TUGAS KELOMPOK MATEMATIKA PEMINATAN PERSAMAAN TRIGONOMETRI
NAMA ANGGOTA KELOMPOK ADINA KHAIRUNISA (01) AMNA NUZILA ASIFA (04)
ANTARIKA ALYA HAWANINGSIH (05) DINI AMIARTI (07)
FAZA ARDIAN.M (12) FERA KIRANI (13) SOAL
1. Tentukan himpunan penyelesaian dari
cos❑ x = 0 untuk 0° ≤ x ≤ 360°
2. Tentukan himpunan penyelesaian dari
6 sin❑ 6x =0 untuk 90° ≤ x ≤ 360°
3. Tentukan himpunan penyelesaian dari cos❑ (3x-60°) = −1
2 untuk 0° ≤ x ≤ 360°
4. Tentukan himpunan penyelesaian dari
2 sin2❑+¿ 4 sin❑x –6 = 0 untuk 0° ≤ x ≤ 360°
5. Tentukan himpunan penyelesaian dari cos❑ 5x = 1
2 untuk 0° ≤ x ≤ 180°
6. Tentukan himpunan penyelesaian dari
2 sin2❑−𝑥−9 cos❑𝑥+3 = 0 Untuk 0°≤ x ≤ 360°
7 . Tentukan himpunan penyelesaian dari persamaan tan❑ (2x-1
4 𝜋) = 1
4𝜋 untuk 0≤ x ≤2𝜋
PEMBAHASAN
1. cos❑ x = 0 cos❑ x = cos❑ 90°
∴ cos❑ x = ∝+ k.360°
x = 90° + k.360°
K= 0 →x = 90° + 0.360°
x = 90° + 0 ° x = 90°
K = 1 →x = 90° + 1.360°
x = 90° + 360°
x = 450° (TM)
∴cos❑ x = -∝+ k.360°
X = -90° + k.360°
K = 0 →x = -90° + 0.360°
x = -90° + 0°
x = -90°
K = 1 →x = -90° + 1.360°
x = -90° + 360°
x = 270°
K = 2 →x = -90°+ 2.360°
x = -90° + 720°
x = 630° (TM) HP = { 90° , 270 ° )
2. 6 sin❑ 6x = 0
6 sin❑ 6x = sin❑ 0°
sin❑ 6x = sin❑ 0° : 6 sin❑ 6x = sin❑ 0°
∴sin❑ x = ∝ + k.360°
sin❑ 6x = 0° + k.360°
sin❑ x =( 0° + k.360°) : 6 sin❑ x = 0° + k. 60°
K = 0 →x = 0° + 0.60°
x = 0° (TM)
K = 1 →x = 0° + 1.60°
x = 0°+ 60°
x = 60° (TM)
K = 2 →x = 0°+ 2.60°
x = 0° + 120°
x = 120°
K = 3 →x = 0° + 3.60°
x = 0° + 180°
x = 180°
K= 4 →x = 0° + 4.60°
x = 0° + 240°
x = 240°
K = 5 → x = 0° + 5.60°
x = 0° + 300°
x = 300°
K = 6 → x = 0° + 6.60°
x = 0° + 360°
x = 360°
K = 7 →x = 0° + 7.60°
x = 0° + 420°
x = 420° (TM)
∴sin❑ x = ( 180°-∝) + k.360°
sin❑ 6x =( 180°- 0°) + k.360°
6x = 180°+ k.360°
x = ( 180° + k.360°): 6 x = 30°+ k.60°
K = 0→x = 30°+ 0.60°
x = 30° + 0°
x = 30° (TM)
K = 1 →x = 30°+ 1.60°
x = 30°+ 120°
x= 90°
K= 2→x = 30°+ 2.60°
x = 30° + 120°
x = 150°
K = 3 →x = 30°+ 3.60°
x = 30°+ 180°
x = 210°
K = 4→x = 30° + 4.60°
x = 30°+ 240°
x = 270°
K = 5 →x = 30° + 5.60°
x = 30° + 300°
x = 330°
K = 6→x = 30° + 6.60°
x = 30° + 360°
x = 390° (TM)
HP = { 90°, 120 ° , 180°,210° , 270° , 300° , 330°, 360° }
3. cos❑ ( 3x-60°) = −1 2 cos❑ ( 3x-60°) = cos❑ 120°
∴cos❑ x =∝+ k.360°
cos❑ (3x-60°) = 120° + k.360°
3x = ( 120°+ 60°) + k.360°
3x = 180°+k.360°
x = ( 180° + k.360°) : 3 x = 60° + k.120°
K= 0 →x = 60° + 0.120°
x = 60° + 0°
x = 60°
K= 1 → x = 60° + 1.120°
x = 60° + 120°
x = 180°
K=2 →x = 60° + 2.120°
x = 60° + 240°
x = 300°
K = 3 →x = 60° + 3.120°
x = 60° + 360°
x = 420° (TM)
∴cos❑ x = −∝+ k.360°
cos❑ (3x-60°) = -120° +k.360°
3x =( -120°+60°) + k.360°
3x = -60° + k.360°
x = (-60° + k.360°) : 3 x = - 20° + k.120°
K = 0 →x = -20°+ 0.120°
x = -20°+0°
x = - 20° (TM)
K = 1 →x = -20° + 1.120°
x = -20° + 120°
x = 100°
K = 2 →x = -20° + 2.120°
x = - 20° + 240°
x = 220°
K = 3 →x = -20° + 3.120°
x = - 20° + 360°
x = 340°
K = 4 →x = - 20° + 4.120°
x = -20° + 480°
x = 460° (TM)
HP = { 60° , 100° , 180° , 220° , 300° , 340° }
4. ∴Misal sin❑ x = a,maka 2a 2 + 4a – 6 = 0
(2a-2)(a+3) = 0
2a-2 = 0 atau a+3 = 0
a = 2
2 atau a= -3 a = 1 atau a= -3
∴Ingat ! -1 ≤sin❑ 2 ≤ 1, maka nilai a yang memenuhi adalah 1 ,maka A = 1
sin❑ x = 1 sin❑ x = sin❑ 90°
∴X = ∝+ k . 360° atau x = - ∝+ k. 360° X = 90°+ k. 360° atau x = -90°+ k. 360°
∴X = 90°+ k. 360° K = 0 →x = 90°+ 0. 360°
x = 90° K = 1 →x = 90°+ 1. 360°
x = 90°+ 360° x = 450°(TM)
∴X = -90°+ k. 360° K = 0 →x = -90° + 0. 360°
x = -90° + 0°
x = -90° (TM)
K = 1→x = - 90° + 1.360°
x = - 90° + 360°
x = 270°
K = 2→x = -90° + 2.360°
x = - 90° + 720°
x = 630°
HP = { 90° , 270° }
5. cos❑ 5x = 1 2 cos❑ 5x = cos❑ 60°
∴ cos❑ x =∝+ k.360°
cos❑ 5x = 60° + k.360°
x = (60° + k.360°) : 5 x = 12° + k.72°
K = 0 →x = 12° +0.72°
x = 12° + 0°
x = 12°
K = 1 →x = 12° + 1.72°
x = 12° + 72°
x = 84°
K = 2 →x = 12° + 2.72°
x = 12° + 144°
x = 156°
K = 3 →x = 12° + 3.72°
x = 12° + 216°
x = 228° (TM)
∴cos❑ x = −∝ + k.360°
cos❑ 5x = - 60° + k.360°
cos❑ x = (-60°+ k.360°) : 5 X = - 12° + k.72°
K = 0 →x = -12° + 0.72°
x = - 12° + 0°
x = - 12° (TM)
K = 1 →x = - 12° + 1.72°
x = -12° + 72°
x = 60°
K = 2 →x = -12° + 2.72°
x = - 12° + 144°
x = 132°
K = 3 →x = - 12° + 3.72 ° x = - 12° + 216°
x = 204° (TM)
HP = { 12° , 60° , 84° , 132°, 156° , }
6. 2 sin2❑𝑥−9 cos❑𝑥+3=0 2
(
cos2❑𝑥)
−9 cos❑𝑥+3=0 2−2 cos2❑𝑥−9 cos❑𝑥+3=02 cos2❑𝑥+9 cos❑𝑥−5=0 (2 cos❑𝑥−1) (cos❑𝑥+5)=0 2 cos❑𝑥−1=0 atau cos❑𝑥+5=0 2 cos❑𝑥=1 atau cos❑𝑥=−5 (TM)
cos❑𝑥=1 2 cos❑𝑥=60° ∴cos❑𝑥=¿∝ + k.360°
𝑥 = 60° + k .360°
K = 0 →x = 60° + 0.360°
X = 60 ° + 0°
X = 60°
K = 1 →x = 60° + 1.360°
X = 60° + 360°
X = 420° (TM)
∴cos❑ x = -∝+ k.360°
cos❑ x = - 60° + k.360°
K = 0 →x = -60° + 0.360°
X = - 60°+ 0°
X = -60° (TM)
K = 1 →x = -60° + 1.360°
X = -60° + 360°
X = 300°
K = 2 →x = - 60° + 2.360°
X = -60° + 720°
X = 660° (TM) HP = { 60° , 300° }
7.tan❑ x =∝+ k .180°
tan❑ ( 2x - 1
4 𝜋) = 1
4𝜋 + k.𝜋 tan❑ 2x =
(
14𝜋+14 𝜋)
+𝑘.𝜋2x =2
4𝜋+𝑘.𝜋
x =
(
24 𝜋+𝑘.𝜋)
: 2x =1
4𝜋+𝑘.1 2𝜋 K =0 → x =1
4𝜋+𝑘.1 2𝜋 x = 1
4𝜋 K = 1 →x =1
4𝜋+1.1 2𝜋 x =1
4 𝜋+1 2𝜋 x = 3
4𝜋 K = 2 →x = 1
4𝜋+2.1 2𝜋 x = 1
4 𝜋+1 1𝜋 x = 5
4𝜋 K = 3→x =1
4𝜋+3.1 2𝜋 x =1
4 𝜋+3 2𝜋 x =7
4𝜋 K = 4 →x = 1
4𝜋+4.1 2𝜋 x = 1
4 𝜋+2𝜋 x = 9
4 𝜋 ( TM) HP =