1. Dengan menggunakan akurasi 1%, tentukan kemungkinan posisi bola tenis dengan berat 0.05 kg yang dilempar dengan kecepatan 10 m/s. (Diketahui nilai h = 6.62607015×10−34 J⋅Hz−1, dan ħ = 1.054571817×10−34 J⋅s). Dengan cara yang sama, tentukan kemungkinan posisi electron dengan massa 9.11 x 10-31 kg yang bergerak dengan kecepatan 10 m/s. Jelaskan pendapat anda dengan perbedaan nilai yang didaptkan
2. Elektron dilempar dengan kecepatan 5 m/s dan dia bergerak seperti gelombang. Jika frequency gelombang electron 8×10−20 s-1. Tentukan amplitude dari gelombang electron tersebut! Selanjutnya, dengan akurasi 1%, tentukan kemungkinan besar momentum yang dimiliki jika electron tersebut bertumbukan dengan electron yang lain!
3. Dengan menggunakan akurasi 20%, tentukan kemungkinan posisi bola besi dengan berat 1 kg yang dilempar dengan kecepatan 100 m/s. (Diketahui nilai h = 6.62607015×10−34 J⋅Hz−1, danħ = 1.054571817×10−34 J⋅s).
4. Formulasikan dan tentukan frekuensi dan amplitude electron yang bergerak dengan kecepatan 1010 m/s. Gunakan massa electron di literature
5. Hitung kecepatan peluru dan electron yang di tembak pada waktu yang sama. Jika diketahui kemungkinan posisi peluru setelah ditembak sebesar 10-20 m, sedangkan electron sebeasar 10-4 cm (gunakan akurasi 1%). Gunakan massa electron yang ada diliteratur, sedangkan mass peluru 5 m/s.
6. Holmium metal ketika di XRD memiliki puncak tertinggi pada 2 theta 30 yang merefleksikan bidang 111. Panjang gelombang X-ray 1.5418 Å. Tentukan uncertainty position dari phonon yang terbentuk dari holmium metal, jika akurasinya 1%!
7. Tentukan uncertainty position electron yang dianggap bergerak melingkar didalam metal Fe.
8. Jelaskan beberapa model dan material untuk quantum circuit. Apa alasannya?
Wave particle, wave packet, dynamics:
Quantum dots
Tahta Amrillah, PhD
Program Studi Rekayasa Nanoteknologi Fakultas Teknologi Maju dan Multidisiplin
Semester Genap 2021/2022
Outline:
Introduction
Single electron in quantum dots
Many electron in quantum dots
Dynamics in quantum dots
Introduction
Applications in solar cells
Silicon → Expensive, complicated fabrication, maximum PCE is around 20%
Thin-film → Expensive, maximum PCE is around 20%
DSSC → Low PCE less than 20%
Perovskite → Unstable, toxic
How to overcome those problems? → Quantum dot integrated solar cells increase the solar cells performance Quantum dot arrays in p–i–n cells (in Silicon and thin film solar cells)
Quantum dots dispersed in organic semiconductor polymer matrices (perovskite and DSSC) Quantum dot-sensitized nanocrystalline TiO2 solar cells (DSSC)
Introduction
Applications in Biomedical
Drug delivery Contrast agent Biosensor
Neuromorphic computing
How to realize those ideas? → Quantum dot integrated increase the biocompatibility, sensing, storage, etc.
Introduction
http://dx.doi.org/10.3184/003685015X14311048821595
Introduction
• Quantum nanodots
https://doi.org/10.1039/D0RA03938A
•Quantum dot is one of example of 0D materials
•It called quantum nanodot because they are in quantum size regime characterized by the discretization of the energy levels inside the material
•The quantum size regime is obtained when the dimensions are smaller than the exciton Bohr radius (for example in CdS such a threshold value is about 5.4nm)
Int. to Nanoscience and nanotechnology, G. L. Hornyak. CRC Press
Introduction
Quantum physics will talk about the electron inside nanomaterials; quantum nano dots
We discuss electron inside a simple box
Example:
Introduction
→ We go back to quantum physics
Some trajectories of a particle in a box according toNewton's laws of classical mechanics(A), and according to the Schrödinger equationof quantum mechanics(B–F). In (B–F), the horizontal axis is
position, and the vertical axis is the real part (blue) and imaginary part (red) of thewavefunction. The states (B,C,D) are energy eigenstates, but (E,F) are not.
Introduction
→ We go back to quantum physics
Introduction
→ We go back to quantum physics
Introduction
→ Now, how about an electron in various low dimensional materials?
Introduction
→ Now, how about an electron in various low dimensional materials?
Let say:
Single electron in quantum dots
Quantum states of an electron in quantum dots
Energy levels in a quantum dot
V. V. Mitin, et al. Quantum Mechanics for Nanostructures
Single electron in quantum dots
Energy levels in a quantum dot
V. V. Mitin, et al. Quantum Mechanics for Nanostructures
Many electron in quantum dots
The number of states and density of states in quantum dots
The dependences of (a) the number of states, N(E), and (b) the density of states, g(E), in a rectangular box with potential barriers of infinite height.
V. V. Mitin, et al. Quantum Mechanics for Nanostructures
How about if not only one electron?
Many electron in quantum dots
Double-quantum-dot structures (artificial molecules)
A schematic picture of a double-quantum-dot structure (a) and its potential profile U(x) (b). A and B denote different semiconductor materials, which constitute quantum dots and barriers
between them.
V. V. Mitin, et al. Quantum Mechanics for Nanostructures
Dynamics in quantum dots
Dynamics in quantum dots
The wavefunctions of a double-quantum-dot structure, ψs and ψa, when the quantum dots are far from each other.
Double-quantum-dot structures (artificial molecules)
Dynamics in quantum dots
wavefunctions ψs and ψa, when the width of the barrier between the two quantum dots is equal to zero.
Dynamics in quantum dots
wavefunctions ψs and ψa, when the width of the barrier between the two quantum dots is equal to zero.
Dynamics in quantum dots
The dependences of the energies of the
symmetric, E(1) x , and antisymmetric, E(2) x , states of the doublequantum-dot structure on the width of the barrier, d, separating
individual quantum dots.
wavefunctions ψs and ψa, when the width of the barrier between the two quantum dots is equal to zero.
Dynamics in quantum dots
The wavefunctions of a double-quantum-dot structure, ψs and ψa, when the quantum dots are far from each other.
We go back to double quantum dot with a distance
Dynamics in quantum dots
Dynamics in quantum dots
The wavefunctions of a double-quantum-dot
structure, ψs and ψa, when the quantum dots are close to each other
Then, the double quantum dot with a distance move to close each other!
Dynamics in quantum dots
The wavefunctions of a double-quantum-dot
structure, ψs and ψa, when the quantum dots are close to each other
Then, the double quantum dot with a distance move to close each other!
Dynamics in quantum dots
Dynamics in quantum dots
What is the purpose of our calculation? ➔ remember core-shell structure for any applications, e. g. drug delivery!
Dynamics in quantum dots
What is the purpose of our calculation? ➔ remember core-shell structure for any applications, e. g. drug delivery!
To use QDs for biological applications, one must passivate the core QD with a thin layer of non-toxic high band gap material such as ZnS or ZnSe55. Such core/shell QDs have many advantages over unpassivated ones. For example, the chemical and optical stability of QDs can be maintained for longer
periods of time when they are passivated with higher band-gap
semiconductor materials56. The shell also significantly reduces the toxicity of the QDs, which makes them more suitable for biological applications. To
date, many types of core/shell QDs were fabricated. However, only CdSe/ZnS, CdTe/ZnS, and CdSe/CdS/ZnS have been commonly used forin vitro andin vivoimaging57. Such core/shell QDs are created by epitaxially growing a higher band-gap semiconductor material around the core.
Wave particle, wave packet, dynamics:
Nano heterostucture
Tahta Amrillah, PhD
Program Studi Rekayasa Nanoteknologi Fakultas Teknologi Maju dan Multidisiplin
Semester Genap 2021/2022
Outline:
Introduction
Quantum wires
Quantum wells
Dynamics in Nano heterostucture
Introduction
What is nano heterostructures?
• 0D-0D core shells
• 0D-1D nanocomposites
• 0D-2D nanocomposites
• 0D-3D nanocomposites
• 1D-1D nanocomposites
• 1D-2D nanocomposites
• 1D-3D nanocomposites
• 2D-2D multilayer
• 2D-3D nanocomposites
• 3D-3D nanocomposites, core shells
Examples:
Introduction
rsos.royalsocietypublishing.org, R. Soc. open sci.5: 1803876
Introduction
Possible methods of circumventing the 31% efficiency limit for
thermalized carriers in a single–band gap absorption threshold solar quantum conversion system. (A) Intermediate-band solar cell; (B) quantum-well solar cell.
DOI: 10.1126/science.1137014
Quantum Wires
Different types of nanostructures: (a) a quantum well, (b) a quantum wire, and (c) a quantum dot.
A and B denote the materials which constitute the nanostructures, with A being the material of the nanostructure itself and B being the material of the surrounding matrix. The nanostructure is referred to as free-standing if the surrounding matrix, B, is vacuum
Quantum Wires
In general: In quantum wire:
Quantum Wires
Quantum wire: the quantized energy levels, E11 and E12, as well as the dependences of the electron
energy Enxny on the momentum pz
Quantum Wires
Quantum Wires
Quantum wells
In quantum wire:
In quantum wells:
In general:
Quantum well: quantized energy levels, E1 and E2, and the dependences of the electron energy, Enx , on the momentum
Quantum wells
Quantum wells
Quantum wells
Quantum wells
Dynamics in Nano heterostucture
Lets we consider the simplest combination of similar low dimensional materials in superlattice or periodic structure
The potential profile of the superlattice in the direction of the periodicity (the x-direction). U0is the height of the barrier which separates neighboring quantum dots, d is the width of the potential barrier, and Lxis the width of the potential well. A denotes the material of the quantum dot and B denotes the material of the barriers that separate quantum dots. The first energy miniband is labeled 1 and the second is labeled 2
Dynamics in Nano heterostucture
Lets we consider the simplest combination of similar low dimensional materials in superlattice or periodic structure
Dynamics in Nano heterostucture
Lets we consider the simplest combination of similar low dimensional materials in superlattice or periodic structure
Dynamics in Nano heterostucture
Lets we consider the simplest combination of similar low dimensional materials in superlattice or periodic structure
Dynamics in Nano heterostucture
Lets we consider the simplest combination of similar low dimensional materials in superlattice or periodic structure
A superlattice composed from quantum wires. A denotes the material of the quantum wires and B the material of the
barriers which separate the quantum wires
A superlattice composed from quantum wells. A denotes the material of the quantum wells and B the material of the barriers, which separate the quantum wells.
Heisenberg Operator Approach
(Introduction)
Tahta Amrillah, PhD
Program Studi Rekayasa Nanoteknologi Fakultas Teknologi Maju dan Multidisiplin
Semester Genap 2021/2022
Outline:
Introduction
Heisenberg Uncertainty
Heisenberg Solving in Nanomaterial
Introduction
“Big Picture” of Industry Automation
Introduction
Mechanics in the production process
We can calculate the movement!
Force, velocity, distance, etc. →
Physicsunderstanding is required
How about in microchip in our computers?
What is moving, electron?
Can calculate the movement!
Force, velocity, distance, etc. → Modern and quantum Physics
understanding is required
Introduction
https://www.youtube.com/watch?v=2z9qme_ygRI https://www.youtube.com/watch?v=rkbjHNEKcRw
Introduction
Electrons exhibit particle–wave duality. The de Broglie equation relates the momentum of an
electron (a particle phenomenon) to wavelength
https://sites.google.com/site/atomictheorytimeline707/privacy-policy
Int. to Nanoscience and nanotechnology, G. L. Hornyak. CRC Press
Back to probability of electron
Heisenberg Uncertainty
However, electron cannot move like basket balls
m
v s t
m
“In macroscopic view, everything is certainty – deterministic!”
v s t
How about we changes the basket ball with electron!!!
Can we observed it?
Can we calculate the velocity?
Can we observed where the electron move after collision?
How much the momentum?
etc.
Clue: Probability
Heisenberg Uncertainty
• In the world of very small particles, one cannot measure any property of a particle without interacting with it in some way
• This introduces an unavoidable uncertainty into the result
• One can never measure all the properties exactly
Werner Heisenberg (1901-1976)
Image in the Public Domain
Heisenberg realized that ...
Heisenberg Uncertainty
• Shine light on electron and detect reflected light using a microscope
• Minimum uncertainty in position
is given by the wavelength of the light
• So to determine the position
accurately, it is necessary to use light with a short wavelength
BEFORE ELECTRON-PHOTON
COLLISION
electron incident
photon
Measuring Position and Momentum of an Electron
Heisenberg Uncertainty
• By Planck ’ s law E = hc/λ, a photon with a short wavelength has a large energy
• Thus, it would impart a large ‘ kick ’ to the electron
• But to determine its momentum
accurately, electron must only be given a small kick
• This means using light of long wavelength !
AFTER
ELECTRON-PHOTON COLLISION
recoiling electron scattered
photon
Measuring Position and Momentum of an Electron
Heisenberg Uncertainty
• It is impossible to know both the position and momentum exactly, i.e., Δx=0 and Δp=0
• These uncertainties are inherent in the physical world and have nothing to do with the skill of the observer
• Because h is so small, these uncertainties are not observable in normal everyday situations
Implications
Heisenberg Uncertainty
• A pitcher throws a 0.1-kg baseball at 40 m/s
• So momentum is 0.1 x 40 = 4 kg m/s
• Suppose the momentum is measured to an accuracy of 1 percent , i.e.,
Δp = 0.01p = 4 x 10-2 kg m/s
• The uncertainty in position is then
• No wonder one does not observe the effects of the uncertainty principle in everyday life!
Example of Baseball
• Same situation, but baseball replaced by an electron which has mass 9.11 x 10-31 kg traveling at 40 m/s
• So momentum = 3.6 x 10-29 kg m/s
and its uncertainty = 3.6 x 10-31 kg m/s
• The uncertainty in position is then Example of Electron
Compute the wavelength of an electron (m = 9.1x10-31 [kg]) moving at 1x107 [m/s].
λ = h/mv
= 6.6x10-34 [J s]/(9.1x10-31 [kg])(1x107 [m/s])
= 7.3x10-11 [m].
= 0.073 [nm]
Heisenberg Uncertainty
• This is immeasureably small (impossible). For ordinary “everyday objects,”
we don’t experience that. But for sure MATTER CAN BEHAVE AS A WAVE
Once more, example of Bullet
• Compute the wavelength of a 10 [g] bullet moving at 1000 [m/s].
λ = h/mv = 6.6x10-34 [J s] / (0.01 [kg])(1000 [m/s])
= 6.6x10-35 [m]
But, what about small particles ?
These electrons
have a wavelength in the region of X-rays
Heisenberg Uncertainty
• The observer is objective and passive
• Physical events happen independently of whether there is an observer or not
• This is known as objective reality
Classical World
• The observer is not objective and passive
• The act of observation changes the physical system irrevocably
• This is known as subjective reality
Role of an Observer in Quantum Mechanics
Heisenberg Solving in Nanomaterial
Heisenberg Solving in Nanomaterial
Both uncertainty!
Heisenberg Solving in Nanomaterial
or
Heisenberg Solving in Nanomaterial
Note: Heisenberg only proved relation (devided by 2) for the special case of Gaussian states
The original
Expanded:
Dont be confuse!
Heisenberg Solving in Nanomaterial
Movement of some small nanoparticles (or quantum dots → electron)
Heisenberg Solving in Nanomaterial
https://doi.org/10.1039/C8DT01631C Covalently linking photosensitizers and catalysts in an inorganic–organic hybrid
photocatalytic system is beneficial for efficient electron transfer between these components.
Heisenberg Solving in Nanomaterial
Heisenberg Solving in Nanomaterial
In quantum physics
Basically the Schrodinger picture time evolves the probability distribution, the Heisenberg picture time evolves the dynamical variables and the interaction picture time evolves a little bit of both
Heisenberg Solving in Nanomaterial
Example in very simple case: 1D harmonic oscillator
Heisenberg Solving in Nanomaterial
Heisenberg Solving in Nanomaterial
Heisenberg Solving in Nanomaterial
Heisenberg Solving in Nanomaterial
Heisenberg Solving in Nanomaterial
Heisenberg exchange interaction, Jij Example of applications Heisenberg picture
In Article: Macrospin model of an assembly of magnetically coupled core-shell nanoparticles
Heisenberg Solving in Nanomaterial
Heisenberg Solving in Nanomaterial
Heisenberg Operator Approach : Nano
Mechanical Oscillator
Tahta Amrillah, PhD
Program Studi Rekayasa Nanoteknologi Fakultas Teknologi Maju dan Multidisiplin
Semester Genap 2021/2022
Outline:
Introduction
Nanomechanical Oscillator
Real Apllications
Introduction
Bim-salabim jadi solar cells Why physics???
Introduction
• Massa yang dihubungkan pada pegas (Gambar disamping) .
• Pegas ditarik ke kanan menggunakan gaya 𝐹
𝑇,
• Pegas memberi reaksi kekiri sebesar 𝐹
𝑠(Hukum aksi-reaksi 𝐹
𝑇= − 𝐹
𝑠). Gaya pegas 𝐹
𝑠= 𝑚𝑎
𝑥• Jika gaya tarik tidak melampui batas elastistas pegas, pertambahan panjang pertambahan panjang pegas 𝑥 sebanding dengan gaya tariknya 𝐹
𝑇= 𝑘𝑥
• Dengan demikian, berlaku 𝐹
𝑠= −𝑘𝑥 = 𝑚𝑎
𝑥2
0
20
x
d x k
ma kx x
dt m
+ = + =
Oscillator in classical physics!
Introduction
• Persamaan gerak pada pegas 𝑑
2𝑥
𝑑𝑡
2+ 𝑘
𝑚 𝑥 = 0
• 𝑥 𝑡 = 𝐴 cos 𝜔𝑡 + 𝜙 , maka:
• Dengan mensubtitusikan persamaan-persaan ini
• Pada persamaan gerak pegas, akan didapatkan:
( )
2 2
cos 0
k A t
m
− + =
2 k
= m
Introduction
• Misalkan, Simpangan osilasi 𝑥 𝑡 = 𝐴 cos 𝜔𝑡 + 𝜙
• Kecepatan
• Percepatan
( ) dx t ( ) sin ( )
v t A t
dt
= = − +
( ) ( )
2
2
( ) d x t2 cos
a t A t
dt
= = − +
Simpangan Kecepatan Percepatan
+ +/- -
- -/+ +
Maksimum Nol Maksimum
Nol Maksimum nol
( )
( )
2 2 2 2
2 2 2 2
2 2 2
0.5 0.5 sin
0.5 0.5 cos
0.5 0.5
EK mv m A t
EP kx m A t
E EK EP m A kA
= = +
= = +
= + = =
Introduction
Oscillator in Quantum mechanics!
rsos.royalsocietypublishing.org, R. Soc. open sci.5: 1803876
Introduction
Possible methods of circumventing the 31% efficiency limit for
thermalized carriers in a single–band gap absorption threshold solar quantum conversion system. (A) Intermediate-band solar cell; (B) quantum-well solar cell.
DOI: 10.1126/science.1137014
Introduction
Potential energy:
Displacement due to potential energy:
With:
Frequency:
Amplitude:
Newton's lawsofclassical mechanics(A), and according to theSchrödinger
equationofquantum mechanics(B–F). In (B–F), the horizontal axis is position, and the vertical axis is the real part (blue) and imaginary part (red) of thewavefunction. The states (B,C,D) areenergy eigenstates, but (E,F) are not.
Introduction
Nanomechanical Oscillator
A one-dimensional harmonic oscillator
Wave function
where the quantum number, n, has the values n = 0, 1, 2,... The quantum number n defines the energy of oscillatory motion of a quantum oscillator and it is called the oscillatory quantum number.
Nanomechanical Oscillator
Nanomechanical Oscillator
Some case; Phonon:
In physics, a phonon is a collective excitation in a periodic, elastic arrangement of atoms or molecules in condensed matter, specifically in solids and some liquids
A phonon is the quantum mechanical description of an elementary vibrational motion in which a lattice of atoms or molecules uniformly oscillates at a single frequency
normal modes of phonon are wave-like phenomena in classical mechanics, phonons have particle- like properties too, in a way related to the wave–particle duality of quantum mechanics
Nanomechanical Oscillator
Some case; Phonon:
Nanomechanical Oscillator
Velocity group:
Nanomechanical Oscillator
Nanomechanical Oscillator
Is there only phonon and photon?
There are a lot of thing/phenomenon we can observe using quantum mechanics!!!
Real Applications
Also, nanomechanical oscillator could be used in some precision
measurement tools!
Heisenberg Operator Approach: Quantum LC
Circuit
Tahta Amrillah, PhD
Program Studi Rekayasa Nanoteknologi Fakultas Teknologi Maju dan Multidisiplin
Semester Genap 2021/2022
Outline:
Introduction
Classical LC Circuit
Quantum LC Circuit
Introduction
Konduktor mempunyai Elektron bebas, yang
• Sering mengalami hamburan dari kisi kristal (ion positif) terjadi gerak random, tetapi tidak menghasilkan arus
• Pemberian medan listrik menghasilkan kecepatan drift yang kecil.
• Kecepatan drift ini menghasilkan gerak muatan neto - yaitu arus listrik, I → Satuan Amp (Ampère), 1 A = 1 C s
–1Elektron di Dalam Konduktor
Introduction
Arus Listrik
R ε, r
- + I
Introduction
Suatu resistor atau tahanan mempunyai sifat resistansi, satuan Ohm (Ω) dapat dinyatakan dalam hubungan sebagai :
= resistivitas, dengan satuan m l = panjang kawat, meter (m)
A = luas kawat, m
2Besarnya Arus yang mengalir di dalam komponen listrik tergantung pada beda potensial ujung-ujungnya, V.
(hukum Ohm)
Satuan resistansi (tahanan) : ohm, (1 = 1 volt per amp)
Resistansi Listrik
A R l
=
R
I = V
Introduction
Pengurangan energi dari muatan Q yang berpindah pada beda potensial V adalah Q V.
Daya yang hilang (rate kehilangan energi) adalah P = (dQ/dt )V = I V.
Dengan V = I R, maka daya adalah :
Ini adalah daya listrik yang oleh tahanan dirubah menjadi panas, dan panas yang timbul persatuan waktu adalah : dH/dt = I
2R
Daya Listrik
R I
a b
2
V
2P IV I R
= = = R
Introduction
RANGKAIAN ARUS SEARAH
Sumber tegangan atau disebut juga emf (electro motive force) didefinisikan sebagai energi persatuan muatan :
ε = dW/dt Volt atau joule/coulomb
Perhatikan gambar dibawah ini, sebuah emf mempunyai tahanan dalam, r, dihubungkan dengan tahanan luar R.
ε I = I
2R + I
2r
I = ε/(R+r)
Rε, r
- + I
Introduction
Bila kemudian dipasang motor : ε I = I
2R + I
2r + I
2r’ + ε’I
ε - ε’ = I (R + r + r’) Σε = Σ I r
nHk Kirchoff II :
Jumlah aljabar sumber tegangan (emf) = jumlah aljabar dari perkalian arus dan tahanan pada suatu loop (rangkaian tertutup)
I = (ε - ε’ )/(R + r + r
’) I = Σε /Σ r
nε positif bila searah dengan I, dan R selalu positif Σ I = 0 Hk Kirchoff I :
jumlah aljabar dari arus pada suatu titik cabang, a, dalam suatu rangkaian listrik = 0
R1 R2 R3
I1 a I2 I3
I masuk positif dan I keluar negatif
R
ε, r -
+
I
- +
ε’, r’
Introduction RANGKAIAN ARUS BOLAK BALIK
S
RvS
Resistansi (R, satuan Ohm) dihubungkan dengan Tegangan (emf) dengan fungsi : v
S= V
msin 2ft = V
msin ωt (volt)
v
S= tegangan sumber fungsi waktu (volt) V
m= tegangan maksimum (volt)
f = frekuensi (di Indonesia 50 Hz) Menurut hukum ohm
V =I R
V
msin ωt = i R → i = (V
m/R) sin ωt = i
msin ωt dengan i
m= V
m/R = arus maksimum
Tegangan dan arus berfase sama (sefase)
i
im Vm
y
t
im Vm y
x
im Vm
t y
Introduction
t cos
I
i
L=
m
Reaktansi induktif, X
Lmengalir melewati induktor L, tegangannya diperoleh dari :
) 90 t
( cos LI
)}
90 t
{- cos LI
t) (- sin LI
v
t sin I
- L t
cos dt I
L d dt
L di
o m
o m
m L
m m
L
+
=
−
=
=
=
=
L
= v
ωLI
m= V
mtegangan maksimum
Reaktansi induktif X
L= L dalam satuan ohm ().
V
m= I
mX
LBila arus :
Introduction
Kesimpulan :
tegangan pada induktor L
mendahului 90
0dari arus yang melewatinya.
v
LI
θ
v
LI
900
ωt v, i
iL (t) vL (t)
Introduction
( )
( t 90 )
cos
i
90 t
cos C
V C
t sin
- C t
cos dt V
C d dt
C dv
0 C
0 m
m C
+
=
−
−
=
−
=
=
=
=
m
m
m C
CV
V )
t (
sin
V i
Reaktansi Kapasitif, X
Cmelintang pada ujung kapasitor C, arusnya adalah:
t cos
V
v
C=
m
Bila tegangan :
dt C dv dt
dQ =
CC
= i
ωCV
m= I
marus maksimum
Reaktansi capasitif X
C= 1/C dalam satuan ohm ().
V
m= I
mX
CIntroduction
Kesimpulan :
Arus yang melewati kapasitor C mendahului 90
0dari tegangannya.
v, i
iC(t) vC (t)
900
ωt
θ
vL IL
C
I
LIntroduction
Resistansi (R, satuan Ohm), induktansi (L, satuan Henry) dan capasitor (C, satuan Farad) dihubungkan dengan Tegangan (emf) dengan fungsi :
RANGKAIAN ARUS BOLAK BALIK
v
S= V
msin 2ft = V
msin ωt (volt)
S
R L C vS
I
m= V
m/Z Ampere (A)
Diperkenalkan impedansi :
Z = (R
2+ X
2)
1/2satuan ohm ( Ω )
I
Stidak dapat dituliskan
sebagai I
s= v
s/Z , karena I
sdan v
sada
beda fase,yaitu : φ =tan
-1(X/R) (derajat)
v
S= tagangan sumber fungsi waktu (volt) V
m= tegangan maksimum (volt)
f = frekuensi (di Indonesia 50 Hz)
R = resistansi, Ω X = reaktansi, Ω
X
L= (2f L) = ωL, Ω = reaktansi induktif
X
C=1/(2fC) = 1/(ωC), Ω = reaktansi capasitif
Introduction
S
R L C vS
RANGKAIAN ARUS BOLAK BALIK
Introduction
Classical LC Circuit
Classical LC Circuit
Energy Kinetic
Lagrangian = analisis di dalam mekanika yang tidak
mempertimbangkan keberadaan gaya dalam pergerakan yang timbul
Penyelesaian umum:
The Euler–Lagrange equation Jadi, the electrical charge Q sebesar:
Classical LC Circuit
Jadi, the electrical charge Q sebesar:
angular frequency of oscillations
Continue with Hamiltonian (Hamiltonian suatu sistem adalah operator yang sesuai dengan energi total sistem tersebut, termasuk energi kinetik dan energi potensial)
Classical LC Circuit
Classical quantum mechanics for LC circuits
Quantum LC Circuit
Quantum LC Circuit
Quantum LC Circuit
Quantum LC Circuit
Quantum LC Circuit
Quantum LC Circuit
Quantum LC Circuit
Some applications
Quantum LC Circuit
SQUID magnetometer
Very sensitive magnetic detection in some nanomaterials
Quantum LC Circuit
Single electron transistor
Quantum LC Circuit
I hope you the one who build this technology in Indonesia!
Next generation devices