• Tidak ada hasil yang ditemukan

View of r-Chromatic Number On r-Dynamic Vertex Coloring of Comb Graph

N/A
N/A
Protected

Academic year: 2024

Membagikan "View of r-Chromatic Number On r-Dynamic Vertex Coloring of Comb Graph"

Copied!
11
0
0

Teks penuh

(1)

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License

r-Chromatic Number On r-Dynamic Vertex Coloring of Comb Graph

Heryati Nur Fatimah Sari

1

*, Budi Nurwahyu

2

*, Jusmawati Massalesse

3

*

*

Department of Mathematic, Hasanuddin University, Makassar, Indonesia Email: heryatinurfatimahsari971@gmail.com1, budinurwahyu@unhas.ac.id2,

jusmawati@gmail.com3.

Abstract

Let 𝐺 be a graph with vertex set 𝑉(𝐺) and edge set 𝐸(𝐺). An r-dynamic vertex coloring of a graph 𝐺 is a assigning colors to the vertices of G such that for every vertex 𝑣 receives at least π‘šπ‘–π‘›{π‘Ÿ, 𝑑(𝑣)} colors in its neighbors. The minimum color used in r- dynamic vertex coloring of graph 𝐺 is called the r-dynamic chromatic number denoted as πœ’π‘Ÿ(𝐺). In this research we well determine the coloring pattern and the r-dynamic chromatic number of the comb graph π‘ƒπ‘›βŠ™ 𝐾1, central graph of comb graph 𝐢(π‘ƒπ‘›βŠ™ 𝐾1), middle graph of comb graph 𝑀(π‘ƒπ‘›βŠ™ 𝐾1), line graph of comb graph 𝐿(π‘ƒπ‘›βŠ™ 𝐾1), sub- division graf of comb graph 𝑆(π‘ƒπ‘›βŠ™ 𝐾1), and para-line graph of comb graph 𝑃(π‘ƒπ‘›βŠ™ 𝐾1).

Keywords: r-Dynamic coloring, chromatic number, comb graph, central graph, middle graph, line graph, sub-division graph, para-line graph.

1. INTRODUCTION AND PRELIMINARIES

Graph theory is a part of discrete mathematics that is used to express model pairwise relations between objects. Graph theory was first introduced in 1736 by a Swiss mathematician named Leonhard Euler. In his writing, Euler provided an illustration of the KΓΆnigsberg bridge with its four landmasses as points and its seven bridges as sides with research results that it was impossible to cross each of the seven bridges once and return to their original place.

(2)

Nowadays, graph theory is starting to experience a lot of development. One of the popular topics in graph theory to study is graph coloring. Graph coloring is divided into three types, including vertex coloring, edge coloring, and region coloring. Furthermore, in graph coloring there is also a concept of r-dynamic coloring. Fierera and Sugeng [3] define r-dynamic coloring, for example, if π‘Ÿ is a positive integer, π‘Ÿ-dynamic coloring with π‘˜-colors on a graph 𝐺 is the exact coloring of points with π‘˜-colors on the graph 𝐺 such that for every vertex 𝑣 receives at least min{π‘Ÿ, 𝑑(𝑣)} colors in its neighbors. The minimum π‘˜ for graph 𝐺 in π‘Ÿ-dynamic coloring with π‘˜- color is called the π‘Ÿ-dynamic chromatic number of graph 𝐺, denoted as πœ’π‘Ÿ(𝐺).

Let 𝐺 be a simple and finite graph with vertex 𝑉(𝐺) and edge set 𝐸(𝐺). Comb graph is a graph obtained from corona operations from the path graph 𝑃𝑛 with the complete graph 𝐾1. The comb graph is denoted by π‘ƒπ‘›βŠ™ 𝐾1. The central graph [16] 𝐢(𝐺) of a graph 𝐺 is obtained from 𝐺 by adding an extra vertex on each edge of 𝐺, and then joining each pair of vertices of the original graph which were previously non-adjacent. The middle graph [11] of 𝐺 denoted by 𝑀(𝐺), is defined as follows, the vertex set of 𝑀(𝐺) is 𝑉(𝐺) βˆͺ 𝐸(𝐺). Two vertices π‘₯, 𝑦 of 𝑀(𝐺) are adjacent in 𝑀(𝐺) in case one of the following holds: (i) 𝑒, 𝑣 are in 𝐸(𝐺) and 𝑒, 𝑣 are adjacent in 𝐺. (ii) 𝑣 ∈ 𝑉(𝐺), 𝑒 ∈ 𝐸(𝐺)and 𝑒, 𝑣 are incident in 𝐺. The line graph [6] of 𝐺, denoted by 𝐿(𝐺), is the graph whose vertex set is the edge set of 𝐺. Two vertices of 𝐿(𝐺) are adjacent whenever the corresponding edges of 𝐺 are adjacent. The sub-division graph 𝑆(𝐺) [8] is obtained simply by inserting a new vertex for each edge of 𝐺. Para-line graph P(G) [8] is the line graph of a sub-division graph.

Definition 1.1 [8]. An r-dynamic coloring of a graph is a map 𝑐 from 𝑉(𝐺) to the set of colors such that:

(i) if 𝑒𝑣 ∈ (𝐸(𝐺)), then 𝑐(𝑒) β‰  𝑐(𝑣), and (ii) βˆ€π‘£ ∈ 𝑉(𝐺), |𝑐(𝑁(𝑣))| β‰₯ π‘šπ‘–π‘›{π‘Ÿ, 𝑑(𝑣)}.

Where r is a positive integer, 𝑁(𝑣) denotes the set of all vertices adjacent to 𝑣 and 𝑑(𝑣) its degree.

2. MAIN RESULTS

Proposition and theorems used to find out the r-chromatic number from the r-dynamic coloring of a comb graph and some operations such as central graph, middle graph, line graph, sub-division graph, and para-line graph of the comb graph π‘ƒπ‘›βŠ™ 𝐾1. The proposition and each theorems contain coloring labels which aim to find the minimum color used in r-dynamic vertex coloring of graph.

Proposition 2.1 Let 𝑛 β‰₯ 4, then the r-dynamic chromatic number of the comb graph π‘ƒπ‘›βŠ™ 𝐾1 is:

(3)

Ο‡π‘Ÿ(π‘ƒπ‘›βŠ™ 𝐾1) = {

2, π‘“π‘œπ‘Ÿ π‘Ÿ = 1 3, π‘“π‘œπ‘Ÿ π‘Ÿ = 2 4, π‘“π‘œπ‘Ÿ π‘Ÿ = 3 Proof

Let the vertex set and edge set of the comb graph π‘ƒπ‘›βŠ™ 𝐾1 are as follows:

𝑉(π‘ƒπ‘›βŠ™ 𝐾1) = {𝑣1, 𝑣2, … , 𝑣𝑛, 𝑒1, 𝑒2, … , 𝑒𝑛} and 𝐸(π‘ƒπ‘›βŠ™ 𝐾1) = 𝐸(𝑃𝑛) βˆͺ {𝑣𝑖𝑒𝑖 ∢ 𝑖 = 1,2,3 … , 𝑛}.

Where 𝐸(𝑃𝑛) is the edge set of a path graph.

The maximum degree of π‘ƒπ‘›βŠ™ 𝐾1 are βˆ†(π‘ƒπ‘›βŠ™ 𝐾1) = 3 shown by 𝑣2, 𝑣3, … , π‘£π‘›βˆ’1 and the minimum degree of π‘ƒπ‘›βŠ™ 𝐾1 are Ξ΄(π‘ƒπ‘›βŠ™ 𝐾1) = 1 shown by 𝑒1, 𝑒2, … , 𝑒𝑛.

Define the mapping 𝑐 ∢ 𝑉 β†’ 𝑍+. Proof is carried out through three cases.

Case 1: For π‘Ÿ = 1, we use the following colorings as is:

𝑐(𝑣𝑖) = {1, π‘“π‘œπ‘Ÿ 𝑖 π‘œπ‘‘π‘‘

2, π‘“π‘œπ‘Ÿ 𝑖 𝑒𝑣𝑒𝑛 and 𝑐(𝑒𝑖) = {2, π‘“π‘œπ‘Ÿ 𝑖 π‘œπ‘‘π‘‘ 1, π‘“π‘œπ‘Ÿ 𝑖 𝑒𝑣𝑒𝑛

Thus we require 2 colors, that is Ο‡π‘Ÿ(π‘ƒπ‘›βŠ™ 𝐾1) = 2 for π‘Ÿ = 1.

Case 2: For π‘Ÿ = 2, we use the following colorings as is:

𝑐(𝑣𝑖) = {

𝑐(𝑣3π‘›βˆ’2) = 1 𝑐(𝑣3π‘›βˆ’1) = 2 𝑐(𝑣3𝑛) = 3

and 𝑐(𝑒𝑖) = {

𝑐(𝑒3π‘›βˆ’2) = 3 𝑐(𝑒3π‘›βˆ’1) = 1 𝑐(𝑒3𝑛) = 1

Thus we require 3 colors, that is Ο‡π‘Ÿ(π‘ƒπ‘›βŠ™ 𝐾1) = 3 for π‘Ÿ = 2.

Case 3: For π‘Ÿ = 3, we use the following colorings as is:

𝑐(𝑣𝑖) = {

𝑐(𝑣3π‘›βˆ’2) = 2 𝑐(𝑣3π‘›βˆ’1) = 3 𝑐(𝑣3𝑛) = 4

and 𝑐(𝑒𝑖) = {1}

Figure 2.1 Comb Graph π‘ƒπ‘›βŠ™ 𝐾1

(4)

Thus we require 4 colors, that is Ο‡π‘Ÿ(π‘ƒπ‘›βŠ™ 𝐾1) = 4 for π‘Ÿ = 3.

Theorem 2.1. Let 𝑛 β‰₯ 3, then the r-dynamic chromatic number of the central graph of comb graph 𝐢(π‘ƒπ‘›βŠ™ 𝐾1) is:

Ο‡π‘Ÿ(𝐢(π‘ƒπ‘›βŠ™ 𝐾1)) = {

𝑛,𝑛𝑛𝑛, π‘“π‘œπ‘Ÿ π‘Ÿ = 2

2𝑛,𝑛𝑛, π‘“π‘œπ‘Ÿ 2 ≀ π‘Ÿ ≀ βˆ† βˆ’ 1 2𝑛 + 3, π‘“π‘œπ‘Ÿ π‘Ÿ = βˆ†

Proof

Let the vertex set and edge set of the central graph of the comb graph 𝐢(π‘ƒπ‘›βŠ™ 𝐾1) are as follows:

𝑉(𝐢(π‘ƒπ‘›βŠ™ 𝐾1)) = {𝑣𝑖, 𝑒𝑖, π‘’β€²π‘–βˆΆ 1 ≀ 𝑖 ≀ 𝑛} βˆͺ {𝑣′𝑖: 1 < 𝑖 < 𝑛 βˆ’ 1} and 𝐸(𝐢(π‘ƒπ‘›βŠ™ 𝐾1)) = {𝑣𝑖𝑣′𝑖, 𝑣′𝑖𝑣𝑖+1 | 𝑖 = 1,2, 𝑛 βˆ’ 1} βˆͺ

{𝑣𝑖𝑒′𝑖, 𝑒′𝑖𝑒𝑖 | 𝑖 = 1,2, … , 𝑛} βˆͺ {𝑣𝑖𝑒𝑗 | 𝑖 β‰  𝑗} βˆͺ

{𝑒𝑖𝑒𝑗 | 𝑖 = 1,2, … , 𝑛 βˆ’ 1} βˆͺ {𝑣𝑖𝑣𝑗 | π‘£π‘–π‘£π‘—βˆ‰ 𝐸(π‘ƒπ‘›βŠ™ 𝐾1)}.

The maximum degree of 𝐢(π‘ƒπ‘›βŠ™ 𝐾1) are βˆ†(𝐢(π‘ƒπ‘›βŠ™ 𝐾1)) = 3 shown by 𝑣1, 𝑣2, … , 𝑣𝑛, 𝑒1, 𝑒2, … , 𝑒𝑛 and the minimum degree of 𝐢(π‘ƒπ‘›βŠ™ 𝐾1) are Ξ΄(𝐢(π‘ƒπ‘›βŠ™ 𝐾1)) = 1 shown by 𝑣′1, 𝑣′2, … , π‘£β€²π‘›βˆ’1, 𝑒′1, 𝑒′2, … , 𝑒′𝑛.

Define the mapping 𝑐 ∢ 𝑉 β†’ 𝑍+. Proof is carried out through three cases.

Case 1: For π‘Ÿ = 1, we use the following colorings as is:

𝑐(𝑣𝑖) = 𝑐(𝑒𝑖) = 𝑖, 1 ≀ 𝑖 ≀ 𝑛,

𝑐(𝑣′𝑖) = {4, π‘“π‘œπ‘Ÿ 𝑖 β‰  3,4, 1 ≀ 𝑖 ≀ 𝑛 βˆ’ 1 2, π‘“π‘œπ‘Ÿ 𝑖 = 3,4, 1 ≀ 𝑖 ≀ 𝑛 βˆ’ 1, and 𝑐(𝑒′𝑖) = {3, π‘“π‘œπ‘Ÿ 𝑖 β‰  3, 1 ≀ 𝑖 ≀ 𝑛

4, π‘“π‘œπ‘Ÿ 𝑖 = 3, 1 ≀ 𝑖 ≀ 𝑛.

Figure 2.2 Central Graph of Comb Graph 𝐢(π‘ƒπ‘›βŠ™ 𝐾1)

(5)

Case 2: For 2 ≀ π‘Ÿ ≀ βˆ† βˆ’ 1, we use the following colorings as is:

𝑐(𝑣𝑖) = 𝑖, 1 ≀ 𝑖 ≀ 𝑛,

𝑐(𝑣′𝑖) = 𝑐(𝑒𝑖) = 𝑖 + 𝑛, 1 ≀ 𝑖 ≀ 𝑛, and 𝑐(𝑒′𝑖) = { 𝑛, π‘“π‘œπ‘Ÿ 𝑖 = 1, 1 ≀ 𝑖 ≀ 𝑛 βˆ’ 1 𝑖 βˆ’ 1, π‘“π‘œπ‘Ÿ 2 ≀ 𝑖 ≀ 𝑛 βˆ’ 1 .

Case 3: For π‘Ÿ = βˆ†, we use the following colorings as is:

𝑐(𝑣𝑖) = 𝑖, 1 ≀ 𝑖 ≀ 𝑛,

𝑐(𝑣′𝑖) = { 2𝑛 + 2, π‘“π‘œπ‘Ÿ 𝑖 π‘œπ‘‘π‘‘ 2𝑛 + 3, π‘“π‘œπ‘Ÿ 𝑖 𝑒𝑣𝑒𝑛, 𝑐(𝑒𝑖) = 𝑖 + 𝑛, 1 ≀ 𝑖 ≀ 𝑛, and 𝑐(𝑒′𝑖) = 2𝑛 + 1, 1 ≀ 𝑖 ≀ 𝑛.

Theorem 2.2 Let 𝑛 β‰₯ 4, then the r-dynamic chromatic number of the middle graph of comb graph 𝑀(π‘ƒπ‘›βŠ™ 𝐾1) is:

Ο‡π‘Ÿ(𝑀(π‘ƒπ‘›βŠ™ 𝐾1)) β‰₯ { 4,444, π‘“π‘œπ‘Ÿ 1 ≀ π‘Ÿ ≀ 3 π‘Ÿ + 1, π‘“π‘œπ‘Ÿ 4 ≀ π‘Ÿ ≀ βˆ† Proof

Let the vertex set and edge set of the middle graph of the comb graph 𝑀(π‘ƒπ‘›βŠ™ 𝐾1) are as follows:

𝑉(𝑀(π‘ƒπ‘›βŠ™ 𝐾1)) = {𝑣𝑖, 𝑒𝑖, π‘’β€²π‘–βˆΆ 1 ≀ 𝑖 ≀ 𝑛} βˆͺ {𝑣′𝑖 ∢ 1 ≀ 𝑖 ≀ 𝑛 βˆ’ 1}

𝐸(𝑀(π‘ƒπ‘›βŠ™ 𝐾1)) = {𝑣𝑖𝑣′𝑖 | 𝑖 = 1,2, … , 𝑛 βˆ’ 1} βˆͺ

{𝑣′𝑖𝑣𝑖+1 | 𝑖 = 1,2, … , 𝑛 βˆ’ 1} βˆͺ {𝑣𝑖𝑒′𝑖 | 𝑖 = 1,2, … , 𝑛}

{𝑒′𝑖𝑒𝑖 | 𝑖 = 1,2, … , 𝑛} βˆͺ {𝑣′𝑖𝑣′𝑖+1 | 𝑖 = 1,2, … , 𝑛 βˆ’ 1}

{𝑣′𝑖𝑒′𝑖 | 𝑖 = 1,2, … , 𝑛 βˆ’ 1} βˆͺ {𝑣′𝑖𝑒′𝑖+1 | 𝑖 = 1,2, … , 𝑛 βˆ’ 1}.

Figure 2.3 Midlle Graph of Comb Graph 𝑀(π‘ƒπ‘›βŠ™ 𝐾1)

(6)

The maximum degree of 𝑀(π‘ƒπ‘›βŠ™ 𝐾1) are βˆ†(𝑀(π‘ƒπ‘›βŠ™ 𝐾1)) = 6 shown by 𝑣′2, 𝑣′3, … , π‘£β€²π‘›βˆ’2 and the minimum degree of 𝑀(π‘ƒπ‘›βŠ™ 𝐾1) are Ξ΄(𝑀(π‘ƒπ‘›βŠ™ 𝐾1)) = 1 shown by 𝑒1, 𝑒2, … , 𝑒𝑛.

Define the mapping 𝑐 ∢ 𝑉 β†’ 𝑍+. Proof is carried out through two cases.

Case 1: For 1 ≀ π‘Ÿ ≀ 3, we use the following colorings as is:

𝑐(𝑣𝑖) = {3, π‘“π‘œπ‘Ÿ 𝑖 π‘œπ‘‘π‘‘

4, π‘“π‘œπ‘Ÿ 𝑖 𝑒𝑣𝑒𝑛, 𝑐(𝑒𝑖) = 1, 𝑐(𝑣′𝑖) = {2, π‘“π‘œπ‘Ÿ 𝑖 π‘œπ‘‘π‘‘

1, π‘“π‘œπ‘Ÿ 𝑖 𝑒𝑣𝑒𝑛, 𝑐(𝑒′𝑖) = {4, π‘“π‘œπ‘Ÿ 𝑖 π‘œπ‘‘π‘‘ 3, π‘“π‘œπ‘Ÿ 𝑖 𝑒𝑣𝑒𝑛. Case 2: For 4 ≀ π‘Ÿ ≀ βˆ†;

Subcase (1): for π‘Ÿ = 4 we use the following colorings as is:

𝑐(𝑣𝑖) = {

𝑐(𝑣3π‘›βˆ’2) = 1 𝑐(𝑣3π‘›βˆ’1) = 2 𝑐(𝑣3𝑛) = 3

, 𝑐(𝑒𝑖) = {π‘Ÿ + 1, π‘“π‘œπ‘Ÿ 𝑖 π‘œπ‘‘π‘‘ π‘Ÿ, π‘“π‘œπ‘Ÿ 𝑖 𝑒𝑣𝑒𝑛,

𝑐(𝑣′𝑖) = {

𝑐(𝑣′3π‘›βˆ’2) = 3 𝑐(𝑣′3π‘›βˆ’1) = 1 𝑐(𝑣′3𝑛) = 2

, 𝑐(𝑒′𝑖) = {π‘Ÿ, π‘“π‘œπ‘Ÿ 𝑖 π‘œπ‘‘π‘‘ π‘Ÿ + 1, π‘“π‘œπ‘Ÿ 𝑖 𝑒𝑣𝑒𝑛. Subcase (2): for π‘Ÿ = 5 we use the following colorings as is:

𝑐(𝑣𝑖) = {2, π‘“π‘œπ‘Ÿ 𝑖 π‘œπ‘‘π‘‘

3, π‘“π‘œπ‘Ÿ 𝑖 𝑒𝑣𝑒𝑛, 𝑐(𝑒𝑖) = {π‘Ÿ + 1, π‘“π‘œπ‘Ÿ 𝑖 π‘œπ‘‘π‘‘ π‘Ÿ, π‘“π‘œπ‘Ÿ 𝑖 𝑒𝑣𝑒𝑛, 𝑐(𝑣′𝑖) = {1, π‘“π‘œπ‘Ÿ 𝑖 π‘œπ‘‘π‘‘

4, π‘“π‘œπ‘Ÿ 𝑖 𝑒𝑣𝑒𝑛, 𝑐(𝑒′𝑖) = {π‘Ÿ, π‘“π‘œπ‘Ÿ 𝑖 π‘œπ‘‘π‘‘ π‘Ÿ + 1, π‘“π‘œπ‘Ÿ 𝑖 𝑒𝑣𝑒𝑛. Subcase (3): for π‘Ÿ = βˆ† = 6 we use the following colorings as is:

𝑐(𝑣𝑖) = {

𝑐(𝑣5π‘›βˆ’4) = 4 𝑐(𝑣5π‘›βˆ’3) = 1 𝑐(𝑣5π‘›βˆ’2) = 5 𝑐(𝑣5π‘›βˆ’1) = 2 𝑐(𝑣5𝑛) = 3

, 𝑐(𝑣′𝑖) = {

𝑐(𝑣′5π‘›βˆ’4) = 2 𝑐(𝑣′5π‘›βˆ’3) = 3 𝑐(𝑣′5π‘›βˆ’2) = 4 𝑐(𝑣′5π‘›βˆ’1) = 1 𝑐(𝑣′5𝑛) = 5

,

𝑐(𝑒𝑖) = {π‘Ÿ + 1, π‘“π‘œπ‘Ÿ 𝑖 π‘œπ‘‘π‘‘

π‘Ÿ, π‘“π‘œπ‘Ÿ 𝑖 𝑒𝑣𝑒𝑛, 𝑐(𝑒′𝑖) = {π‘Ÿ, π‘“π‘œπ‘Ÿ 𝑖 π‘œπ‘‘π‘‘ π‘Ÿ + 1, π‘“π‘œπ‘Ÿ 𝑖 𝑒𝑣𝑒𝑛.

Theorem 2.3 Let 𝑛 β‰₯ 4, then the r-dynamic chromatic number of the line graph of comb graph 𝐿(π‘ƒπ‘›βŠ™ 𝐾1) is:

(7)

Ο‡π‘Ÿ(𝐿(π‘ƒπ‘›βŠ™ 𝐾1)) = {

3, π‘“π‘œπ‘Ÿ 1 ≀ π‘Ÿ ≀ 2 4, π‘“π‘œπ‘Ÿ π‘Ÿ = 2 5, π‘“π‘œπ‘Ÿ π‘Ÿ = 4 Proof

Let the vertex set and edge set of the line graph of the comb graph 𝐿(π‘ƒπ‘›βŠ™ 𝐾1) are as follows:

𝑉(𝐿(π‘ƒπ‘›βŠ™ 𝐾1)) = {𝑀1, 𝑀2, 𝑀3, … , 𝑀𝑛, 𝑀′1, 𝑀′2, 𝑀′3, … , π‘€β€²π‘›βˆ’1} dan

𝐸(𝐿(π‘ƒπ‘›βŠ™ 𝐾1)) = {𝑀′𝑖𝑀′𝑖+1 | 𝑖 = 1,2, … , 𝑛 βˆ’ 2} βˆͺ {𝑀′𝑖𝑀𝑖 |𝑖 = 1,2, … , 𝑛 βˆ’ 1} βˆͺ {𝑀′𝑖𝑀𝑖+1 | 𝑖 = 1,2, … , 𝑛 βˆ’ 1}.

The maximum degree of 𝐿(π‘ƒπ‘›βŠ™ 𝐾1) are βˆ†(𝐿(π‘ƒπ‘›βŠ™ 𝐾1)) = 4 shown by 𝑀2, 𝑀3, … , π‘€π‘›βˆ’2. and the minimum degree of 𝐿(π‘ƒπ‘›βŠ™ 𝐾1) are Ξ΄(𝐿(π‘ƒπ‘›βŠ™ 𝐾1)) = 1 shown by 𝑀1, and 𝑀𝑛.

Define the mapping 𝑐 ∢ 𝑉 β†’ 𝑍+. Proof is carried out through three cases.

Case 1: For 1 ≀ π‘Ÿ ≀ 2, we use the following colorings as is:

𝑐(𝑀𝑖) = 1, 𝑐(𝑀′2π‘–βˆ’1) = 2, and𝑐(𝑀′2𝑖) = 3.

Case 2: For π‘Ÿ = 3, we use the following colorings as is:

𝑐(𝑀𝑖) = {1, π‘“π‘œπ‘Ÿ 𝑖 π‘œπ‘‘π‘‘

3, π‘“π‘œπ‘Ÿ 𝑖 𝑒𝑣𝑒𝑛, and 𝑐(𝑀′𝑖) = {2, π‘“π‘œπ‘Ÿ 𝑖 π‘œπ‘‘π‘‘ 4, π‘“π‘œπ‘Ÿ 𝑖 𝑒𝑣𝑒𝑛. Case 3: For π‘Ÿ = βˆ†, we use the following colorings as is:

𝑐(𝑀𝑖) = {1, π‘“π‘œπ‘Ÿ 𝑖 π‘œπ‘‘π‘‘

3, π‘“π‘œπ‘Ÿ 𝑖 𝑒𝑣𝑒𝑛, and 𝑐(𝑀′𝑖) = {

𝑐(𝑀3π‘›βˆ’2) = 2 𝑐(𝑀3π‘›βˆ’1) = 4 𝑐(𝑀3𝑛) = 5 .

Theorem 2.4 Let 𝑛 β‰₯ 3, then the r-dynamic chromatic number of the subdivision graph of comb graph 𝑆(π‘ƒπ‘›βŠ™ 𝐾1) is:

Ο‡π‘Ÿ(𝑆(π‘ƒπ‘›βŠ™ 𝐾1)) = π‘Ÿ + 1, 1 ≀ π‘Ÿ ≀ 3 Proof

Figure 2.4 Line Graph of Comb Graph 𝐿(π‘ƒπ‘›βŠ™ 𝐾1)

(8)

Let the vertex set and edge set of the subdivision graph of the comb graph 𝑆(π‘ƒπ‘›βŠ™ 𝐾1) are as follows:

𝑉(𝑆(π‘ƒπ‘›βŠ™ 𝐾1)) = {𝑣𝑖, 𝑒𝑖, 𝑒′𝑖 ∢ 1 ≀ 𝑖 ≀ 𝑛} βˆͺ {π‘£β€²π‘–βˆΆ 1 ≀ 𝑖 ≀ 𝑛 βˆ’ 1} and

𝐸(𝑆(π‘ƒπ‘›βŠ™ 𝐾1)) = {𝑣𝑖𝑣′𝑖, 𝑣′𝑖𝑣𝑖+1 ; 1 ≀ 𝑖 ≀ 𝑛 βˆ’ 1} βˆͺ {𝑣𝑖𝑒′𝑖, 𝑒′𝑖𝑒𝑖 ; 1 ≀ 𝑖 ≀ 𝑛}.

The maximum degree of 𝑆(π‘ƒπ‘›βŠ™ 𝐾1) are βˆ†(𝑆(π‘ƒπ‘›βŠ™ 𝐾1)) = 3 shown by 𝑣2, 𝑣3, … , π‘£π‘›βˆ’1. and the minimum degree of 𝑆(π‘ƒπ‘›βŠ™ 𝐾1) are Ξ΄(𝑆(π‘ƒπ‘›βŠ™ 𝐾1)) = 1 shown by 𝑒1, 𝑒2, … , 𝑒𝑛.

Define the mapping 𝑐 ∢ 𝑉 β†’ 𝑍+. Proof is carried out through three cases.

Case 1: For π‘Ÿ = 1, we use the following colorings as is:

𝑐(𝑣𝑖) = 1, 𝑐(𝑣′𝑖) = 2, 𝑐(𝑒𝑖) = 1, and 𝑐(𝑒′𝑖) = 2.

Case 2: For π‘Ÿ = 2, we use the following colorings as is:

𝑐(𝑣𝑖) = {1, π‘“π‘œπ‘Ÿ 𝑖 π‘œπ‘‘π‘‘

2, π‘“π‘œπ‘Ÿ 𝑖 𝑒𝑣𝑒𝑛, 𝑐(𝑣′𝑖) = 3, 𝑐(𝑒𝑖) = 3, and 𝑐(𝑒′𝑖) = {2, π‘“π‘œπ‘Ÿ 𝑖 π‘œπ‘‘π‘‘ 1, π‘“π‘œπ‘Ÿ 𝑖 𝑒𝑣𝑒𝑛 Case 3: For π‘Ÿ = 3, we use the following colorings as is:

𝑐(𝑣𝑖) = { 1, π‘“π‘œπ‘Ÿ 𝑖 π‘œπ‘‘π‘‘

2, π‘“π‘œπ‘Ÿ 𝑖 𝑒𝑣𝑒𝑛, 𝑐(𝑣′𝑖) = { 3, π‘“π‘œπ‘Ÿ 𝑖 π‘œπ‘‘π‘‘ 4, π‘“π‘œπ‘Ÿ 𝑖 𝑒𝑣𝑒𝑛 𝑐(𝑒𝑖) = 4, and 𝑐(𝑒′𝑖) = { 2, π‘“π‘œπ‘Ÿ 𝑖 π‘œπ‘‘π‘‘

1, π‘“π‘œπ‘Ÿ 𝑖 𝑒𝑣𝑒𝑛.

Theorem 2.5 Let 𝑛 β‰₯ 3, then the r-dynamic chromatic number of the para-line graph of comb graph 𝑃(π‘ƒπ‘›βŠ™ 𝐾1) is:

Ο‡π‘Ÿ(𝑃(π‘ƒπ‘›βŠ™ 𝐾1)) = { 3, π‘“π‘œπ‘Ÿ 1 ≀ π‘Ÿ ≀ 2 4, π‘“π‘œπ‘Ÿ π‘Ÿ = βˆ† Proof

Let the vertex set and edge set of the para-line graph of the comb graph 𝑃(π‘ƒπ‘›βŠ™ 𝐾1) are as follows:

Figure 2.5 Subdivision Graph of Comb Graph 𝑆(π‘ƒπ‘›βŠ™ 𝐾1)

(9)

𝑉(𝑃(π‘ƒπ‘›βŠ™ 𝐾1)) = {𝑀𝑖 ; 1 ≀ 𝑖 ≀ 2𝑛} βˆͺ {𝑀′𝑖 ; 1 ≀ 𝑖 ≀ 2𝑛 βˆ’ 2} and

𝐸(𝑃(π‘ƒπ‘›βŠ™ 𝐾1)) = {𝑀𝑖𝑀𝑖+1 ; 1 ≀ 𝑖 ≀ 2𝑛} βˆͺ {𝑀′𝑖𝑀𝑖 |𝑖 = 1,3,5, … ,2𝑛 βˆ’ 3} βˆͺ {𝑀′𝑖+1𝑀𝑖+2 ; 1 ≀ 𝑖 ≀ 2𝑛 βˆ’ 3} βˆͺ {𝑀′𝑖𝑀′𝑖+1 ; 1 ≀ 𝑖 ≀ 2𝑛 βˆ’ 2}.

The maximum degree of 𝑃(π‘ƒπ‘›βŠ™ 𝐾1) are βˆ†(𝑃(π‘ƒπ‘›βŠ™ 𝐾1)) = 3 shown by 𝑀′2, 𝑀′3, … , π‘€β€²π‘›βˆ’1 and 𝑀′3, 𝑀′5, … , 𝑀′2π‘›βˆ’3, and the minimum degree of 𝑃(π‘ƒπ‘›βŠ™ 𝐾1) are Ξ΄(𝑃(π‘ƒπ‘›βŠ™ 𝐾1)) = 1 shown by 𝑀2, 𝑀4, … , 𝑀2𝑛.

Define the mapping 𝑐 ∢ 𝑉 β†’ 𝑍+. Proof is carried out through two cases.

Case 1: For 1 ≀ π‘Ÿ ≀ 2, we use the following colorings as is:

𝑐(𝑀𝑖) = { 2, π‘“π‘œπ‘Ÿ 𝑖 π‘œπ‘‘π‘‘

1, π‘“π‘œπ‘Ÿ 𝑖 𝑒𝑣𝑒𝑛, and 𝑐(𝑀′𝑖) = { 1, π‘“π‘œπ‘Ÿ 𝑖 π‘œπ‘‘π‘‘ 3, π‘“π‘œπ‘Ÿ 𝑖 𝑒𝑣𝑒𝑛. Case 2: For π‘Ÿ = βˆ†, we use the following colorings as is:

𝑐(𝑀𝑖) = {

𝑐(𝑀2π‘–βˆ’1) = 4 𝑐(𝑀6π‘–βˆ’6) = 2 𝑐(𝑀6π‘–βˆ’2) = 1 𝑐(𝑀6𝑖) = 3

and 𝑐(𝑀′𝑖) = {

𝑐(𝑀′3π‘–βˆ’2) = 1 𝑐(𝑀′3π‘–βˆ’1) = 2 𝑐(𝑀3𝑖) = 3 .

3. CONCLUSION

In this paper we have shown that comb graphs π‘ƒπ‘›βŠ™ 𝐾1 and some of their operations such as central graph, middle graph, line graph, subdivision graph, and para-line of the comb graph π‘ƒπ‘›βŠ™ 𝐾1 are r-dynamic graphs. The r-dynamic chromatic numbers of each graph are:

π‘ƒπ‘›βŠ™ 𝐾1:

Ο‡π‘Ÿ(π‘ƒπ‘›βŠ™ 𝐾1) = {

2, π‘“π‘œπ‘Ÿ π‘Ÿ = 1 3, π‘“π‘œπ‘Ÿ π‘Ÿ = 2 4, π‘“π‘œπ‘Ÿ π‘Ÿ = 3 𝐢(π‘ƒπ‘›βŠ™ 𝐾1):

Figure 2.5 Subdivision Graph of Comb Graph 𝑆(π‘ƒπ‘›βŠ™ 𝐾1)

(10)

Ο‡π‘Ÿ(𝐢(π‘ƒπ‘›βŠ™ 𝐾1)) = {

𝑛,𝑛𝑛𝑛, π‘“π‘œπ‘Ÿ π‘Ÿ = 2

2𝑛,𝑛𝑛, π‘“π‘œπ‘Ÿ 2 ≀ π‘Ÿ ≀ βˆ† βˆ’ 1 2𝑛 + 3, π‘“π‘œπ‘Ÿ π‘Ÿ = βˆ†

𝑀(π‘ƒπ‘›βŠ™ 𝐾1):

Ο‡π‘Ÿ(𝑀(π‘ƒπ‘›βŠ™ 𝐾1)) = { 4,444, π‘“π‘œπ‘Ÿ 1 ≀ π‘Ÿ ≀ 3 π‘Ÿ + 1, π‘“π‘œπ‘Ÿ 4 ≀ π‘Ÿ ≀ βˆ† 𝐿(π‘ƒπ‘›βŠ™ 𝐾1):

Ο‡π‘Ÿ(𝐿(π‘ƒπ‘›βŠ™ 𝐾1)) = {

3, π‘“π‘œπ‘Ÿ 1 ≀ π‘Ÿ ≀ 2 4, π‘“π‘œπ‘Ÿ π‘Ÿ = 2 5, π‘“π‘œπ‘Ÿ π‘Ÿ = 4 𝑆(π‘ƒπ‘›βŠ™ 𝐾1):

Ο‡π‘Ÿ(𝑆(π‘ƒπ‘›βŠ™ 𝐾1)) = π‘Ÿ + 1, 1 ≀ π‘Ÿ ≀ 3 𝑃(π‘ƒπ‘›βŠ™ 𝐾1):

Ο‡π‘Ÿ(𝑃(π‘ƒπ‘›βŠ™ 𝐾1)) = { 3, π‘“π‘œπ‘Ÿ 1 ≀ π‘Ÿ ≀ 2 4, π‘“π‘œπ‘Ÿ π‘Ÿ = βˆ†

REFERENCES

[1] Alishahi, M., 2012. Dynamic Chromatic Number of Regular Graphs.

Discrete Applied Mathematics, 160, 2098–2103.

[2] Alfian, Y. H., Ika. H. A., and Dafik, 2015. Pewarnaan Titik Pada Operasi Graf Sikel dengan Graf Lintasan. CGANT Universitas Jember

[3] Audi Fierera and Kiki A. Sugeng, 2021. Pewarnaan Simpul r-Dinamis pada Graf Teratai 𝑇

𝑛

. Ambon, Universitas Pattimura

[4] Chartrand, G., dan. Zhang.P., 2009. Chromatic Graph Theory of a Graph.

USA: CRC Press

[5] Frucht, R., dan Harary, F., 1970. On The Corona of Two Graphs. Vol. 4, Santa Maria University dan University of Michigan

[6] Harary, F., 1969. Graph Theory, Narosa Publishing Home, New Delhi.

[7] Hasmawati. 2020. Pengantar dan Jenis-Jenis Graf. UPT Unhas Press

[8] Kalaiselvi, K., Mohanapriya, and Vernold, V.J., 2021. On r-Dynamic

Coloring of Comb Graph. Vol. 27, 2021, No. 2, 191–200

(11)

[9] Lai, H. J., and Montgomery, B., 2001. Dynamic Coloring of Graphs. West Virginia University, Morgantown

[10] Lai, H. J., Montgomery, B., Poon, H., 2003. Upper Bounds of Dynamic Chromatic Number. Ars Combinatoria 68

[11] Michalak, D., 1983. On Middle and Total Graphs with Coarseness Number Equal 1. Lecture Notes in Mathematics, 1018, Springer Verlag Graph Theory, Lagow proceedings, Berlin Heidelberg, New York, Tokyo, 139–150.

[12] Muhammad,D.T., 2015. Nilai Kromatik dan Pewarnaan Titik r Dinamis pada Graf Khusus dan Shakel. Jember: Universitas Jember [13] Novian N.F., 2015. Pewarnaan Titik dan Sisi r-Dinamis Pada Graf Hasil Operasi Comb Sisi. Jombang.

[14] Slamin, 2009. Desain Jaringan Pendekatan Teori Graf. Jember: Universitas Jember.

[15] Taherkhani, A., 2016. r-Dynamic Chromatic Number of Graphs. Discrete Applied Mathematics, 201, 222-227

[16] Vernold V. J., 2007. Harmonious Coloring of Total Graphs, n-leaf,

Central Graphs and Circumdetic Graphs, Ph.D. Thesis, Bharathiar

University, Coimbatore, India.

Referensi

Dokumen terkait

Beside that, we also discuss the monotonicity property of the locating- chromatic number for the class of amalgamation of stars.. In this paper, we also investigate

This section discusses the Graph Coloring Problem Optimization Model Formulation, Optimization Uncertainty Model Formulation Graph Coloring Problem, Robust Counterpart Formulation

[1] studied the locating-chromatic number for amalgamation of stars, non homogeneous amalgamation of stars [4], and The locating-chromatic number of firecracker graphs [2],

[2] determined the locating-chromatic number for homogeneous firecracker graphs, Motivated by these results, we determine the locating-chromatic numbers of

Furthermore, labeling known as a vertex irregular total k-labeling and total vertex irregularity strength of graph is the minimumk for which the graph has a vertex irregular

In an undirected graph, a proper k, i-coloring is an assign- ment of a set of k colors to each vertex such that any two adjacent vertices have at most i common colors.. The k,

Yulianti, On the locating chromatic number of subdivision of barbell graphs containing generalized petersen graph, International Journal of Computer Science and Network Security, Vol..

Metode penelitian deduktif aksiomatik merupakan metode penelitian yang menggunakan prinsip-prinsip pembuktian deduktif yang biasanya berlaku pada logika matematika dengan menggunakan