• Tidak ada hasil yang ditemukan

View of Tensor product for g-fusion frame in hilbert $C^{\ast}-$modules

N/A
N/A
Protected

Academic year: 2024

Membagikan "View of Tensor product for g-fusion frame in hilbert $C^{\ast}-$modules"

Copied!
16
0
0

Teks penuh

(1)

Tensor product for g-fusion frame in Hilbert C

−modules

Fakhr-dine Nhari1, Mohamed Rossafi2, Youssef Aribou3

1Laboratory Analysis, Geometry and Applications Department of Mathematics, Faculty of Sci- ences, University of Ibn Tofail, Kenitra, Morocco

2Department of Mathematics, Faculty of Sciences, Dhar El Mahraz University Sidi Mohamed Ben Abdellah, P. O. Box 1796 Fez Atlas, Morocco

3Laayoune Higher School of Technology, Ibn Zohr University, Laayoune, Morocco

E-mail: 1[email protected], 2[email protected], 3[email protected]

Abstract.

In this paper, we stady the tensor product ofg−fusion frame in HilbertC−modules and we give the frame operator for a pair ofg−fusion Bessel sequences in tensor product of Hilbert C−modules.

Keywords: G-fusion Frame, tensor product, Hilbert C−module.

1. Introduction and Preliminaries

In the study of vector spaces one of the most important concepts is that of a basis, allowing each element in the space to be written as a linear combination of the elements in the basis.

However, the conditions to a basis are very restrictive: linear independence between the ele- ments. This makes it hard or even impossible to find bases satisfying extra conditions, and this is the reason that one might look for a more flexible substitute. Frames are such tools.

A frame for a vector space equipped with inner product also allows each element in the space to be written as a linear combination of the elements in the frame, but linear independence between the frame elements is not required.

Frames for Hilbert spaces were introduced by Duffin and schaefer [5] in 1952 to study some deep problems in nonharmonic fourier series by abstracting the fondamental notion of Gabor [6] for signal processing.

136

(2)

Tensor product for g-fusion frame in HilbertC−modules 137

Many generalizations of the concept of frame have been defined in HilbertC-modules [7,9, 11,12,13,14,15]

Tensor products have important applications, for example tensor products are useful in the approximation of multi-variate functions of combinations of univariate ones.

In this paper we consider the tensor product of HilbertC−modules and we generalize some of known results about frames to generalized-fusion frames in HilbertC−modules.

The paper is organized as follows, we continue this introductory section we briefly recall the definitions and basic properties of C−algebra and Hilbert C−modules. In section 2, we introduce the concept ofg−fusion frame, and gives an equivalent definition. In section 3, we introduce the concept of the tensor product of g−fusion frame and gives some properties.

Finally in section 4, we discuss the frame operator for a pair ofg−fusion Bessel sequences in tensor product of HilbertC−modules.

In the following we briefly recall the definitions and basic properties ofC-algebra, Hilbert A-modules. Our reference forC-algebras is [4,3]. For aC-algebraAifa∈ A is positive we writea≥0 andA+ denotes the set of positive elements ofA.

Definition 1.1. [3]. IfAis a Banach algebra, an involution is a mapa→a ofAinto itself such that for allaandb inAand all scalarsαthe following conditions hold:

(1) (a)=a.

(2) (ab)=ba.

(3) (αa+b)= ¯αa+b.

Definition 1.2. [3]. AC-algebraAis a Banach algebra with involution such that : kaak=kak2

for everyainA.

Example 1.3. B=B(H) the algebra of bounded operators on a Hilbert space, is aC-algebra, where for each operatorA,A is the adjoint of A.

Definition 1.4. [8]. LetA be a unital C-algebra andH be a left A-module, such that the linear structures ofA and U are compatible. H is a pre-Hilbert A-module if H is equipped with anA-valued inner producth., .i:H×H → A, such that is sesquilinear, positive definite and respects the module action. In the other words,

(i) hx, xi ≥0 for allx∈H andhx, xi= 0 if and only if x= 0.

(ii) hax+y, zi=ahx, zi+hy, zifor alla∈ Aandx, y, z∈H.

(iii) hx, yi=hy, xi for allx, y∈H.

136137

(3)

138 Fakhr-dine Nhari, Mohamed Rossafi and Youssef Aribou

For x ∈ H, we define ||x|| = ||hx, xi||12. If H is complete with ||.||, it is called a Hilbert A-module or a HilbertC-module overA.

Throughout this paper I and J are finite or countably infinite index sets, we fix the nota- tionsAand B for a given unitalC−algebras, H and K are the countably generated Hilbert A−module andB−module, respectively. Let{Hi}i∈I and{Kj}j∈J are the sequences of closed orthogonally complemented submodules of H and K, respectively. {Wi}i∈I and {Vj}j∈J are the sequences of HilbertC−modules. EndA(H, Wi) is a set of all adjointable operator from H toWi. In particularEndA(H) denote the set of all adjointable operators onH. PHi denote the orthogonal projection onto the closed submodule orthogonally complementedHi ofH.

Define the HilbertA−module

l2({Wi}i∈I) ={{xi}i∈I :xi ∈Wi,kX

i∈I

hxi, xiik<∞}

withA−valued inner producth{xi}i∈I,{yi}i∈Ii=P

i∈Ihxi, yii, where{xi}i∈I,{y}i∈I ∈l2({Wi}i∈I) Lemma 1.5. [2]. Let H and K two Hilbert A-modules and T ∈ EndA(H, K). Then the following statements are equivalent:

(i) T is surjective.

(ii) Tis bounded below with respect to norm, i.e., there ism >0such thatkTxk ≥mkxk for allx∈K.

(iii) T is bounded below with respect to the inner product, i.e., there is m0 >0 such that hTx, Txi ≥m0hx, xifor all x∈K.

Lemma 1.6. [1]. LetU andH two HilbertA-modules andT ∈EndA(U, H). Then:

(i) IfT is injective andT has closed range, then the adjointable mapTT is invertible and k(TT)−1k−1≤TT ≤ kTk2.

(ii) IfT is surjective, then the adjointable mapT T is invertible and k(T T)−1k−1≤T T≤ kTk2.

Lemma 1.7. [2] Let H be a Hilbert A-module over aC-algebraA, and T ∈EndA(H) such thatT=T. The following statements are equivalent:

(i) T is surjective.

(ii) There arem, M >0 such thatmkxk ≤ kT xk ≤Mkxk, for allx∈H.

(iii) There arem0, M0 >0 such that m0hx, xi ≤ hT x, T xi ≤M0hx, xifor allx∈H.

137138138

(4)

Tensor product for g-fusion frame in HilbertC−modules 139

2. g−fusion frame in HilbertC−modules We begin this section with the following lemma:

Lemma 2.1. Let {Hi}i∈I be a sequence of orthogonally complemented closed submodules of H andT ∈ EndA(H) invertible, if TT Hi ⊆Hi for each i∈I, then{T Hi}i∈I is a sequence of orthogonally complemented closed submodules andPHiT=PHiTPT Hi.

Proof. Firstly for each i∈I, T :Hi →T Hi is invertible, so each T Hi is a closed submodule of H. We show that H =T Hi⊕T(Hi). SinceH =T H, then for each x∈H, there exists y ∈ H sutch that x = T y. On the other hand y = u+v, for some u ∈ Hi and v ∈ Hi. Hencex=T u+T v, whereT u∈T HiandT v∈T(Hi), plainlyT Hi∩T(Hi) = (0), therefore H = T Hi ⊕T(Hi). Hence for every y ∈ Hi, z ∈ Hi we have TT y ∈ Hi and therefore hT y, T zi = hTT y, zi = 0, so T(Hi) ⊂ (T Hi) and consequently T(Hi) = (T Hi) witch implies thatT Hi is orthogonally complemented.

Letx∈Hwe havex=PT Hix+y, for somey∈(T Hi), thenTx=TPT Hix+Ty. Letv∈Hi

thenhTy, vi=hy, T vi= 0 thenTy ∈Hi and we havePHiTx=PHiTPT Hix+PHiTy, thenPHiTx=PHiTPT Hixthus implies that for eachi∈Iwe havePHiT=PHiTPT Hi.

Definition 2.2. Let{Hi}i∈I be a sequence of closed orthogonally complemented submodules ofH, {vi}i∈I be a familly of positive weights inA, i.e., eachvi is a positive invertible element from the center of the C−algebra A and Λi ∈ EndA(H, Wi) for all i ∈ I. We say that Λ ={Hii, vi}i∈I is ag−fusion frame forH if and only if there exists two constants 0< A≤ B <∞such that

(2.1) Ahx, xi ≤X

i∈I

vi2iPHix,ΛiPHixi ≤Bhx, xi, ∀x∈H.

The constantsAandBare called the lower and upper bounds ofg−fusion frame, respactively.

IfA =B then Λ is called tight g-fusion frame and ifA =B = 1 then we say Λ is a Parseval g−fusion frame. If Λ satisfies the inequality

X

i∈I

vi2iPHix,ΛiPHixi ≤Bhx, xi, ∀x∈H.

then it is called ag−fusion Bessel sequence with boundB in H.

Lemma 2.3. letΛ = (Hii, vi)i∈I be ag−fusion Bessel sequence forH with boundB. Then for each sequence{xi}i∈I ∈l2({Wi}i∈I), the seriesP

i∈IviPHiΛixiis converge unconditionally.

138139

(5)

140 Fakhr-dine Nhari, Mohamed Rossafi and Youssef Aribou

Proof. letJ be a finite subset ofI, then

||X

i∈J

viPHiΛixi||= sup

||y||=1

||hX

i∈J

viPHiΛixi, yi||

≤ ||X

i∈J

hxi, xii||12 sup

||y||=1

||X

i∈J

vi2iPHiy,ΛiPHiyi||12

≤√ B||X

i∈J

hxi, xii||12. And it follows thatP

j∈IvjPWjΛjfj is unconditionally convergent inH. Now, we can define the synthesis operator by lemma2.3

Definition 2.4. let Λ = (Hii, vi)i∈I be ag−fusion Bessel sequence forH. Then the operator TΛ:l2({Wi}i∈I)→H defined by

TΛ({xi}i∈I) =X

i∈I

viPWiΛixi, ∀{xi}i∈I ∈l2({Wi}i∈I).

Is called synthesis operator. We say the adjoint TΛ of the synthesis operator the analysis operator and it is defined byTΛ:H →l2({Wi}i∈I) such that

TΛ(x) ={viΛiPHi(x)}i∈I, ∀x∈H.

The operatorSΛ:H →H defined by SΛx=TΛTΛx=X

j∈I

v2iPHiΛiΛiPHi(x), ∀x∈H.

Is calledg−fusion frame operator. It can be easily verify that

(2.2) hSΛx, xi=X

i∈I

vi2iPHi(x),ΛiPHi(x)i, ∀x∈H.

Furthermore, if Λ is ag−fusion frame with boundsAandB, then Ahx, xi ≤ hSΛx, xi ≤Bhx, xi, ∀x∈H.

It easy to see that the operator SΛ is bounded, self-adjoint, positive, now we proof the inversibility ofSΛ. Letx∈H we have

||TΛ(x)||=||{viΛiPWi(x)}i∈I||=||X

i∈I

v2iiPHi(x),ΛiPHi(x)i||12. Since Λ isg−fusion frame then

√A||hx, xi||12 ≤ ||TΛx||.

Then

A||x|| ≤ ||TΛx||.

Frome lemma 1.5, TΛ is surjective and by lemma 1.6, TΛTΛ = SΛ is invertible. We now, AIH≤SΛ≤BIH and this givesB−1IH ≤SΛ−1≤A−1IH

139 140

(6)

Tensor product for g-fusion frame in HilbertC−modules 141

Theorem 2.5. Let H be a Hilbert A−module overC−algebra. ThenΛ = (Hii, vi)i∈I is a g−fusion frame forH if and only if there exist two constants0< A≤B <∞such that for all x∈H

A||hx, xi|| ≤ ||X

i∈I

v2iiPHix,ΛiPHixi|| ≤B||hx, xi||.

Proof. Suppose Λ isg−fusion frame forH, then for allx∈H, A||hx, xi|| ≤ ||X

i∈I

vi2iPHix,ΛiPHixi|| ≤B||hx, xi||

Conversely, for eachx∈H we have

||X

i∈I

vi2iPHix,ΛiPHixi||=||X

i∈I

hviΛiPHix, viΛiPHixi||

=||h{viΛiPHix}i∈I,{viΛiPHix}i∈Ii||

=||{viΛiPHix}i∈I||2.

We define the operatorL:H → ⊕i∈IWi byL(x) ={viΛiPHix}i∈I, then

||L(x)||2=||(viΛiPHix)i∈I||2≤B||x||2. LisA−linear bounded operator, then there existC >0 sutch that

hL(x), L(x)i ≤Chx, xi, ∀x∈ H.

So

X

j∈I

vi2iPHix,ΛiPHixi ≤Chx, xi, ∀x∈H.

Therefore Λ is a g−fusion Bessel sequence for H. Now we cant define the g−fusion frame operatorSΛ onH. So

X

j∈J

v2jjPWjx,ΛjPWjxi=hSΛx, xi, ∀x∈H.

SinceSΛ is positive, self-adjoint, then hSΛ12x, S

1 2

Λxi=hSΛx, xi, ∀x∈H.

That implies

A||hx, xi|| ≤ ||hSΛ12x, SΛ12xi|| ≤B||hx, xi||, ∀x∈H.

Frome lemma1.7there exist two canstantsA0, B0 >0 such that A0hx, xi ≤ hSΛ12x, S

1 2

Λxi ≤B0hx, xi, ∀f ∈H.

So

A0hx, xi ≤X

i∈I

vi2iPHix,ΛiPHixi ≤B0hx, xi, ∀x∈H.

Hence Λ is ag−fusion frame forH.

140141

(7)

142 Fakhr-dine Nhari, Mohamed Rossafi and Youssef Aribou

3. Tensor product ofg−fusion frame in HilbertC−modules

Suppose thatA,Bare unitalsC−algebras and we takeA ⊗ Bas the completion ofA ⊗algB with the spatial norm. A ⊗ B is the spatial tensor product of Aand B, also suppose that H is a HilbertA−module andK is a HilbertB−module. We want to defineH⊗K as a Hilbert (A ⊗ B)−module. Start by forming the algebraic tensor productH⊗algK of the vector spaces H, K (over C). This is a left module overh (A ⊗alg B) (the module action being given by (a⊗b)(x⊗y) =ax⊗by(a∈ A, b∈ B, x∈H, y∈K)). For (x1, x2 ∈H, y1, y2∈K) we define hx1⊗y1, x2⊗y2iA⊗B=hx1, x2iA⊗hy1, y2iB. We also know that forz=Pn

i=1xi⊗yiinH⊗algK we havehz, ziA⊗B=P

i,jhxi, xjiA⊗ hyi, yjiB≥0 and hz, ziA⊗B= 0 iffz= 0. This extends by linearity to an (A ⊗algB)−valued sesquilinear from onH⊗algK, which makesH⊗algK into a semi-inner-product module over the pre-C−algebra (A ⊗algB). The semi-inner-product on H⊗algKis actually an inner product. see [10]. ThenH⊗algKis an inner-product module over the pre-C−algebra (A ⊗algB), and we can perform the double completion discussed in chapter 1 of [10] to conclude that the completionH⊗K ofA ⊗algBis a Hilbert (A ⊗ B)−module. We callH⊗Kthe exterior tensor product ofH andK. WithH, Kas above, we wish to investigate the adjointable operators onH⊗K. Suppose thatS ∈EndA(H) andT ∈EndB(K). We define a linear operatorS⊗T onH⊗K byS⊗T(x⊗y) =Sx⊗T y (x∈H, y∈K). It is a routine verification that is S⊗T is the adjoint ofS⊗T, so in factS⊗T ∈EndA⊗B(H⊗K). We note that ifa∈ A+ andb∈ B+, thena⊗b∈(A ⊗ B)+. Plainly ifa, bare Hermitian elements ofAanda≤b, then for every positive elementxofB, we havea⊗x≥b⊗x.

Definition 3.1. Let{vi}i∈I,{wj}j∈J be two families of positive weights, i.e., each vi andwj are positive invertible elements of A, and Λi⊗Γj ∈ EndA(H ⊗K, Wi⊗Vj) for each i ∈ I and j ∈J. Then the family Λ⊗Γ = {Hi⊗Kji⊗Γj, viwj}i,j is saide to be a generalized fusion frame org−fusion frame forH⊗Kwith respect to{Hi⊗Kj}i,j if there exist constants 0< A≤B <∞such that for allx⊗y∈H⊗K

Ahx⊗y, x⊗yi ≤X

i,j

vi2wj2h(Λi⊗Γj)PHi⊗Kj(x⊗y),(Λi⊗Γj)PHi⊗Kj(x⊗y)i ≤Bhx⊗y, x⊗yi

where PHi⊗Kj is the orthogonal projection of H⊗K ontoHi⊗Kj. The constants A andB are called the frame bounds of Λ⊗Γ. IfA=B then it is called a tightg−fusion frame. If the family Λ⊗Γ satisfies the inequality, for eachx⊗y∈H⊗K

X

i,j

vi2wj2h(Λi⊗Γj)PHi⊗Kj(x⊗y),(Λi⊗Γj)PHi⊗Kj(x⊗y)i ≤Bhx⊗y, x⊗yi

then it is called ag−fusion Bessel sequence inH⊗Kwith boundB.

141142

(8)

Tensor product for g-fusion frame in HilbertC−modules 143

Definition 3.2. Fori∈I andj∈J, define the HilbertA ⊗ B−module l2({Wi⊗Vj}) ={{xi⊗yj}:xi⊗yj∈Wi⊗Vj,kX

i,j

hxi⊗yj, xi⊗yjik<∞}

with theA ⊗ B−valued inner product h{xi⊗yj},{x0i⊗yj0}i=X

i,j

hxi⊗yj, x0i⊗yj0i

=X

i,j

hxi, x0iiWi⊗ hyj, y0jiVj

=

X

i∈I

hxi, x0iiWi

X

j∈J

hyj, yj0iVj

=h{xi}i∈I,{x0i}i∈Iil2({Wi}i∈I)⊗ h{yj}j∈J,{yj}j∈Jil2({Vj}j∈J). Theorem 3.3. The familiesΛ ={Hii, vi}i∈I andΓ ={Kjj, wj}j∈J areg−fusion frames forH andK with respect to{Wi}i∈I and{Vj}j∈J, respectively if and only if the familyΛ⊗Γ = {Hi⊗Kji⊗Γj, viwj}i,j is ag−fusion frame for H⊗K with respect{Wi⊗Vj}i,j.

Proof. Suppose that Λ and Γ are g−fusion frame for H and K. Then there exist positive constants (A, B) and (C, D) such that

Akxk2≤ kX

i∈I

v2iiPHix,ΛiPHixiAk ≤Bkxk2,∀x∈H,

Ckyk2≤ kX

j∈J

w2jjPKjy,ΓjPKjyiBk ≤Dkyk2,∀y∈K, then,

ACkxk2kyk2≤ kX

i∈I

v2iiPHix,ΛiPHixiAkkX

j∈J

wj2jPKjy,ΓjPKjyiBk ≤BDkxk2kyk2,

hence,

ACkx⊗yk2≤ kX

i∈I

vi2iPHix,ΛiPHixiA⊗X

j∈J

w2jjPKjy,ΓjPKjyiBk ≤BDkx⊗yk2,

so,

ACkx⊗yk2≤ kX

i,j

v2iw2jiPHix⊗ΓjPKjy,ΛiPHix⊗ΓjPKjyik ≤BDkx⊗yk2.

Therefore, for eachx⊗y∈H⊗K ACkx⊗yk2≤ kX

i,j

vi2wj2h(Λi⊗Γj)PHi⊗Kj(x⊗y),(Λi⊗Γj)PHi⊗Kj(x⊗y)ik ≤BDkx⊗yk2, 142143

(9)

144 Fakhr-dine Nhari, Mohamed Rossafi and Youssef Aribou

we conclude that, Λ⊗Γ is a g−fusion frame forH ⊗K. Conversely, suppose that Λ⊗Γ is a g−fusion frame for H ⊗K, then there exist constants A, B > 0 such that for all x⊗y ∈ H⊗K− {0⊗0},

Akx⊗yk2≤ kX

i,j

v2iw2jh(Λi⊗Γj)PHi⊗Kj(x⊗y),(Λi⊗Γj)PHi⊗Kj(x⊗y)ik ≤Bkx⊗yk2,

then,

Akx⊗yk2≤ kX

i∈I

v2iiPHix,ΛiPHixiA⊗X

j∈J

w2jjPKjy,ΓjPKjyiBk ≤Bkx⊗yk2,

hence,

Akxk2kyk2≤ kX

i∈I

vi2iPHix,ΛiPHixiAkkX

j∈J

w2jjPKjy,ΓjPKjyiBk ≤Bkxk2kyk2,

So,

Akyk2 kP

j∈Jw2jjPKjy,ΓjPKjyiBkkxk2≤ kX

i∈I

v2iiPHix,ΛiPHixiAk,

and

kX

i∈I

v2iiPHix,ΛiPHixiAk ≤ Bkyk2 kP

j∈Jw2jjPKjy,ΓjPKjyiBkkxk2.

Therefore, Λ is ag−fusion frame forH. Similarly, it can be schown that Γ is ag−fusion frame

forK.

Definition 3.4. Let Λ⊗Γ ={Hi⊗Kji⊗Γj, viwj}i,j be ag−fusion frame forH⊗K. The synthesis operatorTΛΓ:l2({Wi⊗Vj})→H⊗K is given by

TΛΓ({xi⊗yj}) =X

i,j

viwjPHi⊗Kji⊗Γj)(xi⊗yj), ∀{xi⊗yj} ∈l2({Wi⊗Vj}).

And the frame operatorSΛ⊗Γ :H⊗K→H⊗Kis described by

SΛ⊗Γ(x⊗y) =X

i,j

(viwj)2PHi⊗Kji⊗Γj)i⊗Γj)PHi⊗Kj(x⊗y), ∀x⊗y∈H⊗K.

Theorem 3.5. If SΛ, SΓ and SΛ⊗Γ are the associated g−fusion frame operators and TΛ, TΓ

andTΛ⊗Γ are the synthesis operators ofg−fusion framesΛ,ΓandΛ⊗ΓforH,KandH⊗K, respectively, thenSΛ⊗Γ=SΛ⊗SΓ,SΛ⊗Γ−1 =S−1Λ ⊗SΓ−1, and ,TΛ⊗Γ=TΛ⊗TΓ,TΛ⊗Γ =TΛ⊗TΓ. 143144

(10)

Tensor product for g-fusion frame in HilbertC−modules 145

Proof. Let eachx⊗y∈H⊗K, we have

SΛ⊗Γ(x⊗y) =X

i,j

vi2wj2PHi⊗Kji⊗Γj)i⊗Γj)PHi⊗Kj(x⊗y)

=X

i,j

vi2wj2(PHi⊗Kj)(Λi⊗Γj)i⊗Γj)(PHi⊗PKj)(x⊗y)

=X

i,j

vi2wj2(PHiΛiΛiPHix)⊗(PKjΓjΓjPKjy)

= X

i∈I

v2iPHiΛiΛiPHix

⊗ X

j∈J

wj2PKjΓjΓjPKjy

=SΛx⊗SΓy

= (SΛ⊗SΓ)(x⊗y).

Then,SΛ⊗Γ=SΛ⊗SΓ, so SΛ⊗Γ−1 =SΛ−1⊗SΓ−1.

On the other hand, for each{xi⊗yj} ∈l2({Wi⊗Vj}), we have

TΛ⊗Γ({xi⊗yj}) =X

i,j

viwjPHi⊗Kji⊗Γj)(xi⊗yj)

=

X

i∈I

viPHiΛixi

X

j∈J

wjPKjΓjyj

=TΛ({xi})⊗TΓ({yj})

= (TΛ⊗TΓ)({xi⊗yj}).

this shows thatTΛ⊗Γ =TΛ⊗TΓ, henceTΛ⊗Γ =TΛ⊗TΓ.

Theorem 3.6. LetΛ ={Hii, vi}i∈I andΓ ={Kjj, wj}j∈J beg−fusion frames forH and K with g−fusion frame operators SΛ and SΓ, respectively. Then θ ={SΛ⊗Γ−1 (Hi⊗Kj),(Λi⊗ Γj)PHi⊗KjSΛ⊗Γ−1 , viwj}i,j is ag−fusion frame for H⊗K.

145144

(11)

146 Fakhr-dine Nhari, Mohamed Rossafi and Youssef Aribou

Proof. Let (A, B) and (C, D) be theg−fusion frame bounds of Λ and Γ, respectively. Now, we have for eachx⊗y∈H⊗K,

kX

i,j

vi2w2jh(Λi⊗Γj)PHi⊗KjSΛ⊗Γ−1 PS−1

Λ⊗Γ(Hi⊗Kj)(x⊗y),(Λi⊗Γj)PHi⊗KjS−1Λ⊗ΓPS−1

Λ⊗Γ(Hi⊗Kj)(x⊗y)ik

=kX

i,j

vi2w2ji⊗ΓjPHi⊗KjSΛ−1⊗SΓ−1PS−1

Λ Hi⊗PS−1

Γ Kj(x⊗y), Λi⊗ΓjPHi⊗KjSΛ−1⊗SΓ−1PS−1

Λ Hi⊗PS−1

Γ Kj(x⊗y)ik

=kX

i,j

vi2w2ji⊗ΓjPHi⊗PKjSΛ−1PS−1

Λ Hi⊗SΓ−1PS−1

Γ Kj(x⊗y), Λi⊗ΓjPHi⊗PKjSΛ−1PS−1

Λ Hi⊗SΓ−1PS−1

Γ Kj(x⊗y)ik

=kX

i,j

vi2w2jiPHiSΛ−1PS−1

Λ Hix⊗ΓjPKjSΓ−1PS−1

Γ Kjy,ΛiPHiSΛ−1PS−1

Λ Hix⊗ΓjPKjSΓ−1PS−1 Γ Kjyik

=kX

i,j

vi2w2jiPHiSΛ−1x⊗ΓjPKjSΓ−1y,ΛiPHiS−1Λ x⊗ΓjPKjSΓ−1yik

=kX

i,j

vi2w2jiPHiSΛ−1x,ΛiPHiSΛ−1xiA⊗ hΓjPKjSΓ−1y,ΓjPKjSΓ−1yiBk

=kX

i∈I

vi2iPHiSΛ−1x,ΛiPHiSΛ−1xiAkkX

i∈J

w2jjPKjSΓ−1y,ΓjPKjS−1Γ yiBk

≤BkSΛ−1xk2DkSΓ−1yk2

≤ BD

(AC)2kx⊗yk2.

On the other hand for eachx⊗y∈H⊗K,

kx⊗yk4=khx, xiAk2khy, yiBk2

=khX

i∈I

vi2PHiΛiΛiPHiSΛ−1x, xiAk2khX

i∈J

wj2PKjΓjΓjPKjSΓ−1y, yiBk2

=kX

i∈I

vi2iPHiS−1Λ x,ΛiPHixiAk2kX

j∈J

wj2jPKjS−1y,ΓjPKjyiBk2

≤ kX

i∈I

vi2iPHiS−1Λ x,ΛiPHiSΛ−1xiAkkX

i∈I

vi2iPHix,ΛiPHixiAk kX

j∈J

wj2jPKjSΓ−1y,ΓjPKjSΓ−1yiBkkX

j∈J

w2jjPKjy,ΓjPKjyiBk

≤BDkxk2kyk2kX

i∈I

v2iiPHiSΛ−1PS−1

Λ Hix,ΛiPHiSΛ−1PS−1

Λ HixiAk kX

j∈J

wj2jPKjSΓ−1PS−1

Γ Kjy,ΓjPKjSΓ−1PS−1

Γ KjyiBk

=BDkx⊗yk2kX

i,j

(viwj)2h(Λi⊗Γj)PHi⊗KjSΛ⊗Γ−1 PS−1

Λ⊗Γ(Hi⊗Kj)(x⊗y)k,

145146

(12)

Tensor product for g-fusion frame in HilbertC−modules 147

hence, 1

BDkx⊗yk2≤ kX

i,j

(viwj)2h(Λi⊗Γj)PHi⊗KjSΛ⊗Γ−1 PS−1

Λ⊗Γ(Hi⊗Kj)(x⊗y)k.

Therefore,θis a g−fusion frame forH⊗K.

Proposition 3.7. For the g−fusion frameθ, frame operator isSΛ⊗Γ−1 . Proof. We putG= (Λi⊗Γj)PHi⊗KjSΛ⊗Γ−1 , then

GG= ((Λi⊗Γj)PHi⊗KjSΛ⊗Γ−1 )i⊗Γj)PHi⊗KjSΛ⊗Γ−1

= (SΛ−1⊗SΓ−1)(PHi⊗PKj)(Λi ⊗Γj)(Λi⊗Γj)(PHi⊗PKj)(SΛ−1⊗SΓ−1)

=S−1Λ PHiΛiΛiPHiSΛ−1⊗SΓ−1PKjΓjΓjPKjSΓ−1 hence,

PS−1

Λ⊗Γ(Hi⊗Kj)GGPS−1

Λ⊗Γ(Hi⊗Kj)

= PS−1

Λ Hi⊗PS−1 Γ Kj

GG PS−1

Λ Hi⊗PS−1 Γ Kj

=PS−1

Λ HiSΛ−1PHiΛiΛiPHiSΛ−1PS−1

Λ Hi⊗PS−1

Γ KjSΓ−1PKjΓjΓjPKjSΓ−1PS−1

Γ Kj

= (PHiSΛ−1)ΛiΛiPHiSΛ−1⊗(PKjSΓ−1)ΓjΓjPKjSΓ−1

=SΛ−1PHiΛiΛiPHiSΛ−1⊗SΓ−1PKjΓjΓjPKjSΓ−1. So, for eachx⊗y∈H⊗K, we have

X

i,j

v2iw2jPS−1

Λ⊗Γ(Hi⊗Kj)GGPS−1

Λ⊗Γ(Hi⊗Kj)(x⊗y)

=X

i,j

vi2w2j SΛ−1PHiΛiΛiPHiS−1Λ ⊗SΓ−1PKjΓjΓjPKjSΓ−1 (x⊗y)

=

X

i∈I

v2iSΛ−1PHiΛiΛiPHiSΛ−1x

X

j∈J

wj2SΓ−1PKjΓjΓjPKjSΓ−1y

=SΛ−1SΛ(SΛ−1x)⊗S−1Γ SΓ(SΓ−1y)

=SΛ−1x⊗SΓ−1y

= (SΛ−1⊗SΓ−1)(x⊗y)

=SΛ⊗Γ−1 (x⊗y),

we conclude that the correspondingg−fusion frame forθ isSΛ⊗Γ−1 . Theorem 3.8. LetΛ ={Hii, vi}i∈I0 ={Hi00i, v0i}i∈I beg−fusion Bessel sequences with bounds B, D, respectively in H and Γ = {Kjj, wj}j∈J, Γ0 = {Kj00j, w0j}j∈J be g−fusion Bessel sequence with boundsE, F, respectively inK. Suppose(TΛ, TΛ0)and(TΓ, TΓ0)are their

146147

(13)

148 Fakhr-dine Nhari, Mohamed Rossafi and Youssef Aribou

synthesis operators such that TΛ0TΛ = IH and TΓT

Γ0 = IK. Then Λ⊗Γ = {Hi⊗Kji⊗ Γj, viwj}i,j andΛ0⊗Γ0 ={Hi0⊗Kj00i⊗Γ0j, v0iw0j}i,j areg−fusion frames forH⊗K.

Proof. By theorem3.3, Λ⊗Γ and Λ0⊗Γ0 areg−fusion Bessel sequences, respectively inH⊗K.

Now, for eachx⊗y∈H⊗K,

kx⊗yk4=khx, xiAk2khy, yiBk2

=khTΛx, TΛ0xiAk2khTΓy, TΓ0yiBk2

≤ kTΛxk2kTΛ0xk2kTΓyk2kTΓ0yk2

≤DFkxk2kyk2kX

i∈I

vi2iPHix,ΛiPHixiAkkX

j∈J

w2jjPKjy,ΓjPKjyiBk

=DFkx⊗yk2kX

i,j

v2iw2jiPHix,ΛiPHixiA⊗ hΓjPKjy,ΓjPKjyiBk

=DFkx⊗yk2kX

i,j

v2iw2jh(Λi⊗Γj)PHi⊗Kj(x⊗y),(Λi⊗Γj)PHi⊗Kj(x⊗y)ik,

then, 1

DFkx⊗yk2≤ kX

i,j

vi2wj2h(Λi⊗Γj)PHi⊗Kj(x⊗y),(Λi⊗Γj)PHi⊗Kj(x⊗y)ik.

Therefore, Λ⊗Γ is ag−fusion frame forH⊗K. Similarly, it can be shown that Λ0⊗Γ0 is also

ag−fusion frame forH⊗K.

4. Frame operator for a pair ofg−fusion Bessel sequences in tensor product of HilbertC−modules

Definition 4.1. Let Λ⊗Γ ={Hi⊗Kji⊗Γj, viwj}i,jand Λ0⊗Γ0 ={Hi0⊗Kj00i⊗Γ0j, vi0wj0}i,j

be twog−fusion Bessel sequences in H⊗K. Then the operatorS:H⊗K→H⊗K defined by for allx⊗y∈H⊗K,

S(x⊗y) =X

i,j

viwjv0iw0jPHi⊗Kji⊗Γj)0i⊗Γ0j)PH0

i⊗K0j(x⊗y)

is called the frame operator for the pair ofg−fusion Bessel sequences Λ⊗Γ and Λ0⊗Γ0.

Theorem 4.2. Let SΛΛ0 and SΓΓ0 be the frame operators for the pair of g−fusion Bessel sequences

Λ ={Hii, vi}i∈I0 ={Hi00i, v0i}j∈J

and

Γ ={Kjj, wj}j∈J, Γ0 ={Kj00j, w0j}j∈J

inH andK, respectively. ThenS=SΛΛ0 ⊗SΓΓ0.

147 148

Referensi

Dokumen terkait