%probability,respectively.

thePcontentperplant.TheincreasedPuptakewasconsiderably lesspronouncedatthehigherPdoseof40mgkg1.Thesevalues were−2,192,194,4and228%forP.indica,C.etunicatum,R.clarus, D.heterogamaandMix,respectively.Atdosesabove80mgkg1, onlythefungiC.etunicatum,R.clarus,andMixwereeffectivefor increasingthecontentofP.Atthisdose(80mgkg−1),theC.etuni- catum,R.clarus,andMixtreatmentsproducedgainsof114,80and 139%,respectively,relativetothecontrol(Fig.2).

TheeffectsofthetreatmentsonNcontentweresimilartotheir effectsonPuptake.Atthedoseof0mgkg−1,increasesinNcontent of110,58,84,126and140%wereobservedforthetreatmentswith

P.indica,C.etunicatum,R.clarus,D.heterogamaandMix,respec- tively.ThesevalueswerealsolowerwithincreasingdosesofP, showinggainsinNcontentof13,19,0.8,−0.88and36%,respec- tively,forthesametreatmentsatthedoseof40mgkg1(Fig.2).

At80mgkg1,onlytheC.etunicatumandMixtreatmentsshowed significantgainsintheNcontentperplant,namely7.7%forC.etuni- catumand36.6%forMix.Fortheothertreatmentsatthe80mgkg−1 doseand foralltreatments atgreater doses,thecontrol plants showedahighermeanNcontent.

ThelevelsofKandMgwerealsoinfluencedbyfungalinocula- tionandwerehigheratlowerdosesofP.WhenPwasappliedat

(5)

Fig.2.Content(mgplant−1)ofP,N,K,MgandCainmicropropagatedpineappleplantletsinoculatedwithC.etunicatum,D.heterogama,R.clarus,P.indica,Mixorcontrol.

Measurementswereobtained210daysafterinoculationinthegreenhousewithdifferentPlevelsinthesoil.,*and**,significantat10,5and1%probability,respectively.

20mgkg1,theplantletsinoculatedwithP.indica,C.etunicatum,R.

clarus,D.heterogamaandMixshowedincreasesof105,161,138,85 and181%inKcontentandof157,211,214,315and374%inMgcon- tent,respectively.At80mgkg1,mostoftheinoculatedplantlets stillshowedrelativeincreasesintheabsorptionofKof8,36,10, and29%forP.indica,C.etunicatum,R.clarus,andMix,respectively.

OnlytheplantletsinoculatedwithC.etunicatum,D.heterogamaand MixshowedahigherMgcontentthanthecontrols,withgainsof 9,21and38%,respectively,whenPwasappliedat80mgkg−1soil (Fig.2).

TheCacontentwasalsoaffectedbytheinoculationofpineapple plantletswiththesefungi.TheabsorptionofCaincreasedmainly underexposuretolowerdosesofP,reaching91%(P.indica),126%(C.

etunicatum),113%(R.clarus),133%(D.heterogama)and253%(Mix) ofthecontrollevelatadoseof20mgkg−1.ThishighCacontent comparedwiththecontrolalsodecreasedwithincreasingPdoses.

ForCa,thestrongestpositiveresponsesat80mgkg1werethose forC.etunicatumandMix(Fig.2).

3.3. Measurementsofphotosyntheticparameters

P.indicaandAMFpositivelyinfluencedthephotosyntheticeffi- ciencyoftheplants,especiallyatlowdosesofP(P≤40mgkg1) (Fig. 3).The Fv/Fm parameter, which indicatestheefficiency at

whichlightenergycapturedinPSIIistransferredtootherdevel- opingphotochemicalreactions,waslowerinthecontrolsthanin theothertreatmentsuptoadoseof40mgkg−1(oruptoadose of320mgkg−1inthecaseoftheP.indicaandMixtreatments).At 80and160mgkg1,nodifferencesinFv/Fmwerefoundamongthe treatments.Fortheparametersmeasuringtheamountofenergy capturedbyPSIIthatwasdissipatedasheat(qNandNPQ),the controlsweresuperiortomosttreatmentsatvariousdosesofP.

TheMixtreatmentshowedthelowestqNandNPQatvirtuallyallP levels,followedbytheremainingAMF,C.etunicatum,R.clarusand D.heterogama,whichbehavedsimilarly.ThefungusP.indicawas lessefficientthantheAMFinreducingqNandNPQbutwasmore efficientthanthecontrolatdosesof40and80mgkg−1(Fig.3).

3.4. Fungalcolonization

Thefungal colonizationwassuccessful bothfor plants inoc- ulated with AMF and for those inoculated with P. indica, with structurescharacteristicofintraradicularcolonizationobservedin treatedplantsandnocolonizationinthecontrolplants(Fig.4).

Withinthegroupsoftreatedplantsthatreceivedeachindividual AMF,therewasnodifference(p≥0.05)inthepercentageoffun- galcolonization,evenwhenhigherdosesofPwereappliedtothe soil.WhennoPwasadded,MixshowedalowerpercentageofAMF

(6)

Fig.3.Maximumphotochemicalefficiency(Fv/Fm)andquenching(qN)ornon-photochemicaldissipation(NPQ)inmicropropagatedpineappleplantletsinoculatedwithC.

etunicatum,D.heterogama,R.clarus,P.indica,Mixorcontrol(notinoculated).Measurementswereobtainedafter210daysofgrowthinthegreenhousewithdifferentPlevels inthesoil.MeansfollowedbythesameletterwithinthesamedoseofPdonotdiffer(Tukey’stest,5%probability).

Table1

PercentageofcolonizationbyP.indicaandmycorrhizalfungiinmicropropagation-derivedpineappleplantletsunderdifferentphosphorus(P)levelsafter210daysof acclimatizationinthegreenhouse.

P(mgkg−1) P.indica R.clarus C.etunicatum D.heterogama Mix

0 20.94±9.54 bA 67.40±10.41 aA 37.64±27.10 abA 57.75±30.66 abA 59.50±11.39 AB

20 22.78±10.12 cA 72.88±7.03 aA 26.11±22.31 cA 45.49±19.06 bcA 67.82±7.58 abAB

40 28.11±6.32 bA 69.41±7.89 aA 46.95±20.54 abA 42.72±27.27 abA 76.50±15.59 aAB

80 27.31±5.81 bA 74.35±3.58 aA 69.08±15.79 aA 37.45±25.82 abA 74.19±9.01 aAB

160 21.13±5.36 dA 71.07±5.76 abA 46.53±13.24 bcA 39.67±23.02 cdA 75.50±3.70 aAB

320 18.71±6.79 bA 69.95±7.43 abA 41.49±31.66 abA 40.56±22.38 bA 81.50±6.56 aA

Meansfollowedbythesamelowercaseletterinthesamerowandmeansfollowedbythesamecapitalletter,inthesamecolumn,donotdifferbyTukeytestat5%probability.

colonizationbutdidnotdifferfromtheotherfungaltreatments underthesameconditionsofPfertilization(Table1).FortheAMF treatmentswiththesamedoseofP,thetreatmentsinoculatedwith MixorR.clarushadthehighestaveragepercentageofmycorrhizal colonizationatthehigherdosesofP(Table1).Furthermore,the

percentageofcolonizationwithP.indicadidnotvarywithincreas- ingdosesofP,andremainedlowerthanthatforAMF-inoculated plants(Table1).

(7)

Fig.4. TypicalstructuresobservedinassociationwitharbuscularmycorrhizalfungiandPiriformosporaindica.(A)Controlwithoutfungalcolonization;(B,DandF)colonization witharbuscularmycorrhizalfungi,withthepresenceofarbuscules,vesiclesandhyphae;(C)colonizationwithP.indicaintherootcortex;and(E)colonizationbyP.indica intheroothairs,withhyphaeandchlamydospores.Theassessmentwasperformed210daysafterinoculationinagreenhouseinthepresenceofvariousPlevelsinthesoil.

3.5. Fungaldependence

Thefungaldependenceofthepineappleplantletswasexcessive at0mgkg1andwasmoderatetohighatdosesof20,40mgkg1 P in the soil for all fungal treatments (Fig. 5). At 80, 160 and 320mgkg1Pinthesoil,theplantsdidnotdependonfungalcol- onizationforgrowthanddevelopmentintermsoftheresponseof shootbiomass.

4. Discussion

StudiesontheeffectofAMFontissueculture-derivedpineapple plantletsarescarce.However,paststudiesonthistopichaveused variousAMFspecies,includingClaroideoglomusclaroideum(=Glo- musclaroideum),Rhizophagusfasciculatus(=Glomusfasciculatum) (Gutiérrez-Olivaetal.,2009)andFunneliformismosseae(=Glomus

mosseae)(Rodríguez-Romeroetal.,2011),whichwerenotusedin thecurrentstudy.

Ingeneral,plantscolonizedbyAMFandP.indicashowedbetter growthandincreasedabsorptionofnutrients,especiallyifallfungi wereinoculatedtogether(Mix)andatlowerdosesofP.Positive responsestocolonizationbyAMFhavealreadybeenreportedin pineapple(Gutiérrez-Olivaetal.,2009;Rodríguez-Romeroetal., 2011).Note,however,thatthisstudyisthefirstreportevaluating thecolonizationofP.indicaanditseffectsonpineappleplantlets andshowingroothaircolonization(Fig.4)asnotedbyWalleretal.

(2005).

Strongresponsesinthegrowthanddevelopmentofplantsinoc- ulatedwithAMFhavebeenwelldocumentedforseveralspeciesof plants,e.g.,maize(ZeamaysL.)(Cozzolinoetal.,2013),oregano(Ori- ganumonites),mint(Mentharequienii)(Karagiannidisetal.,2011), papaya(Caricapapaya)andpineapple(Rodríguez-Romeroetal., 2011),includinginmicropropagatedplantssuchasAcoruscalamus

(8)

Fig.5. FungaldependenceinpineappleplantletsinoculatedwithC.etunicatum,D.

heterogama,R.clarus,P.indicaandMix.Measurementswereobtained210daysafter inoculationinthegreenhousewithdifferentPlevels.>75%=excessivedependence;

50–75%=high dependence; 25–50%=moderate dependence; <25%=marginal dependence;noresponsetoinoculation=independence.

L.(Yadavetal.,2011),GlycyrrhizaglabraL.(Yadavetal.,2013a)and GloriosasuperbaL.(Yadavetal.,2013b).P.indicainoculationhas beenreportedtobenefitbarley(Hordeumvulgare)(Walleretal., 2005), cabbage(Brassicarapa)(Sunet al.,2010)and beet(Beta vulgaris)(Varmaetal.,2012),particularlyifthesoilPlevelsare low.

Althoughthepositiveresponsesofthegrowthparameterswere stronglyrelatedtothecontrolsatsmallerdosesofP,thegrowth ofinoculatedplantletsatthedoseof80mgkg−1wassuperiorto theirgrowthatthedoseof40mgkg1.Thisresultindicatesthat bothofthesedoses,whichareabovethatrecommended(approx- imately36mgkg−1)forcultureunderconditionsoflowsoilPin thefield(Souzaetal.,1999),aregoodoptionsfortheproduction ofplantletsinoculatedwiththesefungi.TheincreasesinNL,Hand SDMresultingfromassociationswithAMFand/orP.indica,espe- ciallyatrelativelylowdosesofP,arecloselylinkedwiththefungal colonizationandmorphologyoftheroots.Thepineapplehasashort andcompactrootsystemnearthestem,withmanythickrootsand limitedbranching(d’EeckenbruggeandLeal,2003).Thischaracter- isticindicatesthatfungalcolonizationplaysanimportantrolein theuptakeofwaterandnutrients.Colonizedrootscanexplorea greatervolumeofsoil(SmithandRead,1997)andshowmorethan 100timesthecoverageareaoftherootsofanon-colonizedplant (Sieverding,1991).Moreover,thesmaller-diameterhyphalfungi allowaccesstothesoilmicropores(Grantetal.,2005),andthe broadgrowthofthecolonizedrootsresultsinawell-developed networkofseveralcentimetersinextent,whichcanreachareas wherePisnotdepleted(Smithetal.,2011).Incontrast,plantsnot colonizedwiththesesymbioticfungicannotexploretheseareas.

NutrientabsorptionwasconsiderablyinfluencedbyAMFand P.indica,especiallyuptoaPdoseof40mgkg1(Fig.2).Thefungi increasedthecontentsofP,N,K,CaandMgcomparedwiththenon- inoculatedcontrols.However,theseedlingsinoculatedwithMix andC.etunicatum,followedbyR.clarus,presentedbetterabsorp- tionformanyofthesenutrients,evenataPdoseof80mgkg−1. Thesebenefits observedin colonized plantlets have oftenbeen describedfortheuptakeofP(Kahiluotoetal.,2000;Yadavetal., 2010;Rodríguez-Romeroetal.,2011;Tongetal.,2013;Xieetal., 2014),ofN(Azcónetal.,2008;Oelmülleretal.,2009;Rodríguez- Romeroetal.,2011;Tongetal.,2013),ofK(Rodríguez-Romero etal.,2011),ofS(Oelmülleretal.,2009),ofCuandZn(Kahiluoto

etal.,2000;Karagiannidisetal.,2011;Tongetal.,2013),andofCa, FeandMn(Karagiannidisetal.,2011).Thesefindingsincludethe resultsofstudiesofpineappleplantlets(Rodríguez-Romeroetal., 2011)andmayvarybasedonthespeciesofplant-colonizingAMF incombinationwiththeconcentrationofPinthesoil(Gutiérrez- Olivaetal.,2009).Inaddition,differencesinthesebenefitsmay dependontheplantvarietystudied(Karagiannidisetal.,2011)or thehosttissueanalyzed(Tongetal.,2013).

For the pineapple plantlets that received more than 160mgPkg1, the controls presented better growth parame- ters and nutrient contents per plant, indicating that the fungi tend tohave deleteriouseffects onthese characteristicsat this highlevelofPinthesoil.TheincreasingavailabilityofPinsoil, incombinationwiththehighrateofcolonization,canreducethe growthoftheplantduetothehighercostofcarbonsynthesizedby theplanttosupplythefungianddecreasedbenefitsfornutrient absorptionbecausetheiravailability isgreater(Kahiluotoetal., 2000).

AtlowerdosesofP,pineappleplantletsinoculatedwithAMF showedhigher efficiencyof PSIIin capturingenergy, which is senttootherphotosyntheticreactions.However,thecontrolslost moreenergyasheat,showinghigherqNandNPQvaluesthanthe inoculatedplants,particularlyatdosesof20,40and80mgkg1 (Fig.3).Asaresult,thephotosyntheticrateofinoculatedplantlets washigherthanthatofthecontrols.Thisbehaviorwasalsofound intomatoplantsinoculatedwithF.mosseae(Boldtetal.,2011).In barleyseedlings,ahigherphotosyntheticratewasobservedunder lowlightconditionswhenplantswereinoculatedwithP.indica (Achatzetal.,2010).Investmentsofplantresourcesin thesyn- thesisofphotoassimilatestobetransferredtofungisuchasAMF andP.indicaareoffset,inpart,bythehigherphotosyntheticrates (Balotaetal.,2011;Smithetal.,2011)and/orbysavingsresulting fromthereductioninrootproduction (Smithetal.,2011).Fac- torsthat enhancephotosynthesisbymycorrhizalplants include increasesinthetransportofinorganicelementsfromthesoilto theplant(Soleimanzadeh,2010),inchlorophyllcontent(Estrada- LunaandDavies,2003;Yadavetal.,2013a,b),andintheratesof photosyntheticstorageandexport(Augé,2001).

Thesecharacteristicsofgrowthpromotion,improvednutrient contentandenhancedphotosyntheticefficiencyhavemotivated increasingresearchactivityontheinoculationofplantlets with AMF(Estrada-LunaandDavies,2003;Kapooretal.,2008;Singh etal.,2012;Yadavetal.,2013a,b)andwithP.indica(Sahayand Varma,1999)toaidin theacclimatizationstage.Forpineapple, theinoculated plantletsweremorevigorous andshowedbetter developmentduringthisstage.

Ingeneral,increasesintheavailabilityofsoilPtendtodecrease mycorrhizalcolonization(Kahiluotoetal.,2000;Soleimanzadeh, 2010;Balotaetal.,2011;Smithetal.,2011;Shuklaetal.,2012).This decreaseinrootcolonizationmayberelatedtotheincreasedcon- centrationofPpergramofdrymatterintheplant(Liuetal.,2000).

However,here,inpineappleplantletsexposedtothesametreat- ments,thepercentagesoffungalcolonizationremainedhigh,even athighdosesofP(Table1).Similarresultswerenotedinthestud- iesofXavierandGermida(1997),Cozzolinoetal.(2013)andTong etal.(2013),andthecolonizationpercentagesweremuchhigher thanthatfoundbyRodríguez-Romeroetal.(2011)inpineapple.

Thismaybeduetothedilutioneffectofthenutrientsinplanttis- sue,inwhichincreasedabsorptionproducesahigheramountof biomassratherthanagreaterconcentrationofnutrients,increasing theexudationofcarbohydratesandthusstimulatingmycorrhizal colonization(Liuetal.,2000;Azcónetal.,2003).

Foralmostallevaluatedparameters,thetreatmentcontaining amixtureofallfungiwasmoreeffectiveinpromotingthegrowth oftheplantlets,whichhasbeenobservedinthestudiesofYadav etal.(2011)andYadavetal.(2013a,b).Thecomplementaryeffect

(9)

ofdifferentspeciesallocatedindifferentorders(Glomeralesand Diversisporales—Redeckeretal.,2013)hasbeenshowntohavea positiverelationshipwithbiomassproductioninPlantagolanceo- lata(MaheraliandKlironomos,2007).BecausedifferentAMFmay transmitdifferentamountsofPtotheplant,theireffectsonplant growthmaybedifferent(Shuklaetal.,2012).However,because theplantscanbecolonizedsimultaneouslybyfungifromdiffer- enttaxa(Smithetal.,2011),thebeneficialcharacteristicsofeach funguscouldpotentiallybeexploitedbytheplant.Thispatternis observedunderfieldconditions,inwhichthesumofallthebene- fitsofcolonizationbydifferentfungicontributestothesuccessof mycorrhizaeinfacilitatinggrowthandreproduction(Smithetal., 2011).

ThedecreaseobservedinfungaldependencewithincreasingP levelssuggeststhattheeffectoffungalinoculationismorepro- nouncedatlowerdosesofP(Kahiluotoetal.,2000;Balotaetal., 2011).However,evenwithnodependenceoftheplantletsatthe 80mgkg−1doseandmoderatedependenceatthe40mgkg−1dose forC.etunicatumandMix,thehighrateofcolonizationunderthese conditionsishighlysignificantforpineapplecultivationbecause therecommendedsoilPlevelforthiscultureinsoilswithalowP levelisapproximately35mgkg1 (Souzaetal.,1999).Thiseffect maybemoresignificantunderfieldconditions,wherethesoilisless homogeneousandmycorrhizalassociationcanimprovenutrient absorption.

Inthefield,pineappleis considerednon-responsivetophos- phatefertilizationintermsoffruitproduction(Spironelloetal., 2004; Guarc¸oni M. and Ventura, 2011; Caetano et al., 2013), withmycorrhizalcolonizationconsideredoneofthemainfactors responsibleforthesupplyofPtoplants(Guarc¸oniM.andVentura, 2011).Therefore,inviewoftheimportanceofPnutritioninthe earlystagesofcropdevelopment,theroleofmycorrhizalassocia- tionattheseedlingstageremainstobeestablishedinthecontextof theexplorationoftheoverallproductivepotentialofplants(Grant etal.,2005).

For pineapple plantlets, inoculation withAMF and P. indica confersmanybenefitsanddoesnotinterferewiththeprocessof producingpropagativematerialovertime.Inaddition,itdoesnot addalabor-intensivecomponenttotheproductionchainbecause theinoculationmethodissimpleandplantletsmustremaininthe greenhouseforapproximatelysixmonths(Farahani,2013).

5. Conclusions

MicropropagatedpineappleplantletscolonizedbyAMFandP.

indicashowenhancedgrowth,nutrientuptakeandphotosynthetic efficiency,particularlyatlow soilPlevels(≤40mgkg−1).AtaP levelequivalenttotherecommendedfertilizationrate(35mgkg1 inthefield),inoculatedplantletsarebetternourishedandvigor- ous,especiallywheninoculatedwithC.etunicatumorMix.Further fieldevaluationsareneededtodeterminewhetherinoculationdur- ingtheseedlingstageisreflectedinproductivityorcanserveasa meanstoreducechemicalfertilization.Suchoutcomeswouldresult notonlyintheoptimaluseoffertilizerbutalsoineconomicbenefits fortheproducers.

Acknowledgments

TheauthorsthanktheConselhoNacionaldeDesenvolvimento CientíficoeTecnológico(CNPq),Coordenac¸ãodeAperfeic¸oamento de Pessoal de Nível Superior (CAPES), Fundac¸ão de Amparo à PesquisadoEstadodeMinasGerais(FAPEMIG)andFundac¸ãode AmparoàPesquisaeInovac¸ãodoEstadodeSantaCatarina(FAPESC) forfinancialsupport.TheauthorsalsothankUniversidadeRegional de Blumenau-Santa Catarinafor providing theinoculum main-

tainedattheInternationalCultureCollectionofGlomeromycota (CICG).

AppendixA. Supplementarydata

Supplementarydataassociatedwiththisarticlecanbefound, intheonlineversion,athttp://dx.doi.org/10.1016/j.scienta.2015.

09.032.

References

Achatz,B.,Rüden,S.,Andrade,D.,Neumann,E.,Pons-Kühnemann,J.,Kogel,K.H., Franken,P.,Waller,F.,2010.RootcolonizationbyPiriformosporaindica enhancesgrainyieldinbarleyunderdiversenutrientregimesbyaccelerating plantdevelopment.PlantSoil333,59–70.

Augé,R.M.,2001.Waterrelations,droughtandvesicular-arbuscularmycorrhizal symbiosis.Mycorrhiza11,3–42.

Azcón,R.,Ambrosano,E.,Charest,C.,2003.Nutrientacquisitioninmycorrhizal lettuceplantsunderdifferentphosphorusandnitrogenconcentration.Plant Sci.165,1137–1145.

Azcón,R.,Rodríguez,R.,Amora-Lazcano,E.,Ambrosano,E.,2008.Uptakeand metabolismofnitrateinmycorrhizalplantsasaffectedbywateravailability andNconcentrationinsoil.Eur.J.SoilSci.59,131–138.

Azcón-Aguilar,C.,Cantos,M.,Troncoso,A.,Barea,J.M.,1997.Beneficialeffect arbuscularmycorrhizasonacclimatizationofmicropropagatedcassava plantlets.Sci.Hortic.72,63–71.

Balota,E.L.,Machineski,O.,Truber,P.V.,Scherer,A.,Souza,F.S.,2011.Physicnut plantspresenthighmycorrhizaldependencyunderconditionsoflow phosphateavailability.Braz.J.PlantPhysiol.23,33–44.

Be,L.V.,Debergh,P.C.,2006.Potentiallow-costmicropropagationofpineapple (Ananascomosus).S.Afr.J.Bot.72,191–194.

Boldt,K.,Pörs,Y.,Haupt,B.,Bitterlich,M.,Kühn,C.,Grimm,B.,Franken,P.,2011.

Photochemicalprocesses,carbonassimilationandRNAaccumulationof sucrosetransportergenesintomatoarbuscularmycorrhiza.J.PlantPhysiol.

168,1256–1263.

Braga,J.M.,Defelipo,B.V.,1974.Determinac¸ãoespectofotométricadefósforoem extratosdesoloseplanta.Rev.Ceres21,73–85.

Brundrett,M.,Bougher,N.,Dell,B.,Grove,T.,Malajczuk,N.,1996.Workingwith MycorrhizasinForestryandAgriculture.ACIARMonograph.

Caetano,L.C.S.,Ventura,J.A.,Costa,A.F.S.,Guarc¸oni,R.C.,2013.Efeitodaadubac¸ão comnitrogêniofósforoepotássionodesenvolvimentonaproduc¸ãoena qualidadedefrutosdoabacaxi‘Vitória’.Rev.Bras.Frutic.35,883–890.

Chandra,S.,Bandopadhyay,R.,Kumar,V.,Chandra,R.,2010.Acclimatizationof tissueculturedplantlets:fromlaboratorytoland.Biotechnol.Lett.32, 1199–1205.

Clark,R.B.,1975.Characterizationofphosphatasesofintactmaizeroots.J.Agric.

FoodChem.23,458–460.

Cozzolino,V.,DiMeo,V.,Piccolo,A.,2013.Impactofarbuscularmycorrhizalfungi applicationsonmaizeproductionandsoilphosphorusavailability.J.Geochem.

Explor.129,40–44.

d’Eeckenbrugge,G.C.,Leal,F.,2003.Morphology,anatomyandtaxonomy.In:

Bartholomew,D.P.,Paull,R.E.,Rohrbach,K.G.(Eds.),ThePineapple:Botany, ProductionandUses.CABIPublishing,Wallingford,U.K,pp.13–32.

EmpresaBrasileiradePesquisaAgropecuária—EMBRAPA,1999.Manualdeanálises químicasdesolos,plantasefertilizantes.CentroNacionaldePesquisadeSolos, RiodeJaneiro.

Escalona,M.,Lorenzo,J.C.,González,B.,Daquinta,M.,González,J.L.,Desjardins,Y., Borroto,C.G.,1999.Pineapple(AnanascomosusL.Merr.)micropropagationin temporaryimmersionsystems.PlantCellRep.18,743–748.

Estrada-Luna,A.A.,Davies,J.F.T.,2003.Arbuscularmycorrhizalfungiinfluence waterrelations,gasexchange,abscisicacidandgrowthofmicropropagated chileanchopepper(Capsicumannuum)plantletsduringacclimatizationand post-acclimatization.J.PlantPhysiol.160,1073–1083.

FAOSTATAcessoemjulhode,2014.Disponívelem:<http://faostat.fao.org/site/

339/default.aspx/>.

Farahani,F.,2013.Growth,floweringandfruitinginvitropineapple(Ananas comosusL.)ingreenhouseconditions.Afr.J.Biotechnol.12(15),1774–1781.

Giovannetti,M.,Mosse,B.,1980.Anevaluationoftechniquesformeasuring vesiculararbuscularmycorrhizalinfectioninroots.NewPhytol.84,489–500.

González-Olmedo,J.L.,Fundora,Z.,Molina,L.A.,Abdulnour,J.,Desjardins,Y., Escalona,A.,2005.Newcontributionstopropagationofpineapple(Ananas comosusL.Merr.)intemporaryimmersionbioreactors.InVitroCell.Dev.Biol.

Plant41(1),87–90.

Grant,C.,Bittman,S.,Montreal,M.,Plenchette,C.,Morel,C.,2005.Soilandfertilizer phosphorus:effectsonplantPsupplyandmycorrhizaldevelopment.Can.J.

PlantSci.85,3–14.

Guarc¸oniM,A.,Ventura,J.A.,2011.Adubac¸ãoN-P-Keodesenvolvimento, ProdutividadeequalidadedosfrutosdoAbacaxi‘GOLD’(MD-2).Rev.Bras.

Cienc.Solo35,1367–1376.

Gutiérrez-Oliva,V.F.,Abud-Archila,M.,Flores-Pérez,A.,Alvarez-Solis,J.D., Gutiérrez-Miceli,F.A.,2009.Influenciadeloshongosmicorrizicosarbusculares sobreelcrecimientodevitroplantulasdepi ˜na(Ananascomosus(L.)Merr.)Con diferentesnivelesdefosforo.GayanaBot.66(1),1–9.

Referensi

Dokumen terkait

The finding of this study showed highly diversity species of VAM fungi in sandy soil at North-East of Bali Island of Indonesia.. The genera Glomus was mostly

The results of the study indicate that arbuscular mycorrhizal fungi (AMF) had positive correlation with chemical, biological and physical aspect of soil

Based on the results of this study, it can be seen that the highest AMF spore population in the oil palm rhizosphere inside the circle was obtained from Paleudults mineral

AMF and organic fertilizers treatments have a significant effect on leaf width, plant length, number of tillers, the results of dry matter, crude protein, phosphorus, dry matter

Brachiaria mutica inoculated with AMF is able to play a role as a phytoremediation agent in chromium contaminated Kullu et al., 2020, and AMF is able to suppress Zn uptake in host

Volume 23, Number 10, October 2022 E-ISSN: 2085-4722 Pages: 5290-5297 DOI: 10.13057/biodiv/d231038 Diversity of Arbuscular Mycorrhizal Fungi of Kalappia celebica: An endemic and

Based on this consideration, it is necessary to study the influence of the use of inoculant sources of local arbuscular mycorrhizal fungi AMF of tidal soil origin and the duration of

Lack of P nutrients in plants will affect plant growth and development Anjarsari et al., 2016 CONCLUSION The interaction of FMA Glomus sp or Gigaspora sp each 10 g per plant with