• Tidak ada hasil yang ditemukan

9. Laplace transform of periodic functions

N/A
N/A
Protected

Academic year: 2024

Membagikan "9. Laplace transform of periodic functions"

Copied!
10
0
0

Teks penuh

(1)

7.Laplace transform of functions obtained with multiplication by

tn

Definition 7.1

Leibniz's rule states that integration and differentiation are interchangeable i.e.

d dx

y1

y2

f(x , y)dy=

y1

y2

∂ f(x , y)

∂ x dy

with the condition that f(x , y) and ∂ f(∂ xx , y) are continuous within the interval ( x1, x2¿ for the variable x and the corresponding interval (¿¿1y, y2)

¿

for the variable y . In general,

f(x , y)dy=¿

y1(x) y2(x)

∂ f(x , y)

∂ x dy+¿

d dx

y1(x) y2(x)

¿

f(x , y2(x))d y2

dx f(x , y1(x))d y1 dx

In this problem ,the limits on t are independent of s . the last 2 terms are 0 .

tnf(t) } L¿

F(s)=L f(t)=

0

estf(t)dt

taking the derivative with respect to s on both the sides , we obtain

dF(s) ds = d

ds

0

estf(t)dt

dF(s) ds =

0

∂ s estf (t)dt ... Leibniz rule

dF(s) ds =−

0

estf (t)tdt=−L{tf (t) } D.U.

(2)

If we consider the derivative once more , we obtain

d2F d s2=

0

estf (t)t2dt = L{t2f(t)}

We can consider the higher order derivatives and obtain ,

L{tnf(t)}=(−1)ndnF(s)

d sn (12)

Example 7.1:

Determine L{t e−4t}

From the above theorem , f(t)=e−4t;n=1 , F(s)=s+14

d F(s)

ds = −1

(s+4)2 therefore L{t e−4t}=¿ (s+−14)2 Example 7.2:

Determine L{t2sin 2t}

In this case we need to consider the second derivative of L{sin 2t}.

d2

d s2

[

(s22+4)

]

¿dsd

[

(s−22+4s)2

]

=(s−22+4)2+(s82+s42)3

L{t2sin 2t}=¿ −2

(s2+4)2+

8s2

(s2+4)3 (13) Example 3:

Find L{t2cosat}=(−1)2dsd22

[

s2+sa2

]

D.U.

8s3

(a2+s2)3

−6s

(a2+s2)2 or

L{t2cosat}= 8s3

(a2+s2)3

6s

(a2+s2)2 (14)

8. Laplace transform of functions which are divided by t

(3)

L{f(t) t }=

s

F(u)du (15)

Proof: F(s) is L{f(t)}

Using the definition of Laplace transform, we obtain

0

f(t)etu [¿dt]du

s

F(u)du=

s

¿

due to the convergence of the function we can change the order of integration to obtain

¿¿

f(t)etudu

0

s

¿dt¿ = ∫

0

f(t)est dt

t = L{Ft(t) }

since the value of the integral at the upper limit is 0 . Example 8.1:

Evaluate L

{

0x sint tdt

}

Comparing with the above formula ,

f(t)=sint and L

{

sint t

}

=s u21+1du=¿ π2tan−1s=tan−11s

We next apply the previous theorem

L

{

0x f(t)dt

}

=F(s)s

f(t)=sint

t and therefore

L

{

0x sint tdt

}

=1s tan−11s (16)

(4)

9. Laplace transform of periodic functions

We consider a periodic function f(t) with a period T . Thus

f(t+T)=f(t)

substituting the expression for LT we have,

0

f(t)estdt=

0 T

f(t)estdt +

f(t)estdt+¿

2T 3T

f(t)estdt+..

T 2T

¿

in the second integral, we substitute,

tT=u ;t=u+T , dt=du; and the limits change to (0, T) . Thus the second integral is

0 T

f(u+T)es(u+T)du=esT

0 T

f(u)esudu as f(u+T)=f(u)

for the next integral we substitute t−2T=u; and the integral reduces to

0 T

f(u+2T)es(u+2T)du=e−2sT

0 T

f(u)esudu

similarly by substituting in the following integrals we obtain an infinite geometric series of the form

1+e (¿¿−sT+e−2sT+e−3sT+)

0 T

f(u)esudu=[

0 T

f(u)esudu] 1 1esT

¿

Thus Laplace transform of a periodic function f(t) with period T is

L{f(t)}= 1 1−esT

0 T

f (u)esudu (17)

(5)

Example 9.1:

Determine the Laplace transform of the periodic function f (t) which has a period of 4. f(t)=2for0≤ t ≤2;f(t)=−2for2≤ t ≤4

We evaluate ∫

0 4

f(t)estdt=

0 2

2estdt+

2 4

−2estdt

= 2(1−es −2s)+2s(e−4se−2s)

Hence the Laplace transform of the given square wave is

2(1−2e−2s+4e−4s) 1−e−4s

Example 9.2:

Determine the Laplace transform of a saw tooth wave with period 2

f(t)=t for0≤ t ≤2 ;

Fig 3 saw tooth wave with period 2

0 2

t estdt=2e−2s

s +

0 2 est

s dt=2e−2s

s −[e−2s−1 s2 ]

Thus the Laplace transform of a sawtooth wave of period 2 is given by

2e−2s

s −[e−2s−1 s2 ] 1−e−2s

Example 9.3 :

(6)

Find the Laplace transform of the half wave rectified wave

f(t)=Vsin ωt for 0≤ ωt ≤ π

f(t)=0 for π ≤ ωt ≤2π

Fig 4 Output of half wave rectifier

0 π/ω

et(s)et(s+) 2i

Vsinωt estdt+0=V[¿¿dt]

f(t)estdt=

0 π ω

¿

0 T

¿

V

2i

[

est(s)et(s+) s+

]

π/ω

0

=V

2i

[

1−esπ(s)/ω1−eπ(s+)/ω s+

]

V

2i

[

2−seπs/ω2−es+πs/ω

]

¿2Vi

[

4+s

(

eπsω es2πs+ω

)

ω(e2 πsω +eπsω)

]

Thus the Laplace transform of the rectified half wave sine wave is

V

2i

[

4+s

(

eπsω se2πs+ω

)

ω(e2 πsω +eπsω)

]

1−e−2/ω

10. More Laplace transforms Example10.1:

(7)

Determine L{sint}

We consider the sine series sint=t(t)3

3! +(t)5

5!

L{sint}=L

{

t(3!t)3+(t)5

5!

}

L { t}=Γ(32) /s

3

2 ; L

{

(3t!)3

}

= Γ(

5 2)

3! s5/2 ; L

{

(5t!)5

}

=Γ(

7 2) 5! s7/2

Γ

(

12

)

=π where Γ represents the gamma function which is defined by the following integral.

Γ(n+1)=

0

xn−1exdx and Γ(n+1)=n Γ(n) Substituting these values in eqn (1) ,

L { sint}=2sπ3/2π

s5/2.1 2.3

2. 1 3!+π

s7/2.1 2.3

2.5 2. 1

5!

L { sint}=¿ 2sπ3/2

[

1−41s+321s2

]

= 2sπ3/2

[

1−41s+(4s)122!

]

L { sint}=¿ 2sπ3/2e

−1

4s (18)

11. Evaluation of integrals using Laplace transforms Example11.1:

Evaluate ∫

0

sintx

x dx using Laplace transform.

L

{

sint t

}

=s u21+1du=¿ π2−tan−1s=tan−11s We can change the variable tx=y and the result is unaltered.

s=0 , ∫

0

sintx

x dx = π2−¿ tan−10=¿ π2

(8)

L

0

sintx

x dx=¿ π

2 (19)

12. Laplace Transforms of Integrals of Functions 1. Determine the Laplace transform of ∫

t

ep p dp

Let f(t)=

t

ep

p dp

Taking the derivative on both sides and considering the derivative of an integral of a function is the function, we obtain , f'(t)=¿ ett ;

t f'(t)=et

L{t f'(t)}= 1

s+1 ; using L{tng(t)}=(−1)nd sdnnG(s) G(s)=¿ L{g(t) }

Thus L{t f'(t)}=dds L{f'(t)}=dds [sF(s)−f(0)] = dsd[sF(s)] as f(0) is not a function of s .

d

ds [sF(s)] = s+11

integrating both sides with respect to s , sF(s)=lns+11 or

F(s)=1

sln(s+1) L

t

ep

p dp=¿ 1

sln(s+1) (20)

Exercises:

1. Determine the Laplace transform of the following functions.

a) sinh24t

(9)

b) sinh⁡at/t c) (et)(t+1) d) cos2(2t)

e) et(t+1)2

2. Determine the Laplace transform of the following functions.

a) f(t)=¿ ( t−3¿u(t−3) t>0 b) f(t)=0 for 0<t ≤3

f(t)=1, 3≤t ≤5

f(t)=0,t ≥5

3. Determine the Laplace transform of a step function.

f(t)=a for t ≥2; f(t)=0 for 0<t ≤ a 4. Find Laplace transform of

(a) f(t)=e3tt−1 (b) f(t)=2t etsin2t

5. Evaluate the following integrals using Laplace transforms a) ∫

0

e−2tsin 2t

t dt b) ∫

0

t e−2tcost dt 6. Draw the output of a full wave rectifier and determine its Laplace transform given that f(t)=|sinωt| , a is the period of the output.

7. Verify the initial value theorem for the following functions a) t2cost b) tsin 2t

8. Verify the final value theorem for the following functions a) et+4 b) etcos 2t

9. Evaluate the Laplace transform of cos3t .

(10)

10. Draw a triangular wave and determine the Laplace transform of the function representing this wave. Treat the time period of the wave as 2a and its amplitude as 1.

11. Using L { sint}=¿ 2sπ3/2e

−1

4s and L{f'(t)}=sF(s)f(0) , determine L{2 cost

t }.

Referensi

Dokumen terkait