• Tidak ada hasil yang ditemukan

tugas kelompok matmin trigonometri 11 mipa 5

N/A
N/A
Antarika Alya

Academic year: 2025

Membagikan "tugas kelompok matmin trigonometri 11 mipa 5"

Copied!
11
0
0

Teks penuh

(1)

TUGAS KELOMPOK MATEMATIKA PEMINATAN PERSAMAAN TRIGONOMETRI

NAMA ANGGOTA KELOMPOK ADINA KHAIRUNISA (01) AMNA NUZILA ASIFA (04)

ANTARIKA ALYA HAWANINGSIH (05) DINI AMIARTI (07)

FAZA ARDIAN.M (12) FERA KIRANI (13) SOAL

1. Tentukan himpunan penyelesaian dari

cos❑ x = 0 untuk 0° ≤ x ≤ 360°

2. Tentukan himpunan penyelesaian dari

6 sin❑ 6x =0 untuk 90° ≤ x ≤ 360°

3. Tentukan himpunan penyelesaian dari cos❑ (3x-60°) = 1

2 untuk 0° ≤ x ≤ 360°

4. Tentukan himpunan penyelesaian dari

2 sin2❑+¿ 4 sin❑x –6 = 0 untuk 0° x 360°

5. Tentukan himpunan penyelesaian dari cos❑ 5x = 1

2 untuk 0° x 180°

6. Tentukan himpunan penyelesaian dari

2 sin2−𝑥−9 cos❑𝑥+3 = 0 Untuk 0° x 360°

7 . Tentukan himpunan penyelesaian dari persamaan tan❑ (2x-1

4 𝜋) = 1

4𝜋 untuk 0 x 2𝜋

(2)

PEMBAHASAN

1. cos❑ x = 0 cos❑ x = cos❑ 90°

cos❑ x = + k.360°

x = 90° + k.360°

K= 0 x = 90° + 0.360°

x = 90° + 0 ° x = 90°

K = 1 x = 90° + 1.360°

x = 90° + 360°

x = 450° (TM)

cos❑ x = -+ k.360°

X = -90° + k.360°

K = 0 x = -90° + 0.360°

x = -90° + 0°

x = -90°

K = 1 x = -90° + 1.360°

x = -90° + 360°

x = 270°

K = 2 x = -90°+ 2.360°

x = -90° + 720°

x = 630° (TM) HP = { 90° , 270 ° )

2. 6 sin❑ 6x = 0

(3)

6 sin❑ 6x = sin❑ 0°

sin❑ 6x = sin❑ 0° : 6 sin❑ 6x = sin❑ 0°

sin❑ x = + k.360°

sin❑ 6x = 0° + k.360°

sin❑ x =( 0° + k.360°) : 6 sin❑ x = 0° + k. 60°

K = 0 x = 0° + 0.60°

x = 0° (TM)

K = 1 x = 0° + 1.60°

x = 0°+ 60°

x = 60° (TM)

K = 2 x = 0°+ 2.60°

x = 0° + 120°

x = 120°

K = 3 x = 0° + 3.60°

x = 0° + 180°

x = 180°

K= 4 x = 0° + 4.60°

x = 0° + 240°

x = 240°

K = 5 x = 0° + 5.60°

x = 0° + 300°

x = 300°

K = 6 x = 0° + 6.60°

x = 0° + 360°

x = 360°

K = 7 x = 0° + 7.60°

x = 0° + 420°

(4)

x = 420° (TM)

∴sin❑ x = ( 180°-) + k.360°

sin❑ 6x =( 180°- 0°) + k.360°

6x = 180°+ k.360°

x = ( 180° + k.360°): 6 x = 30°+ k.60°

K = 0x = 30°+ 0.60°

x = 30° + 0°

x = 30° (TM)

K = 1 x = 30°+ 1.60°

x = 30°+ 120°

x= 90°

K= 2x = 30°+ 2.60°

x = 30° + 120°

x = 150°

K = 3 x = 30°+ 3.60°

x = 30°+ 180°

x = 210°

K = 4x = 30° + 4.60°

x = 30°+ 240°

x = 270°

K = 5 x = 30° + 5.60°

x = 30° + 300°

x = 330°

K = 6x = 30° + 6.60°

x = 30° + 360°

x = 390° (TM)

HP = { 90°, 120 ° , 180°,210° , 270° , 300° , 330°, 360° }

(5)

3. cos❑ ( 3x-60°) = 1 2 cos❑ ( 3x-60°) = cos❑ 120°

cos❑ x =+ k.360°

cos❑ (3x-60°) = 120° + k.360°

3x = ( 120°+ 60°) + k.360°

3x = 180°+k.360°

x = ( 180° + k.360°) : 3 x = 60° + k.120°

K= 0 x = 60° + 0.120°

x = 60° + 0°

x = 60°

K= 1 x = 60° + 1.120°

x = 60° + 120°

x = 180°

K=2 x = 60° + 2.120°

x = 60° + 240°

x = 300°

K = 3 x = 60° + 3.120°

x = 60° + 360°

x = 420° (TM)

∴cos❑ x = −∝+ k.360°

cos❑ (3x-60°) = -120° +k.360°

3x =( -120°+60°) + k.360°

3x = -60° + k.360°

x = (-60° + k.360°) : 3 x = - 20° + k.120°

K = 0 x = -20°+ 0.120°

x = -20°+0°

(6)

x = - 20° (TM)

K = 1 x = -20° + 1.120°

x = -20° + 120°

x = 100°

K = 2 x = -20° + 2.120°

x = - 20° + 240°

x = 220°

K = 3 x = -20° + 3.120°

x = - 20° + 360°

x = 340°

K = 4 x = - 20° + 4.120°

x = -20° + 480°

x = 460° (TM)

HP = { 60° , 100° , 180° , 220° , 300° , 340° }

4. ∴Misal sin❑ x = a,maka 2a 2 + 4a – 6 = 0

(2a-2)(a+3) = 0

2a-2 = 0 atau a+3 = 0

a = 2

2 atau a= -3 a = 1 atau a= -3

∴Ingat ! -1 sin❑ 2 1, maka nilai a yang memenuhi adalah 1 ,maka A = 1

sin❑ x = 1 sin❑ x = sin❑ 90°

∴X = + k . 360° atau x = - + k. 360° X = 90°+ k. 360° atau x = -90°+ k. 360°

∴X = 90°+ k. 360° K = 0 x = 90°+ 0. 360°

(7)

x = 90° K = 1 x = 90°+ 1. 360°

x = 90°+ 360° x = 450°(TM)

∴X = -90°+ k. 360° K = 0 x = -90° + 0. 360°

x = -90° + 0°

x = -90° (TM)

K = 1x = - 90° + 1.360°

x = - 90° + 360°

x = 270°

K = 2x = -90° + 2.360°

x = - 90° + 720°

x = 630°

HP = { 90° , 270° }

5. cos❑ 5x = 1 2 cos❑ 5x = cos❑ 60°

cos❑ x =+ k.360°

cos❑ 5x = 60° + k.360°

x = (60° + k.360°) : 5 x = 12° + k.72°

K = 0 x = 12° +0.72°

x = 12° + 0°

x = 12°

K = 1 x = 12° + 1.72°

x = 12° + 72°

x = 84°

K = 2 x = 12° + 2.72°

(8)

x = 12° + 144°

x = 156°

K = 3 x = 12° + 3.72°

x = 12° + 216°

x = 228° (TM)

cos❑ x = −∝ + k.360°

cos❑ 5x = - 60° + k.360°

cos❑ x = (-60°+ k.360°) : 5 X = - 12° + k.72°

K = 0 x = -12° + 0.72°

x = - 12° + 0°

x = - 12° (TM)

K = 1 x = - 12° + 1.72°

x = -12° + 72°

x = 60°

K = 2 x = -12° + 2.72°

x = - 12° + 144°

x = 132°

K = 3 x = - 12° + 3.72 ° x = - 12° + 216°

x = 204° (TM)

HP = { 12° , 60° , 84° , 132°, 156° , }

6. 2 sin2𝑥−9 cos❑𝑥+3=0 2

(

cos2𝑥

)

9 cos𝑥+3=0 22 cos2𝑥−9 cos❑𝑥+3=0

2 cos2𝑥+9 cos❑𝑥−5=0 (2 cos❑𝑥−1) (cos❑𝑥+5)=0 2 cos❑𝑥−1=0 atau cos❑𝑥+5=0 2 cos❑𝑥=1 atau cos❑𝑥=5 (TM)

(9)

cos❑𝑥=1 2 cos❑𝑥=60° ∴cos𝑥=¿ + k.360°

𝑥 = 60° + k .360°

K = 0 x = 60° + 0.360°

X = 60 ° + 0°

X = 60°

K = 1 x = 60° + 1.360°

X = 60° + 360°

X = 420° (TM)

∴cos❑ x = -+ k.360°

cos❑ x = - 60° + k.360°

K = 0 x = -60° + 0.360°

X = - 60°+ 0°

X = -60° (TM)

K = 1 x = -60° + 1.360°

X = -60° + 360°

X = 300°

K = 2 x = - 60° + 2.360°

X = -60° + 720°

X = 660° (TM) HP = { 60° , 300° }

7.tan❑ x =+ k .180°

tan❑ ( 2x - 1

4 𝜋) = 1

4𝜋 + k.𝜋 tan❑ 2x =

(

14𝜋+14 𝜋

)

+𝑘.𝜋

2x =2

4𝜋+𝑘.𝜋

(10)

x =

(

24 𝜋+𝑘.𝜋

)

: 2

x =1

4𝜋+𝑘.1 2𝜋 K =0 x =1

4𝜋+𝑘.1 2𝜋 x = 1

4𝜋 K = 1 x =1

4𝜋+1.1 2𝜋 x =1

4 𝜋+1 2𝜋 x = 3

4𝜋 K = 2 x = 1

4𝜋+2.1 2𝜋 x = 1

4 𝜋+1 1𝜋 x = 5

4𝜋 K = 3x =1

4𝜋+3.1 2𝜋 x =1

4 𝜋+3 2𝜋 x =7

4𝜋 K = 4 x = 1

4𝜋+4.1 2𝜋 x = 1

4 𝜋+2𝜋 x = 9

4 𝜋 ( TM) HP =

{

14 𝜋,34𝜋,54 𝜋,74

}

(11)

Referensi

Dokumen terkait