• Tidak ada hasil yang ditemukan

Volume 9 Nomor 2 Desember 2015

N/A
N/A
Nguyแป…n Gia Hร o

Academic year: 2023

Membagikan "Volume 9 Nomor 2 Desember 2015"

Copied!
7
0
0

Teks penuh

(1)

Volume 9 Nomor 2 Desember 2015

(2)

103

THE ENTIRE FACE IRREGULARITY STRENGTH OF A BOOK WITH POLYGONAL PAGES

Meilin I. Tilukay1, Venn Y. I. Ilwaru2

1,2Jurusan Matematika FMIPA Universitas Pattimura Jl. Ir. M. Putuhena, Kampus Unpatti, Poka-Ambon, Indonesia

e-mail: 1[email protected]

Abstract

A face irregular entire labeling is introduced by Baca et al. recently, as a modification of the well-known vertex irregular and edge irregular total labeling of graphs and the idea of the entire colouring of plane

graph. A face irregular entire k-labeling ๐œ†: ๐‘‰ โˆช ๐ธ โˆช ๐น โ†’ {1, 2, โ‹ฏ , ๐‘˜} of a 2-connected plane graph ๐บ = (๐‘‰, ๐ธ, ๐น) is a labeling of vertices, edges, and faces of ๐บ such that for any two different faces ๐‘“ and ๐‘”, their weights ๐‘ค๐œ†(๐‘“) and ๐‘ค๐œ†(๐‘“) are distinct. The minimum ๐‘˜ for which a plane graph ๐บ has a face irregular entire ๐‘˜-labeling is called the entire face irregularity strength of ๐บ, denoted by ๐‘’๐‘“๐‘ (๐บ).

This paper deals with the entire face irregularity strength of a book with ๐‘š ๐‘›-polygonal pages, where embedded in a plane as a closed book with ๐‘› โˆ’sided external face.

Keywords and phrases:Book, entire face irregularity strength, face irregular entire ๐’Œ-labeling, plane graph, polygonal page.

NILAI KETAKTERATURAN SELURUH MUKA GRAF BUKU SEGI BANYAK

Abstrak

Pelabelan tak teratur seluruh muka diperkenalkan oleh Baca et al. baru-baru ini, sebagai suatu modifikasi atas pelabelan total tak teratur titik dan tak teratur sisi suatu graf serta ide tentang pewarnaan lengkap pada graf bidang. Pelabelan ๐‘˜- tak teratur seluruh muka ๐œ†: ๐‘‰ โˆช ๐ธ โˆช ๐น โ†’ {1, 2, โ‹ฏ , ๐‘˜} dari suatu graf bidang 2-connected ๐บ = (๐‘‰, ๐ธ, ๐น) adalah suatu pelabelan seluruh titik, sisi, dan muka internal dari ๐บ sedemikian sehingga untuk sebarang dua muka ๐‘“ and ๐‘” berbeda, bobot muka ๐‘ค๐œ†(๐‘“) and ๐‘ค๐œ†(๐‘“) juga berbeda. Bilangan bulat terkecil ๐‘˜ sedemikian sehingga suatu graf bidang ๐บ memiliki suatu pelabelan ๐‘˜-tak teratur seluruh muka disebut nilai ketakteraturan seluruh muka dari ๐บ, dinotasikan oleh ๐‘’๐‘“๐‘ (๐บ).

Kami menentukan nilai eksak dari nilai ketakteraturan seluruh muka graf buku segi-๐‘›, dimana pada bidang datar dapat digambarkan seperti suatu buku tertutup.

Kata Kunci: Graf bidang, graf buku segi-๐’, nilai ketakteraturan seluruh muka, pelabelan lengkap ๐’Œ-tak teratur muka.

1. Introduction

Let ๐บ be a finite, simple, undirected graph with vertex set ๐‘‰(๐บ)and edge set ๐ธ(๐บ). A total labeling of ๐บ is a mapping that sends ๐‘‰ โˆช ๐ธ to a set of numbers (usually positive or nonnegative integers). According to the condition defined in a total labeling, there are many types of total labeling have been investigated.

Baca, Jendrol, Miller, and Ryan in [1] introduced a vertex irregular and edge irregular total labeling of graphs. For any total labeling ๐‘“: ๐‘‰ โˆช ๐ธ โ†’ {1, 2, โ€ฆ , ๐‘˜}, the weight of a vertex ๐‘ฃ and the weight of an edge ๐‘’ = ๐‘ฅ๐‘ฆ are defined by ๐‘ค(๐‘ฃ) = ๐‘“(๐‘ฃ) + โˆ‘๐‘ข๐‘ฃโˆˆ๐ธ๐‘“(๐‘ข๐‘ฃ) and ๐‘ค(๐‘ฅ๐‘ฆ) = ๐‘“(๐‘ฅ) + ๐‘“(๐‘ฆ) + ๐‘“(๐‘ฅ๐‘ฆ), respectively. If all the vertex weights are distinct, then ๐‘“ is called a vertex irregular total ๐‘˜-labeling, and if all the edge weights are distinct, then ๐‘“ is called an edge irregular total ๐‘˜-labeling. The minimum value of ๐‘˜ for which there exist a vertex (an edge) irregular total labeling ๐‘“: ๐‘‰ โˆช ๐ธ โ†’ {1, 2, โ€ฆ , ๐‘˜} is called the total vertex (edge) irregularity

(3)

104 Tilukay & Ilwaru | The Entire Face Irregularity Strength of a Book with Polygonal Pages

strength of ๐บ and is denoted by ๐‘ก๐‘ฃ๐‘ (๐บ) (๐‘ก๐‘’๐‘ (๐บ)), respectively. There are several bounds and exact values of ๐‘ก๐‘ฃ๐‘  and ๐‘ก๐‘’๐‘  were determined for different types of graphs given in [1] and listed in [2].

Furthermore, Ivanco and Jendrol in [3] posed a conjecture that for arbitrary graph ๐บ different from ๐พ5 and maximum degree โˆ†(๐บ),

๐‘ก๐‘’๐‘ (๐บ) = ๐‘š๐‘Ž๐‘ฅ {โŒˆ|๐ธ(๐บ)| + 2

3 โŒ‰ , โŒˆโˆ†(๐บ) + 1 2 โŒ‰}.

Combining previous conditions on irregular total labeling, Marzuki et al. [4] defined a totally irregular total labeling. A total ๐‘˜-labeling ๐‘“: ๐‘‰ โˆช ๐ธ โ†’ {1, 2, โ€ฆ , ๐‘˜} of ๐บ is called a totally irregular total ๐‘˜-labeling if for any pair of vertices ๐‘ฅ and ๐‘ฆ, their weights ๐‘ค(๐‘ฅ) and ๐‘ค(๐‘ฆ) are distinct and for any pair of edges ๐‘ฅ1๐‘ฅ2 and ๐‘ฆ1๐‘ฆ2, their weights ๐‘ค(๐‘ฅ1๐‘ฅ2) and ๐‘ค(๐‘ฆ1๐‘ฆ2) are distinct. The minimum ๐‘˜ for which a graph ๐บ has totally irregular total labeling, is called total irregularity strength of ๐บ, denoted by ๐‘ก๐‘ (๐บ). They have proved that for every graph ๐บ,

๐‘ก๐‘ (๐บ) โ‰ฅmax{๐‘ก๐‘’๐‘ (๐บ), ๐‘ก๐‘ฃ๐‘ (๐บ)} (6)

Several upper bounds and exact values of ๐‘ก๐‘  were determined for different types of graphs given in [4], [5], [6], and [7].

Motivated by this graphs invariants, Baca et al. in [8] studied irregular labeling of a plane graph by labeling vertices, edges, and faces then considering the weights of faces. They defined a face irregular entire labeling.

A 2-connected plane graph ๐บ = (๐‘‰, ๐ธ, ๐น) is a particular drawing of planar graph on the Euclidean plane where every face is bound by a cycle. . Let ๐บ = (๐‘‰, ๐ธ, ๐น) be a plane graph.

A labeling ๐œ† โˆถ ๐‘‰ โˆช ๐ธ โˆช ๐น โ†’ {1, 2, โ‹ฏ , ๐‘˜} is called a face irregular entire ๐‘˜-labeling of the plane graph ๐บ if for any two distinct faces ๐‘“ and ๐‘” of ๐บ, their weights ๐‘ค๐œ†(๐‘“) and ๐‘ค๐œ†(๐‘“) are distinct. The minimum ๐‘˜ for which a plane graph ๐บ has a face irregular entire ๐‘˜-labeling is called the entire face irregularity strength of ๐บ, denoted by ๐‘’๐‘“๐‘ (๐บ). The weight of a face ๐‘“ under the labeling ๐œ† is the sum of labels carried by that face and the edges and vertices of its boundary. They also provided the boundaries of ๐‘’๐‘“๐‘ (๐บ).

Teorema A. Let ๐บ = (๐‘‰, ๐ธ, ๐น) be a 2-connected plane graph ๐บ with ๐‘›๐‘– ๐‘–-sided faces, ๐‘– โ‰ฅ 3.

Let ๐‘Ž = min{๐‘–|๐‘›๐‘–โ‰  0} and ๐‘ = max{๐‘–|๐‘›๐‘– โ‰  0}. Then

โŒˆ2๐‘Ž + ๐‘›3+ ๐‘›4+ โ‹ฏ + ๐‘›๐‘

2๐‘ + 1 โŒ‰ โ‰ค ๐‘’๐‘“๐‘ (๐บ) โ‰ค max{๐‘›๐‘–|3 โ‰ค ๐‘– โ‰ค ๐‘}.

For ๐‘›๐‘= 1, they gave the lower bound as follow

Teorema B. Let ๐บ = (๐‘‰, ๐ธ, ๐น) be a 2-connected plane graph ๐บ with ๐‘›๐‘– ๐‘–-sided faces, ๐‘– โ‰ฅ 3. Let ๐‘Ž = min{๐‘–|๐‘›๐‘– โ‰  0}, ๐‘ = max{๐‘–|๐‘›๐‘– โ‰  0}, ๐‘›๐‘= 1 and ๐‘ = max{๐‘–|๐‘›๐‘–โ‰  0, ๐‘– < ๐‘}. Then

๐‘’๐‘“๐‘ (๐บ) โ‰ฅ โŒˆ2๐‘Ž + |๐น| โˆ’ 1 2๐‘ + 1 โŒ‰.

Moreover, by considering the maximum degree of a 2-connected plane graph ๐บ, they obtained the following theorem.

Theorem C. Let ๐บ = (๐‘‰, ๐ธ, ๐น) be a 2-connected plane graph ๐บ with maximum degree โˆ†. Let ๐‘ฅ be a vertex of degree โˆ† and let the smallest (and biggest) face incident with ๐‘ฅ be an ๐‘Ž-sided (and a ๐‘-sided) face, respectively.

Then

๐‘’๐‘“๐‘ (๐บ) โ‰ฅ โŒˆ2๐‘Ž + โˆ† โˆ’ 1 2๐‘ โŒ‰.

They proved that Theorem B is tight for Ladder graph ๐ฟ๐‘›, ๐‘› โ‰ฅ 3, and its variation and Theorem C is

tight for wheel graph ๐‘Š๐‘›, ๐‘› โ‰ฅ 3. In this paper, we determine the exact value of ๐‘’๐‘“๐‘  of a book with ๐‘š ๐‘›-polygonal pages which is greater than the lower bound given in Theorem A - C.

(4)

2. Main Results

Considering Theorem C, ๐‘’๐‘“๐‘ (๐‘Š๐‘›), and a condition where every face of a plane graph shares common vertices or edges, our first result provide a lower bound of the entire face irregularity strength of a graph with this condition. This can be considered as generalization of Theorem A, B, and C.

Lemma 2.1. Let ๐บ = (๐‘‰, ๐ธ, ๐น) be a 2-connected plane graph with ๐‘›๐‘– ๐‘–-sided faces, ๐‘– โ‰ฅ 3. Let ๐‘Ž = min{๐‘–| ๐‘›๐‘– โ‰  0}, ๐‘ = max{๐‘–| ๐‘›๐‘–โ‰  0}, ๐‘ = ๐‘š๐‘Ž๐‘ฅ{๐‘–| ๐‘›๐‘– โ‰  0, ๐‘– < ๐‘}, and ๐‘‘ be the number of common labels

of vertices and edges which have bounded every face of ๐บ. Then

๐‘’๐‘“๐‘ (๐บ) โ‰ฅ {

โŒˆ2๐‘Ž + |๐น| โˆ’ ๐‘‘ โˆ’ 1

2๐‘ โˆ’ ๐‘‘ + 1 โŒ‰ , for ๐‘›๐‘= 1,

โŒˆ2๐‘Ž + |๐น| โˆ’ ๐‘‘

2๐‘ โˆ’ ๐‘‘ + 1 โŒ‰ , otherwise.

Proof. Let ๐œ† โˆถ ๐‘‰ โˆช ๐ธ โˆช ๐น โ†’ {1, 2, โ‹ฏ , ๐‘˜} be a face irregular entire ๐‘˜-labeling of 2-connected plane graph ๐บ = (๐‘‰, ๐ธ, ๐น) with ๐‘’๐‘“๐‘ (๐บ) = ๐‘˜. Our first proof is for ๐‘›๐‘โ‰  1. By Theorem A, the minimum face-weight is at least 2๐‘Ž + 1 and the maximum face-weight is at least 2๐‘Ž + |๐น|. Since ๐บ is 2-connected, each face of ๐บ is a cycle. It implies that every face might be bounded by common vertices and edges.

Let ๐‘‘ be the number of common labels of vertices and edges which have bounded every face of ๐บ and ๐ท be the sum of all common labels. Then the face-weights ๐‘ค๐œ†(๐‘“1), ๐‘ค๐œ†(๐‘“1), โ‹ฏ , ๐‘ค๐œ†(๐‘“|๐น|) are all distinct and each of them contains ๐ท, implies the variation of face-weights is depend on 2๐‘Ž โˆ’ ๐‘‘ + 2 โ‰ค ๐‘– โ‰ค 2๐‘ โˆ’ ๐‘‘ + 1 labels.

Without adding ๐ท, the maximum sum of a face label and all vertices and edges-labels surrounding it is at least 2๐‘Ž + |๐น| โˆ’ ๐‘‘. This is the sum of at most 2๐‘ โˆ’ ๐‘‘ + 1 labels. Thus, we have efs(G) โ‰ฅ โŒˆ2๐‘Ž+|๐น|โˆ’๐‘‘

2๐‘โˆ’๐‘‘+1โŒ‰.

For ๐‘›๐‘= 1, it is a direct consequence from Theorem B with the same reason as in the result above. โˆŽ This lower bound is tight for ladder graphs and its variation and wheels given in [8].

A book with ๐‘š ๐‘›-polygonal pages ๐ต๐‘š๐‘›, ๐‘š โ‰ฅ 1, ๐‘› โ‰ฅ 3, is a plane graph obtained from ๐‘š-copies of cycle ๐ถ๐‘› that share a common edge. There are many ways drawing ๐ต๐‘š๐‘› for which the external face of ๐ต๐‘š๐‘› can be an ๐‘›-sided face or a (2๐‘› โˆ’ 2)-sided face.

By considering that topologically, ๐ต๐‘š๐‘› can be drawn on a plane as a closed book such that ๐ต๐‘š๐‘› has an ๐‘›-sided external face, an ๐‘›-sided internal face, and ๐‘š โˆ’ 1 number of (2๐‘› โˆ’ 2)-sided internal faces, the

entire face irregularity strength of ๐ต๐‘š๐‘› is provided in the next theorem.

Theorem 2.2. For ๐ต๐‘š๐‘›, ๐‘š โ‰ฅ 1, ๐‘› โ‰ฅ 3, be a book with ๐‘š ๐‘›-polygonal pages whose an ๐‘›-sided external face, an ๐‘›-sided internal face, and ๐‘š โˆ’ 1 (2๐‘› โˆ’ 2)-sided internal faces, we have

๐‘’๐‘“๐‘ (๐ต๐‘š ๐‘›) = {

2, for ๐‘š โˆˆ {1, 2};

โŒˆ4๐‘› + ๐‘š โˆ’ 7

4๐‘› โˆ’ 5 โŒ‰ , otherwise.

Proof. Let ๐ต๐‘š๐‘›, ๐‘š โ‰ฅ 1, ๐‘› โ‰ฅ 3, be a 2-connected plane graph. For ๐‘š โˆˆ {1, 2}, by Lemma 2.1, we have ๐‘’๐‘“๐‘ (๐ต๐‘š ๐‘›) โ‰ฅ 2. Labeling the ๐‘›-sided external face by label 2 and all the rests by label 1, then all face-weights are distinct. Thus, ๐‘’๐‘“๐‘ (๐ต๐‘š ๐‘›) = 2.

Now for ๐‘š > 2, let ๐‘ง = ๐‘’๐‘“๐‘ (๐ต๐‘š ๐‘›). Since every internal face of ๐ต๐‘š๐‘› shares 2 common vertices, ๐‘Ž = ๐‘›, ๐‘ = 2๐‘› โˆ’ 2, and ๐‘›๐‘ > 1, by Lemma 2.1, we have ๐‘ง โ‰ฅ โŒˆ2๐‘Ž+|๐น|โˆ’2

2๐‘โˆ’1 โŒ‰ = โŒˆ2๐‘›+๐‘šโˆ’14๐‘›โˆ’5 โŒ‰. Consider that ๐‘ง = โŒˆ2๐‘›+๐‘šโˆ’1

4๐‘›โˆ’5 โŒ‰ is not valid, since for ๐‘š โ‰ค 2๐‘› โˆ’ 4, the maximum label is 1.

Moreover, since ๐ต๐‘š๐‘› has at least 2 face-weights which are contributed by the same number of labels, there must be 2 faces of the same weight. Then the divisor must be at least 4๐‘› โˆ’ 4. Thus we have ๐‘ง โ‰ฅ โŒˆ4๐‘›+๐‘šโˆ’7

4๐‘›โˆ’5 โŒ‰.

(5)

106 Tilukay & Ilwaru | The Entire Face Irregularity Strength of a Book with Polygonal Pages

Next, to show that ๐‘ง is an upper bound for entire face irregularity strength of ๐ต๐‘š๐‘›, let ๐ต๐‘š๐‘›, ๐‘š โ‰ฅ 1, ๐‘› โ‰ฅ 3, be the 2-connected plane graph with an ๐‘›-sided internal face ๐‘“๐‘–๐‘›๐‘ก๐‘› , ๐‘š โˆ’ 1 (2๐‘› โˆ’ 2)-sided internal faces and an external ๐‘›-sided face ๐‘“๐‘’๐‘ฅ๐‘ก๐‘› .

Let ๐‘š1= โŒˆ๐‘š

2โŒ‰ and ๐‘š2= ๐‘š โˆ’ ๐‘š1. Our goal is to have ๐‘š1 distinct even face-weights and ๐‘š2 distinct odd face-weights such that ๐‘š (2๐‘› โˆ’ 2)-sided face-weights are distinct and form an arithmetic progression.

Let ๐‘ง = โŒˆ4๐‘›+๐‘šโˆ’7

4๐‘›โˆ’5 โŒ‰. It can be seen that ๐ต๐‘š๐‘› has ๐‘š different paths of length (๐‘› โˆ’ 1). Next, we divide ๐‘š1 paths into ๐‘† = โŒˆ ๐‘š1

4๐‘›โˆ’5โŒ‰ parts, where part ๐‘ -th consists of (4๐‘› โˆ’ 5) paths, for 1 โ‰ค ๐‘  โ‰ค ๐‘† โˆ’ 1, and part ๐‘†-th consists of ๐‘Ÿ1= ๐‘š1โˆ’ (๐‘† โˆ’ 1)(4๐‘› โˆ’ 5) paths. Also, we divide ๐‘š2 paths into ๐‘‡ = โŒˆ๐‘š2+1

4๐‘›โˆ’5โŒ‰ parts, where the first part consists of (4๐‘› โˆ’ 6) paths, part ๐‘ก-th consists of (4๐‘› โˆ’ 5) paths, for 2 โ‰ค ๐‘ก โ‰ค ๐‘‡ โˆ’ 1, and part ๐‘‡-th consists of ๐‘Ÿ2= ๐‘š2โˆ’ (๐‘‡ โˆ’ 1)(4๐‘› โˆ’ 5) paths.

Let

๐‘‰(๐ต๐‘š๐‘›) = {๐‘ฅ, ๐‘ฆ, ๐‘ข(๐‘ )๐‘–2๐‘—, ๐‘ข(๐‘†)๐‘˜2๐‘—, ๐‘ฃ(๐‘ก)๐‘–2๐‘—โ‰  ๐‘ฃ(1)12๐‘—, ๐‘ฃ(๐‘‡)๐‘™2๐‘— | 1 โ‰ค ๐‘  โ‰ค ๐‘† โˆ’ 1, 1 โ‰ค ๐‘ก โ‰ค ๐‘‡ โˆ’ 1, 1 โ‰ค ๐‘– โ‰ค 4๐‘› โˆ’ 5, 1 โ‰ค ๐‘— โ‰ค 2๐‘› โˆ’ 2, 1 โ‰ค ๐‘˜ โ‰ค ๐‘Ÿ1 , 1 โ‰ค ๐‘™ โ‰ค ๐‘Ÿ2};

๐ธ(๐ต๐‘š๐‘›) = {๐‘ฅ๐‘ฆ} โˆช

{๐‘ข(๐‘ )1๐‘– = ๐‘ฅ ๐‘ข(๐‘ )๐‘–2, ๐‘ข(๐‘ )๐‘–2๐‘—โˆ’1= ๐‘ข(๐‘ )๐‘–2๐‘—โˆ’2 ๐‘ข(๐‘ )๐‘–2๐‘—, ๐‘ข(๐‘ )๐‘–2๐‘›โˆ’3= ๐‘ข(๐‘ )๐‘–2๐‘›โˆ’4๐‘ฆ|1 โ‰ค ๐‘  โ‰ค ๐‘† โˆ’ 1, 1 โ‰ค ๐‘– โ‰ค 4๐‘› โˆ’ 5, 2 โ‰ค ๐‘— โ‰ค ๐‘› โˆ’ 2} โˆช

{๐‘ข(๐‘†)1๐‘– = ๐‘ฅ ๐‘ข(๐‘†)๐‘–2, ๐‘ข(๐‘†)๐‘–2๐‘—โˆ’1= ๐‘ข(๐‘†)๐‘–2๐‘—โˆ’2 ๐‘ข(๐‘†)๐‘–2๐‘—, ๐‘ข(๐‘†)๐‘–2๐‘›โˆ’3= ๐‘ข(๐‘†)๐‘–2๐‘›โˆ’4๐‘ฆ|1 โ‰ค ๐‘– โ‰ค ๐‘Ÿ1, 2 โ‰ค ๐‘— โ‰ค ๐‘› โˆ’ 2} โˆช

{๐‘ฃ(๐‘ก)๐‘–1= ๐‘ฅ๐‘ฃ(๐‘ก)๐‘–2, ๐‘ฃ(๐‘ก)๐‘–2๐‘—โˆ’1= ๐‘ฃ(๐‘ก)๐‘–2๐‘—โˆ’2๐‘ฃ(๐‘ก)๐‘–2๐‘—, ๐‘ฃ(๐‘ก)๐‘–2๐‘›โˆ’3= ๐‘ฃ(๐‘ก)๐‘–2๐‘›โˆ’4๐‘ฆ | 1 โ‰ค ๐‘ก โ‰ค ๐‘‡, 1 โ‰ค ๐‘– โ‰ค 4๐‘› โˆ’ 5, 2 โ‰ค ๐‘— โ‰ค ๐‘› โˆ’ 2} โˆช

{๐‘ฃ(๐‘‡)๐‘–1= ๐‘ฅ๐‘ฃ(๐‘‡)๐‘–2, ๐‘ฃ(๐‘‡)๐‘–2๐‘—โˆ’1= ๐‘ฃ(๐‘‡)๐‘–2๐‘—โˆ’2๐‘ฃ(๐‘‡)๐‘–2๐‘—, ๐‘ฃ(๐‘‡)๐‘–2๐‘›โˆ’3= ๐‘ฃ(๐‘‡)๐‘–2๐‘›โˆ’4๐‘ฆ | 1 โ‰ค ๐‘– โ‰ค ๐‘Ÿ2, 2 โ‰ค ๐‘— โ‰ค ๐‘› โˆ’ 2};

๐น(๐ต๐‘š๐‘›) = {๐‘“๐‘’๐‘ฅ๐‘ก๐‘› , ๐‘“๐‘–๐‘›๐‘ก๐‘› , ๐‘ข(๐‘ )๐‘–2๐‘›โˆ’2, ๐‘ข(๐‘†)๐‘˜2๐‘›โˆ’2, ๐‘ฃ(๐‘ก)๐‘–2๐‘›โˆ’2โ‰  ๐‘ฃ(1)12๐‘›โˆ’2, ๐‘ฃ(๐‘‡)๐‘—2๐‘›โˆ’2| 1 โ‰ค ๐‘  โ‰ค ๐‘† โˆ’ 1, 1 โ‰ค ๐‘ก โ‰ค ๐‘‡ โˆ’ 1, 1 โ‰ค ๐‘– โ‰ค 4๐‘› โˆ’ 5, 1 โ‰ค ๐‘˜ โ‰ค ๐‘Ÿ1 , 1 โ‰ค ๐‘™ โ‰ค ๐‘Ÿ2};

Where ๐‘“๐‘’๐‘ฅ๐‘ก๐‘› is bounded by cycle ๐‘ฅ๐‘ฃ(1)22๐‘ฃ(1)24โ‹ฏ ๐‘ฃ(1)22๐‘›โˆ’4๐‘ฆ๐‘ฅ;

๐‘“๐‘–๐‘›๐‘ก๐‘› is bounded by cycle ๐‘ฅ๐‘ข(1)12๐‘ข(1)14โ‹ฏ ๐‘ข(1)12๐‘›โˆ’4๐‘ฆ๐‘ฅ;

๐‘ข(๐‘ )๐‘–2๐‘›โˆ’2 is bounded by cycle ๐‘ฅ๐‘ข(๐‘ )๐‘–2๐‘ข(๐‘ )๐‘–4โ‹ฏ ๐‘ข(๐‘ )๐‘–2๐‘›โˆ’4๐‘ฆ๐‘ข(๐‘ )๐‘–+12๐‘›โˆ’4๐‘ข(๐‘ )๐‘–+12๐‘›โˆ’6โ‹ฏ ๐‘ข(๐‘ )๐‘–+12 ๐‘ฅ, for 1 โ‰ค ๐‘  โ‰ค ๐‘†, ๐‘– โ‰  ๐‘Ÿ1;

๐‘ข(๐‘†)๐‘Ÿ2๐‘›โˆ’21 is bounded by cycle ๐‘ฅ๐‘ข(๐‘†)๐‘Ÿ21๐‘ข(๐‘†)๐‘Ÿ41โ‹ฏ ๐‘ข(๐‘†)๐‘Ÿ2๐‘›โˆ’41 ๐‘ฆ๐‘ฃ(๐‘‡)๐‘Ÿ2๐‘›โˆ’42 ๐‘ฃ(๐‘‡)๐‘Ÿ2๐‘›โˆ’62 โ‹ฏ ๐‘ฃ(๐‘‡)๐‘Ÿ22๐‘ฅ; and

๐‘ฃ(๐‘ก)๐‘–2๐‘›โˆ’2 is bounded by cycle ๐‘ฅ๐‘ฃ(๐‘ก)๐‘–2๐‘ฃ(๐‘ก)๐‘–4โ‹ฏ ๐‘ฃ(๐‘ก)๐‘–2๐‘›โˆ’4๐‘ฆ๐‘ฃ(๐‘ก)๐‘–+12๐‘›โˆ’4๐‘ฃ(๐‘ก)๐‘–+12๐‘›โˆ’6โ‹ฏ ๐‘ฃ(๐‘ก)๐‘–+12 ๐‘ฅ, for 1 โ‰ค ๐‘ก โ‰ค ๐‘‡, ๐‘– โ‰  ๐‘Ÿ2;

Our notations above imply that, without losing generality, for ๐‘ฃ(๐‘ก)๐‘–๐‘—, we let 2 โ‰ค ๐‘– โ‰ค 4๐‘› โˆ’ 5 for ๐‘ก = 1. It means that there is no vertex or edge or face ๐‘ฃ(1)1๐‘—.

Now, we divide our labeling of ๐ต๐‘š๐‘› into 2 cases as follows:

Case 1. For odd ๐’Ž with ๐Ÿ โ‰ค ๐’“๐Ÿโ‰ค ๐Ÿ๐’ โˆ’ ๐Ÿ or even ๐’Ž;

Define an entire ๐‘˜-labeling ๐œ† โˆถ ๐‘‰ โˆช ๐ธ โˆช ๐น โ†’ {1, 2, โ‹ฏ , ๐‘˜} of ๐ต๐‘š๐‘› as follows.

๐œ†(๐‘ฅ) = ๐œ†(๐‘ฆ) = ๐œ†(๐‘ฅ๐‘ฆ) = ๐œ†(๐‘“๐‘’๐‘ฅ๐‘ก๐‘› ) = 1;

๐œ†(๐‘“๐‘–๐‘›๐‘ก๐‘› ) = 2;

(6)

๐œ†(๐‘ข(๐‘ )๐‘–๐‘—) = {

2๐‘  โˆ’ 1 for 1 โ‰ค ๐‘  โ‰ค ๐‘†, 1 โ‰ค ๐‘– โ‰คmin{๐‘Ÿ1, 2๐‘› โˆ’ 2} and 1 โ‰ค ๐‘— โ‰ค 2๐‘› โˆ’ ๐‘– โˆ’ 1

2๐‘  for 1 โ‰ค ๐‘  โ‰ค ๐‘†, 1 โ‰ค ๐‘– โ‰คmin{๐‘Ÿ1, 2๐‘› โˆ’ 2} and 2๐‘› โˆ’ ๐‘– โ‰ค ๐‘— โ‰ค 2๐‘› โˆ’ 2 2๐‘  for 1 โ‰ค ๐‘  โ‰ค ๐‘†, 2๐‘› โˆ’ 1 โ‰ค ๐‘– โ‰คmin{๐‘Ÿ1, 4๐‘› โˆ’ 5} and 1 โ‰ค ๐‘— โ‰ค 2๐‘› โˆ’ 2 โŒŠ๐‘–โˆ’2๐‘›+2

2 โŒ‹ โˆ’ 2 2๐‘  + 1 for 1 โ‰ค ๐‘  โ‰ค ๐‘†, 2๐‘› โˆ’ 1 โ‰ค ๐‘– โ‰คmin{๐‘Ÿ1, 4๐‘› โˆ’ 5} and 2๐‘› โˆ’ 2 โŒŠ๐‘–โˆ’2๐‘›+2

2 โŒ‹ โˆ’ 1 โ‰ค ๐‘— โ‰ค 2๐‘› โˆ’ 2

๐œ† (๐‘ฃ(๐‘ก)๐‘–๐‘—) =

{

2๐‘ก โˆ’ 1, for 1 โ‰ค ๐‘ก โ‰ค ๐‘‡, 1 โ‰ค ๐‘– โ‰คmin{๐‘Ÿ2, 2๐‘› โˆ’ 2} and 1 โ‰ค ๐‘— โ‰ค 2๐‘› โˆ’ ๐‘– โˆ’ 2;

2๐‘ก, for 1 โ‰ค ๐‘ก โ‰ค ๐‘‡, 1 โ‰ค ๐‘– โ‰คmin{๐‘Ÿ2, 2๐‘› โˆ’ 2} and 2๐‘› โˆ’ ๐‘– โˆ’ 1 โ‰ค ๐‘— โ‰ค 2๐‘› โˆ’ 3;

2๐‘ก, for 1 โ‰ค ๐‘ก โ‰ค ๐‘‡, 2๐‘› โˆ’ 1 โ‰ค ๐‘– โ‰คmin{๐‘Ÿ2, 4๐‘› โˆ’ 5} and 1 โ‰ค ๐‘— โ‰ค 2๐‘› โˆ’ 2 โŒŠ๐‘–โˆ’2๐‘›+2

2 โŒ‹ โˆ’ 3;

2๐‘ก + 1, for 1 โ‰ค ๐‘ก โ‰ค ๐‘‡, 2๐‘› โˆ’ 1 โ‰ค ๐‘– โ‰คmin{๐‘Ÿ2, 4๐‘› โˆ’ 5} and 2๐‘› โˆ’ 2 โŒŠ๐‘–โˆ’2๐‘›+2

2 โŒ‹ โˆ’ 2 โ‰ค ๐‘— โ‰ค 2๐‘› โˆ’ 3;

2๐‘ก โˆ’ 2, for 1 โ‰ค ๐‘ก โ‰ค ๐‘‡, ๐‘– = 1 and ๐‘— = 2๐‘› โˆ’ 2;

2๐‘ก โˆ’ 1, for 1 โ‰ค ๐‘ก โ‰ค ๐‘‡, 2 โ‰ค ๐‘– โ‰คmin{๐‘Ÿ2, 2๐‘› โˆ’ 1} and ๐‘— = 2๐‘› โˆ’ 2;

2๐‘ก, for 1 โ‰ค ๐‘ก โ‰ค ๐‘‡ โˆ’ 1, 2๐‘› โ‰ค ๐‘– โ‰ค 4๐‘› โˆ’ 5 and ๐‘— = 2๐‘› โˆ’ 2.

2๐‘ก, for ๐‘ก = ๐‘‡, 2๐‘› โˆ’ 1 โ‰ค ๐‘– โ‰คmin{๐‘Ÿ2โˆ’ 1, 4๐‘› โˆ’ 6} and ๐‘— = 2๐‘› โˆ’ 2

Case 2. For odd ๐’Ž with ๐’“๐Ÿ= ๐Ÿ or ๐Ÿ๐’ โ‰ค ๐’“๐Ÿ โ‰ค ๐Ÿ’๐’ โˆ’ ๐Ÿ“;

Define an entire ๐‘˜-labeling ๐œ†โˆ—โˆถ ๐‘‰ โˆช ๐ธ โˆช ๐น โ†’ {1, 2, โ‹ฏ , ๐‘˜} of ๐ต๐‘š๐‘› as follows.

๐œ†โˆ—(๐‘ฅ) = ๐œ†โˆ—(๐‘ฆ) = ๐œ†โˆ—(๐‘ฅ๐‘ฆ) = ๐œ†โˆ—(๐‘“๐‘’๐‘ฅ๐‘ก๐‘› ) = 1;

๐œ†โˆ—(๐‘“๐‘–๐‘›๐‘ก๐‘› ) = 2;

๐œ†โˆ—(๐‘ข(๐‘ )๐‘–๐‘—) = ๐œ†(๐‘ข(๐‘ )๐‘–๐‘—)

๐œ†โˆ— (๐‘ฃ(๐‘ก)๐‘–๐‘—) =

{

2๐‘‡ โˆ’ 2, for ๐‘Ÿ2= 1, ๐‘ก = ๐‘‡, ๐‘– = 1, ๐‘— = 1;

2๐‘‡ โˆ’ 1, for ๐‘Ÿ2= 1, ๐‘ก = ๐‘‡ โˆ’ 1, ๐‘– = 4๐‘› โˆ’ 5, ๐‘— = 2๐‘› โˆ’ 2;

๐œ†(๐‘ฃ(๐‘ก)๐‘–๐‘—) + 1, for ๐‘Ÿ2 odd, 2๐‘› โ‰ค ๐‘Ÿ2 โ‰ค 4๐‘› โˆ’ 5, ๐‘ก = ๐‘‡, ๐‘– = ๐‘Ÿ2, ๐‘— = 1;

๐œ†(๐‘ฃ(๐‘ก)๐‘–๐‘—) โˆ’ 1, for ๐‘Ÿ2 odd, 2๐‘› โ‰ค ๐‘Ÿ2โ‰ค 4๐‘› โˆ’ 5, ๐‘ก = ๐‘‡, ๐‘– = ๐‘Ÿ2โˆ’ 1, ๐‘— = 2๐‘› โˆ’ 2;

๐œ†(๐‘ฃ(๐‘ก)๐‘–๐‘—) โˆ’ 1, for ๐‘Ÿ2 even, 2๐‘› โ‰ค ๐‘Ÿ2โ‰ค 4๐‘› โˆ’ 5, ๐‘ก = ๐‘‡, ๐‘– = ๐‘Ÿ2โˆ’ 1, ๐‘— = 2๐‘› โˆ’ 3;

๐œ†(๐‘ฃ(๐‘ก)๐‘–๐‘—) + 1, for ๐‘Ÿ2 even, 2๐‘› โ‰ค ๐‘Ÿ2โ‰ค 4๐‘› โˆ’ 5, ๐‘ก = ๐‘‡, ๐‘– = ๐‘Ÿ2โˆ’ 1, ๐‘— = 2๐‘› โˆ’ 2;

๐œ†(๐‘ฃ(๐‘ก)๐‘–๐‘—), for otherwise.

It is easy to check that the labeling ๐œ† is an entire ๐‘ง-labeling. Then we have evaluate the face โ€“weights set {๐‘ค(๐‘“๐‘’๐‘ฅ๐‘ก๐‘› ), ๐‘ค(๐‘“๐‘–๐‘›๐‘ก๐‘› ), ๐‘ค(๐‘ข(๐‘ )๐‘–2๐‘›โˆ’2), ๐‘ค(๐‘ฃ(๐‘ก)๐‘–2๐‘›โˆ’2) | 1 โ‰ค ๐‘  โ‰ค ๐‘†, 1 โ‰ค ๐‘ก โ‰ค ๐‘‡, 1 โ‰ค ๐‘– โ‰ค 4๐‘› โˆ’ 5} as follows.

๐‘ค(๐‘“๐‘’๐‘ฅ๐‘ก๐‘› ) = 2๐‘› + 1;

๐‘ค(๐‘“๐‘–๐‘›๐‘ก๐‘› ) = 2๐‘› + 2;

๐‘ค(๐‘ข(๐‘ )๐‘–2๐‘›โˆ’2) = {

(2๐‘  โˆ’ 1)(4๐‘› โˆ’ 5) + 2๐‘–, for 1 โ‰ค ๐‘  โ‰ค ๐‘† โˆ’ 1, 1 โ‰ค ๐‘– โ‰ค 4๐‘› โˆ’ 5;

(2๐‘  โˆ’ 1)(4๐‘› โˆ’ 5) + 2๐‘–, for ๐‘  = ๐‘† โˆ’ 1, 1 โ‰ค ๐‘– โ‰ค ๐‘Ÿ1; (2๐‘  โˆ’ 1)(4๐‘› โˆ’ 5) + 2๐‘Ÿ1, for even ๐‘š, ๐‘  = ๐‘† โˆ’ 1, ๐‘– = ๐‘Ÿ1; (2๐‘  โˆ’ 1)(4๐‘› โˆ’ 5) + 2๐‘Ÿ1โˆ’ 1, for odd ๐‘š, ๐‘  = ๐‘† โˆ’ 1, ๐‘– = ๐‘Ÿ1.

๐‘ค(๐‘ฃ(๐‘ก)๐‘–2๐‘›โˆ’2) = {(2๐‘ก โˆ’ 1)(4๐‘› โˆ’ 5) + 2๐‘– + 1, for 1 โ‰ค ๐‘ก โ‰ค ๐‘‡ โˆ’ 1, 1 โ‰ค ๐‘– โ‰ค 4๐‘› โˆ’ 5;

(2๐‘‡ โˆ’ 1)(4๐‘› โˆ’ 5) + 2๐‘– + 1, for ๐‘ก = ๐‘‡, 1 โ‰ค ๐‘– โ‰ค ๐‘Ÿ2โˆ’ 1.

Since all face-weights are distinct, then ๐œ† is a face irregular entire z-labeling of ๐ต๐‘š๐‘› where ๐‘š is odd with 2 โ‰ค ๐‘Ÿ2โ‰ค 2๐‘› โˆ’ 1 or ๐‘š is even; and ๐œ†โˆ— is a face irregular entire z-labeling of ๐ต๐‘š๐‘› where ๐‘š is odd with ๐‘Ÿ2= 1 or 2๐‘› โ‰ค ๐‘Ÿ2โ‰ค 4๐‘› โˆ’ 5. Thus, ๐‘ง = โŒˆ4๐‘›+๐‘šโˆ’7

4๐‘›โˆ’5 โŒ‰ is the entire face irregularity strength of ๐ต๐‘š๐‘›. โˆŽ

Note that our result in Theorem 2.2 show that the ๐‘’๐‘“๐‘ (๐ต๐‘š๐‘›) is greater than the lower bound in Lemma 2.1.

Hence, we propose the following open problem.

(7)

108 Tilukay & Ilwaru | The Entire Face Irregularity Strength of a Book with Polygonal Pages

Open Problems

1. Find a class of graph which satisfy a condition where the lower bound in Lemma 2.1 is sharp;

2. Generalize the lower bound for any condition.

References

[1] M. Baca, S. Jendrol, M. Miller and J. Ryan, โ€œOn Irregular Total Labelings,โ€ Discrete Mathematics, vol. 307, pp.

1378-1388, 2007.

[2] J. A. Galian, โ€œA Dynamic Survey of Graph Labeling,โ€ Electronic Journal of Combinatorics, vol. 18 #DS6, 2015.

[3] J. Ivanco and S. Jendrol, โ€œThe Total Edge Irregularity Strength of Trees,โ€ Discuss. Math. Graph Theory, vol. 26, pp.

449-456, 2006.

[4] C. C. Marzuki, A. N. M. Salman and M. Miller, โ€œOn The Total Irregularity Strengths of Cycles and Paths,โ€ Far East Journal of Mathematical Sciences, vol. 82 (1), pp. 1-21, 2013.

[5] R. Ramdani and A. N. M. Salman, โ€œOn The Total Irregularity Strengths of Some Cartesian Products Graphs,โ€ AKCE Int. J. Graphs Comb., vol. 10 No. 2, pp. 199-209, 2013.

[6] R. Ramdani, A. N. M. Salman, H. Assiyatun, A. Semanicova-Fenovcikova and M. Baca, โ€œTotal Irregularity Strength of Three Family of Graphs,โ€ Math. Comput. Sci, vol. 9, pp. 229-237, 2015.

[7] M. I. Tilukay, A. N. M. Salman and E. R. Persulessy, "On The Total Irregularity Strength of Fan, Wheel, Triangular Book, and Friendship Graphs," Procedia Computer Science, vol. 74, pp. 124-131, 2015.

[8] M. Baca, S. Jendrol, K. Kathiresan and K. Muthugurupackiam, โ€œEntire Labeling of Plane Graphs,โ€ Applied Mathematics and Information Sciences, vol. 9, no. 1, pp. 263-207, 2015.

Referensi

Dokumen terkait

The high level of dependence of coastal communities in South Sulawesi on coastal and marine resources, denial of traditional rights, and the high market demand for high economic

HISTORY AND BACKGROUND OF FACE-TO-FACE EDUCATION Face to face education is a teaching methodology where the teacher and students interact with each other by being physically present in