Volume 9 Nomor 2 Desember 2015
103
THE ENTIRE FACE IRREGULARITY STRENGTH OF A BOOK WITH POLYGONAL PAGES
Meilin I. Tilukay1, Venn Y. I. Ilwaru2
1,2Jurusan Matematika FMIPA Universitas Pattimura Jl. Ir. M. Putuhena, Kampus Unpatti, Poka-Ambon, Indonesia
e-mail: 1[email protected]
Abstract
A face irregular entire labeling is introduced by Baca et al. recently, as a modification of the well-known vertex irregular and edge irregular total labeling of graphs and the idea of the entire colouring of plane
graph. A face irregular entire k-labeling ๐: ๐ โช ๐ธ โช ๐น โ {1, 2, โฏ , ๐} of a 2-connected plane graph ๐บ = (๐, ๐ธ, ๐น) is a labeling of vertices, edges, and faces of ๐บ such that for any two different faces ๐ and ๐, their weights ๐ค๐(๐) and ๐ค๐(๐) are distinct. The minimum ๐ for which a plane graph ๐บ has a face irregular entire ๐-labeling is called the entire face irregularity strength of ๐บ, denoted by ๐๐๐ (๐บ).
This paper deals with the entire face irregularity strength of a book with ๐ ๐-polygonal pages, where embedded in a plane as a closed book with ๐ โsided external face.
Keywords and phrases:Book, entire face irregularity strength, face irregular entire ๐-labeling, plane graph, polygonal page.
NILAI KETAKTERATURAN SELURUH MUKA GRAF BUKU SEGI BANYAK
Abstrak
Pelabelan tak teratur seluruh muka diperkenalkan oleh Baca et al. baru-baru ini, sebagai suatu modifikasi atas pelabelan total tak teratur titik dan tak teratur sisi suatu graf serta ide tentang pewarnaan lengkap pada graf bidang. Pelabelan ๐- tak teratur seluruh muka ๐: ๐ โช ๐ธ โช ๐น โ {1, 2, โฏ , ๐} dari suatu graf bidang 2-connected ๐บ = (๐, ๐ธ, ๐น) adalah suatu pelabelan seluruh titik, sisi, dan muka internal dari ๐บ sedemikian sehingga untuk sebarang dua muka ๐ and ๐ berbeda, bobot muka ๐ค๐(๐) and ๐ค๐(๐) juga berbeda. Bilangan bulat terkecil ๐ sedemikian sehingga suatu graf bidang ๐บ memiliki suatu pelabelan ๐-tak teratur seluruh muka disebut nilai ketakteraturan seluruh muka dari ๐บ, dinotasikan oleh ๐๐๐ (๐บ).
Kami menentukan nilai eksak dari nilai ketakteraturan seluruh muka graf buku segi-๐, dimana pada bidang datar dapat digambarkan seperti suatu buku tertutup.
Kata Kunci: Graf bidang, graf buku segi-๐, nilai ketakteraturan seluruh muka, pelabelan lengkap ๐-tak teratur muka.
1. Introduction
Let ๐บ be a finite, simple, undirected graph with vertex set ๐(๐บ)and edge set ๐ธ(๐บ). A total labeling of ๐บ is a mapping that sends ๐ โช ๐ธ to a set of numbers (usually positive or nonnegative integers). According to the condition defined in a total labeling, there are many types of total labeling have been investigated.
Baca, Jendrol, Miller, and Ryan in [1] introduced a vertex irregular and edge irregular total labeling of graphs. For any total labeling ๐: ๐ โช ๐ธ โ {1, 2, โฆ , ๐}, the weight of a vertex ๐ฃ and the weight of an edge ๐ = ๐ฅ๐ฆ are defined by ๐ค(๐ฃ) = ๐(๐ฃ) + โ๐ข๐ฃโ๐ธ๐(๐ข๐ฃ) and ๐ค(๐ฅ๐ฆ) = ๐(๐ฅ) + ๐(๐ฆ) + ๐(๐ฅ๐ฆ), respectively. If all the vertex weights are distinct, then ๐ is called a vertex irregular total ๐-labeling, and if all the edge weights are distinct, then ๐ is called an edge irregular total ๐-labeling. The minimum value of ๐ for which there exist a vertex (an edge) irregular total labeling ๐: ๐ โช ๐ธ โ {1, 2, โฆ , ๐} is called the total vertex (edge) irregularity
104 Tilukay & Ilwaru | The Entire Face Irregularity Strength of a Book with Polygonal Pages
strength of ๐บ and is denoted by ๐ก๐ฃ๐ (๐บ) (๐ก๐๐ (๐บ)), respectively. There are several bounds and exact values of ๐ก๐ฃ๐ and ๐ก๐๐ were determined for different types of graphs given in [1] and listed in [2].
Furthermore, Ivanco and Jendrol in [3] posed a conjecture that for arbitrary graph ๐บ different from ๐พ5 and maximum degree โ(๐บ),
๐ก๐๐ (๐บ) = ๐๐๐ฅ {โ|๐ธ(๐บ)| + 2
3 โ , โโ(๐บ) + 1 2 โ}.
Combining previous conditions on irregular total labeling, Marzuki et al. [4] defined a totally irregular total labeling. A total ๐-labeling ๐: ๐ โช ๐ธ โ {1, 2, โฆ , ๐} of ๐บ is called a totally irregular total ๐-labeling if for any pair of vertices ๐ฅ and ๐ฆ, their weights ๐ค(๐ฅ) and ๐ค(๐ฆ) are distinct and for any pair of edges ๐ฅ1๐ฅ2 and ๐ฆ1๐ฆ2, their weights ๐ค(๐ฅ1๐ฅ2) and ๐ค(๐ฆ1๐ฆ2) are distinct. The minimum ๐ for which a graph ๐บ has totally irregular total labeling, is called total irregularity strength of ๐บ, denoted by ๐ก๐ (๐บ). They have proved that for every graph ๐บ,
๐ก๐ (๐บ) โฅmax{๐ก๐๐ (๐บ), ๐ก๐ฃ๐ (๐บ)} (6)
Several upper bounds and exact values of ๐ก๐ were determined for different types of graphs given in [4], [5], [6], and [7].
Motivated by this graphs invariants, Baca et al. in [8] studied irregular labeling of a plane graph by labeling vertices, edges, and faces then considering the weights of faces. They defined a face irregular entire labeling.
A 2-connected plane graph ๐บ = (๐, ๐ธ, ๐น) is a particular drawing of planar graph on the Euclidean plane where every face is bound by a cycle. . Let ๐บ = (๐, ๐ธ, ๐น) be a plane graph.
A labeling ๐ โถ ๐ โช ๐ธ โช ๐น โ {1, 2, โฏ , ๐} is called a face irregular entire ๐-labeling of the plane graph ๐บ if for any two distinct faces ๐ and ๐ of ๐บ, their weights ๐ค๐(๐) and ๐ค๐(๐) are distinct. The minimum ๐ for which a plane graph ๐บ has a face irregular entire ๐-labeling is called the entire face irregularity strength of ๐บ, denoted by ๐๐๐ (๐บ). The weight of a face ๐ under the labeling ๐ is the sum of labels carried by that face and the edges and vertices of its boundary. They also provided the boundaries of ๐๐๐ (๐บ).
Teorema A. Let ๐บ = (๐, ๐ธ, ๐น) be a 2-connected plane graph ๐บ with ๐๐ ๐-sided faces, ๐ โฅ 3.
Let ๐ = min{๐|๐๐โ 0} and ๐ = max{๐|๐๐ โ 0}. Then
โ2๐ + ๐3+ ๐4+ โฏ + ๐๐
2๐ + 1 โ โค ๐๐๐ (๐บ) โค max{๐๐|3 โค ๐ โค ๐}.
For ๐๐= 1, they gave the lower bound as follow
Teorema B. Let ๐บ = (๐, ๐ธ, ๐น) be a 2-connected plane graph ๐บ with ๐๐ ๐-sided faces, ๐ โฅ 3. Let ๐ = min{๐|๐๐ โ 0}, ๐ = max{๐|๐๐ โ 0}, ๐๐= 1 and ๐ = max{๐|๐๐โ 0, ๐ < ๐}. Then
๐๐๐ (๐บ) โฅ โ2๐ + |๐น| โ 1 2๐ + 1 โ.
Moreover, by considering the maximum degree of a 2-connected plane graph ๐บ, they obtained the following theorem.
Theorem C. Let ๐บ = (๐, ๐ธ, ๐น) be a 2-connected plane graph ๐บ with maximum degree โ. Let ๐ฅ be a vertex of degree โ and let the smallest (and biggest) face incident with ๐ฅ be an ๐-sided (and a ๐-sided) face, respectively.
Then
๐๐๐ (๐บ) โฅ โ2๐ + โ โ 1 2๐ โ.
They proved that Theorem B is tight for Ladder graph ๐ฟ๐, ๐ โฅ 3, and its variation and Theorem C is
tight for wheel graph ๐๐, ๐ โฅ 3. In this paper, we determine the exact value of ๐๐๐ of a book with ๐ ๐-polygonal pages which is greater than the lower bound given in Theorem A - C.
2. Main Results
Considering Theorem C, ๐๐๐ (๐๐), and a condition where every face of a plane graph shares common vertices or edges, our first result provide a lower bound of the entire face irregularity strength of a graph with this condition. This can be considered as generalization of Theorem A, B, and C.
Lemma 2.1. Let ๐บ = (๐, ๐ธ, ๐น) be a 2-connected plane graph with ๐๐ ๐-sided faces, ๐ โฅ 3. Let ๐ = min{๐| ๐๐ โ 0}, ๐ = max{๐| ๐๐โ 0}, ๐ = ๐๐๐ฅ{๐| ๐๐ โ 0, ๐ < ๐}, and ๐ be the number of common labels
of vertices and edges which have bounded every face of ๐บ. Then
๐๐๐ (๐บ) โฅ {
โ2๐ + |๐น| โ ๐ โ 1
2๐ โ ๐ + 1 โ , for ๐๐= 1,
โ2๐ + |๐น| โ ๐
2๐ โ ๐ + 1 โ , otherwise.
Proof. Let ๐ โถ ๐ โช ๐ธ โช ๐น โ {1, 2, โฏ , ๐} be a face irregular entire ๐-labeling of 2-connected plane graph ๐บ = (๐, ๐ธ, ๐น) with ๐๐๐ (๐บ) = ๐. Our first proof is for ๐๐โ 1. By Theorem A, the minimum face-weight is at least 2๐ + 1 and the maximum face-weight is at least 2๐ + |๐น|. Since ๐บ is 2-connected, each face of ๐บ is a cycle. It implies that every face might be bounded by common vertices and edges.
Let ๐ be the number of common labels of vertices and edges which have bounded every face of ๐บ and ๐ท be the sum of all common labels. Then the face-weights ๐ค๐(๐1), ๐ค๐(๐1), โฏ , ๐ค๐(๐|๐น|) are all distinct and each of them contains ๐ท, implies the variation of face-weights is depend on 2๐ โ ๐ + 2 โค ๐ โค 2๐ โ ๐ + 1 labels.
Without adding ๐ท, the maximum sum of a face label and all vertices and edges-labels surrounding it is at least 2๐ + |๐น| โ ๐. This is the sum of at most 2๐ โ ๐ + 1 labels. Thus, we have efs(G) โฅ โ2๐+|๐น|โ๐
2๐โ๐+1โ.
For ๐๐= 1, it is a direct consequence from Theorem B with the same reason as in the result above. โ This lower bound is tight for ladder graphs and its variation and wheels given in [8].
A book with ๐ ๐-polygonal pages ๐ต๐๐, ๐ โฅ 1, ๐ โฅ 3, is a plane graph obtained from ๐-copies of cycle ๐ถ๐ that share a common edge. There are many ways drawing ๐ต๐๐ for which the external face of ๐ต๐๐ can be an ๐-sided face or a (2๐ โ 2)-sided face.
By considering that topologically, ๐ต๐๐ can be drawn on a plane as a closed book such that ๐ต๐๐ has an ๐-sided external face, an ๐-sided internal face, and ๐ โ 1 number of (2๐ โ 2)-sided internal faces, the
entire face irregularity strength of ๐ต๐๐ is provided in the next theorem.
Theorem 2.2. For ๐ต๐๐, ๐ โฅ 1, ๐ โฅ 3, be a book with ๐ ๐-polygonal pages whose an ๐-sided external face, an ๐-sided internal face, and ๐ โ 1 (2๐ โ 2)-sided internal faces, we have
๐๐๐ (๐ต๐ ๐) = {
2, for ๐ โ {1, 2};
โ4๐ + ๐ โ 7
4๐ โ 5 โ , otherwise.
Proof. Let ๐ต๐๐, ๐ โฅ 1, ๐ โฅ 3, be a 2-connected plane graph. For ๐ โ {1, 2}, by Lemma 2.1, we have ๐๐๐ (๐ต๐ ๐) โฅ 2. Labeling the ๐-sided external face by label 2 and all the rests by label 1, then all face-weights are distinct. Thus, ๐๐๐ (๐ต๐ ๐) = 2.
Now for ๐ > 2, let ๐ง = ๐๐๐ (๐ต๐ ๐). Since every internal face of ๐ต๐๐ shares 2 common vertices, ๐ = ๐, ๐ = 2๐ โ 2, and ๐๐ > 1, by Lemma 2.1, we have ๐ง โฅ โ2๐+|๐น|โ2
2๐โ1 โ = โ2๐+๐โ14๐โ5 โ. Consider that ๐ง = โ2๐+๐โ1
4๐โ5 โ is not valid, since for ๐ โค 2๐ โ 4, the maximum label is 1.
Moreover, since ๐ต๐๐ has at least 2 face-weights which are contributed by the same number of labels, there must be 2 faces of the same weight. Then the divisor must be at least 4๐ โ 4. Thus we have ๐ง โฅ โ4๐+๐โ7
4๐โ5 โ.
106 Tilukay & Ilwaru | The Entire Face Irregularity Strength of a Book with Polygonal Pages
Next, to show that ๐ง is an upper bound for entire face irregularity strength of ๐ต๐๐, let ๐ต๐๐, ๐ โฅ 1, ๐ โฅ 3, be the 2-connected plane graph with an ๐-sided internal face ๐๐๐๐ก๐ , ๐ โ 1 (2๐ โ 2)-sided internal faces and an external ๐-sided face ๐๐๐ฅ๐ก๐ .
Let ๐1= โ๐
2โ and ๐2= ๐ โ ๐1. Our goal is to have ๐1 distinct even face-weights and ๐2 distinct odd face-weights such that ๐ (2๐ โ 2)-sided face-weights are distinct and form an arithmetic progression.
Let ๐ง = โ4๐+๐โ7
4๐โ5 โ. It can be seen that ๐ต๐๐ has ๐ different paths of length (๐ โ 1). Next, we divide ๐1 paths into ๐ = โ ๐1
4๐โ5โ parts, where part ๐ -th consists of (4๐ โ 5) paths, for 1 โค ๐ โค ๐ โ 1, and part ๐-th consists of ๐1= ๐1โ (๐ โ 1)(4๐ โ 5) paths. Also, we divide ๐2 paths into ๐ = โ๐2+1
4๐โ5โ parts, where the first part consists of (4๐ โ 6) paths, part ๐ก-th consists of (4๐ โ 5) paths, for 2 โค ๐ก โค ๐ โ 1, and part ๐-th consists of ๐2= ๐2โ (๐ โ 1)(4๐ โ 5) paths.
Let
๐(๐ต๐๐) = {๐ฅ, ๐ฆ, ๐ข(๐ )๐2๐, ๐ข(๐)๐2๐, ๐ฃ(๐ก)๐2๐โ ๐ฃ(1)12๐, ๐ฃ(๐)๐2๐ | 1 โค ๐ โค ๐ โ 1, 1 โค ๐ก โค ๐ โ 1, 1 โค ๐ โค 4๐ โ 5, 1 โค ๐ โค 2๐ โ 2, 1 โค ๐ โค ๐1 , 1 โค ๐ โค ๐2};
๐ธ(๐ต๐๐) = {๐ฅ๐ฆ} โช
{๐ข(๐ )1๐ = ๐ฅ ๐ข(๐ )๐2, ๐ข(๐ )๐2๐โ1= ๐ข(๐ )๐2๐โ2 ๐ข(๐ )๐2๐, ๐ข(๐ )๐2๐โ3= ๐ข(๐ )๐2๐โ4๐ฆ|1 โค ๐ โค ๐ โ 1, 1 โค ๐ โค 4๐ โ 5, 2 โค ๐ โค ๐ โ 2} โช
{๐ข(๐)1๐ = ๐ฅ ๐ข(๐)๐2, ๐ข(๐)๐2๐โ1= ๐ข(๐)๐2๐โ2 ๐ข(๐)๐2๐, ๐ข(๐)๐2๐โ3= ๐ข(๐)๐2๐โ4๐ฆ|1 โค ๐ โค ๐1, 2 โค ๐ โค ๐ โ 2} โช
{๐ฃ(๐ก)๐1= ๐ฅ๐ฃ(๐ก)๐2, ๐ฃ(๐ก)๐2๐โ1= ๐ฃ(๐ก)๐2๐โ2๐ฃ(๐ก)๐2๐, ๐ฃ(๐ก)๐2๐โ3= ๐ฃ(๐ก)๐2๐โ4๐ฆ | 1 โค ๐ก โค ๐, 1 โค ๐ โค 4๐ โ 5, 2 โค ๐ โค ๐ โ 2} โช
{๐ฃ(๐)๐1= ๐ฅ๐ฃ(๐)๐2, ๐ฃ(๐)๐2๐โ1= ๐ฃ(๐)๐2๐โ2๐ฃ(๐)๐2๐, ๐ฃ(๐)๐2๐โ3= ๐ฃ(๐)๐2๐โ4๐ฆ | 1 โค ๐ โค ๐2, 2 โค ๐ โค ๐ โ 2};
๐น(๐ต๐๐) = {๐๐๐ฅ๐ก๐ , ๐๐๐๐ก๐ , ๐ข(๐ )๐2๐โ2, ๐ข(๐)๐2๐โ2, ๐ฃ(๐ก)๐2๐โ2โ ๐ฃ(1)12๐โ2, ๐ฃ(๐)๐2๐โ2| 1 โค ๐ โค ๐ โ 1, 1 โค ๐ก โค ๐ โ 1, 1 โค ๐ โค 4๐ โ 5, 1 โค ๐ โค ๐1 , 1 โค ๐ โค ๐2};
Where ๐๐๐ฅ๐ก๐ is bounded by cycle ๐ฅ๐ฃ(1)22๐ฃ(1)24โฏ ๐ฃ(1)22๐โ4๐ฆ๐ฅ;
๐๐๐๐ก๐ is bounded by cycle ๐ฅ๐ข(1)12๐ข(1)14โฏ ๐ข(1)12๐โ4๐ฆ๐ฅ;
๐ข(๐ )๐2๐โ2 is bounded by cycle ๐ฅ๐ข(๐ )๐2๐ข(๐ )๐4โฏ ๐ข(๐ )๐2๐โ4๐ฆ๐ข(๐ )๐+12๐โ4๐ข(๐ )๐+12๐โ6โฏ ๐ข(๐ )๐+12 ๐ฅ, for 1 โค ๐ โค ๐, ๐ โ ๐1;
๐ข(๐)๐2๐โ21 is bounded by cycle ๐ฅ๐ข(๐)๐21๐ข(๐)๐41โฏ ๐ข(๐)๐2๐โ41 ๐ฆ๐ฃ(๐)๐2๐โ42 ๐ฃ(๐)๐2๐โ62 โฏ ๐ฃ(๐)๐22๐ฅ; and
๐ฃ(๐ก)๐2๐โ2 is bounded by cycle ๐ฅ๐ฃ(๐ก)๐2๐ฃ(๐ก)๐4โฏ ๐ฃ(๐ก)๐2๐โ4๐ฆ๐ฃ(๐ก)๐+12๐โ4๐ฃ(๐ก)๐+12๐โ6โฏ ๐ฃ(๐ก)๐+12 ๐ฅ, for 1 โค ๐ก โค ๐, ๐ โ ๐2;
Our notations above imply that, without losing generality, for ๐ฃ(๐ก)๐๐, we let 2 โค ๐ โค 4๐ โ 5 for ๐ก = 1. It means that there is no vertex or edge or face ๐ฃ(1)1๐.
Now, we divide our labeling of ๐ต๐๐ into 2 cases as follows:
Case 1. For odd ๐ with ๐ โค ๐๐โค ๐๐ โ ๐ or even ๐;
Define an entire ๐-labeling ๐ โถ ๐ โช ๐ธ โช ๐น โ {1, 2, โฏ , ๐} of ๐ต๐๐ as follows.
๐(๐ฅ) = ๐(๐ฆ) = ๐(๐ฅ๐ฆ) = ๐(๐๐๐ฅ๐ก๐ ) = 1;
๐(๐๐๐๐ก๐ ) = 2;
๐(๐ข(๐ )๐๐) = {
2๐ โ 1 for 1 โค ๐ โค ๐, 1 โค ๐ โคmin{๐1, 2๐ โ 2} and 1 โค ๐ โค 2๐ โ ๐ โ 1
2๐ for 1 โค ๐ โค ๐, 1 โค ๐ โคmin{๐1, 2๐ โ 2} and 2๐ โ ๐ โค ๐ โค 2๐ โ 2 2๐ for 1 โค ๐ โค ๐, 2๐ โ 1 โค ๐ โคmin{๐1, 4๐ โ 5} and 1 โค ๐ โค 2๐ โ 2 โ๐โ2๐+2
2 โ โ 2 2๐ + 1 for 1 โค ๐ โค ๐, 2๐ โ 1 โค ๐ โคmin{๐1, 4๐ โ 5} and 2๐ โ 2 โ๐โ2๐+2
2 โ โ 1 โค ๐ โค 2๐ โ 2
๐ (๐ฃ(๐ก)๐๐) =
{
2๐ก โ 1, for 1 โค ๐ก โค ๐, 1 โค ๐ โคmin{๐2, 2๐ โ 2} and 1 โค ๐ โค 2๐ โ ๐ โ 2;
2๐ก, for 1 โค ๐ก โค ๐, 1 โค ๐ โคmin{๐2, 2๐ โ 2} and 2๐ โ ๐ โ 1 โค ๐ โค 2๐ โ 3;
2๐ก, for 1 โค ๐ก โค ๐, 2๐ โ 1 โค ๐ โคmin{๐2, 4๐ โ 5} and 1 โค ๐ โค 2๐ โ 2 โ๐โ2๐+2
2 โ โ 3;
2๐ก + 1, for 1 โค ๐ก โค ๐, 2๐ โ 1 โค ๐ โคmin{๐2, 4๐ โ 5} and 2๐ โ 2 โ๐โ2๐+2
2 โ โ 2 โค ๐ โค 2๐ โ 3;
2๐ก โ 2, for 1 โค ๐ก โค ๐, ๐ = 1 and ๐ = 2๐ โ 2;
2๐ก โ 1, for 1 โค ๐ก โค ๐, 2 โค ๐ โคmin{๐2, 2๐ โ 1} and ๐ = 2๐ โ 2;
2๐ก, for 1 โค ๐ก โค ๐ โ 1, 2๐ โค ๐ โค 4๐ โ 5 and ๐ = 2๐ โ 2.
2๐ก, for ๐ก = ๐, 2๐ โ 1 โค ๐ โคmin{๐2โ 1, 4๐ โ 6} and ๐ = 2๐ โ 2
Case 2. For odd ๐ with ๐๐= ๐ or ๐๐ โค ๐๐ โค ๐๐ โ ๐;
Define an entire ๐-labeling ๐โโถ ๐ โช ๐ธ โช ๐น โ {1, 2, โฏ , ๐} of ๐ต๐๐ as follows.
๐โ(๐ฅ) = ๐โ(๐ฆ) = ๐โ(๐ฅ๐ฆ) = ๐โ(๐๐๐ฅ๐ก๐ ) = 1;
๐โ(๐๐๐๐ก๐ ) = 2;
๐โ(๐ข(๐ )๐๐) = ๐(๐ข(๐ )๐๐)
๐โ (๐ฃ(๐ก)๐๐) =
{
2๐ โ 2, for ๐2= 1, ๐ก = ๐, ๐ = 1, ๐ = 1;
2๐ โ 1, for ๐2= 1, ๐ก = ๐ โ 1, ๐ = 4๐ โ 5, ๐ = 2๐ โ 2;
๐(๐ฃ(๐ก)๐๐) + 1, for ๐2 odd, 2๐ โค ๐2 โค 4๐ โ 5, ๐ก = ๐, ๐ = ๐2, ๐ = 1;
๐(๐ฃ(๐ก)๐๐) โ 1, for ๐2 odd, 2๐ โค ๐2โค 4๐ โ 5, ๐ก = ๐, ๐ = ๐2โ 1, ๐ = 2๐ โ 2;
๐(๐ฃ(๐ก)๐๐) โ 1, for ๐2 even, 2๐ โค ๐2โค 4๐ โ 5, ๐ก = ๐, ๐ = ๐2โ 1, ๐ = 2๐ โ 3;
๐(๐ฃ(๐ก)๐๐) + 1, for ๐2 even, 2๐ โค ๐2โค 4๐ โ 5, ๐ก = ๐, ๐ = ๐2โ 1, ๐ = 2๐ โ 2;
๐(๐ฃ(๐ก)๐๐), for otherwise.
It is easy to check that the labeling ๐ is an entire ๐ง-labeling. Then we have evaluate the face โweights set {๐ค(๐๐๐ฅ๐ก๐ ), ๐ค(๐๐๐๐ก๐ ), ๐ค(๐ข(๐ )๐2๐โ2), ๐ค(๐ฃ(๐ก)๐2๐โ2) | 1 โค ๐ โค ๐, 1 โค ๐ก โค ๐, 1 โค ๐ โค 4๐ โ 5} as follows.
๐ค(๐๐๐ฅ๐ก๐ ) = 2๐ + 1;
๐ค(๐๐๐๐ก๐ ) = 2๐ + 2;
๐ค(๐ข(๐ )๐2๐โ2) = {
(2๐ โ 1)(4๐ โ 5) + 2๐, for 1 โค ๐ โค ๐ โ 1, 1 โค ๐ โค 4๐ โ 5;
(2๐ โ 1)(4๐ โ 5) + 2๐, for ๐ = ๐ โ 1, 1 โค ๐ โค ๐1; (2๐ โ 1)(4๐ โ 5) + 2๐1, for even ๐, ๐ = ๐ โ 1, ๐ = ๐1; (2๐ โ 1)(4๐ โ 5) + 2๐1โ 1, for odd ๐, ๐ = ๐ โ 1, ๐ = ๐1.
๐ค(๐ฃ(๐ก)๐2๐โ2) = {(2๐ก โ 1)(4๐ โ 5) + 2๐ + 1, for 1 โค ๐ก โค ๐ โ 1, 1 โค ๐ โค 4๐ โ 5;
(2๐ โ 1)(4๐ โ 5) + 2๐ + 1, for ๐ก = ๐, 1 โค ๐ โค ๐2โ 1.
Since all face-weights are distinct, then ๐ is a face irregular entire z-labeling of ๐ต๐๐ where ๐ is odd with 2 โค ๐2โค 2๐ โ 1 or ๐ is even; and ๐โ is a face irregular entire z-labeling of ๐ต๐๐ where ๐ is odd with ๐2= 1 or 2๐ โค ๐2โค 4๐ โ 5. Thus, ๐ง = โ4๐+๐โ7
4๐โ5 โ is the entire face irregularity strength of ๐ต๐๐. โ
Note that our result in Theorem 2.2 show that the ๐๐๐ (๐ต๐๐) is greater than the lower bound in Lemma 2.1.
Hence, we propose the following open problem.
108 Tilukay & Ilwaru | The Entire Face Irregularity Strength of a Book with Polygonal Pages
Open Problems
1. Find a class of graph which satisfy a condition where the lower bound in Lemma 2.1 is sharp;
2. Generalize the lower bound for any condition.
References
[1] M. Baca, S. Jendrol, M. Miller and J. Ryan, โOn Irregular Total Labelings,โ Discrete Mathematics, vol. 307, pp.
1378-1388, 2007.
[2] J. A. Galian, โA Dynamic Survey of Graph Labeling,โ Electronic Journal of Combinatorics, vol. 18 #DS6, 2015.
[3] J. Ivanco and S. Jendrol, โThe Total Edge Irregularity Strength of Trees,โ Discuss. Math. Graph Theory, vol. 26, pp.
449-456, 2006.
[4] C. C. Marzuki, A. N. M. Salman and M. Miller, โOn The Total Irregularity Strengths of Cycles and Paths,โ Far East Journal of Mathematical Sciences, vol. 82 (1), pp. 1-21, 2013.
[5] R. Ramdani and A. N. M. Salman, โOn The Total Irregularity Strengths of Some Cartesian Products Graphs,โ AKCE Int. J. Graphs Comb., vol. 10 No. 2, pp. 199-209, 2013.
[6] R. Ramdani, A. N. M. Salman, H. Assiyatun, A. Semanicova-Fenovcikova and M. Baca, โTotal Irregularity Strength of Three Family of Graphs,โ Math. Comput. Sci, vol. 9, pp. 229-237, 2015.
[7] M. I. Tilukay, A. N. M. Salman and E. R. Persulessy, "On The Total Irregularity Strength of Fan, Wheel, Triangular Book, and Friendship Graphs," Procedia Computer Science, vol. 74, pp. 124-131, 2015.
[8] M. Baca, S. Jendrol, K. Kathiresan and K. Muthugurupackiam, โEntire Labeling of Plane Graphs,โ Applied Mathematics and Information Sciences, vol. 9, no. 1, pp. 263-207, 2015.