7.Laplace transform of functions obtained with multiplication by
tn
Definition 7.1
Leibniz's rule states that integration and differentiation are interchangeable i.e.
d dx∫
y1
y2
f(x , y)dy=∫
y1
y2
∂ f(x , y)
∂ x dy
with the condition that f(x , y) and ∂ f(∂ xx , y) are continuous within the interval ( x1, x2¿ for the variable x and the corresponding interval (¿¿1y, y2)
¿
for the variable y . In general,
f(x , y)dy=¿ ∫
y1(x) y2(x)
∂ f(x , y)
∂ x dy+¿
d dx ∫
y1(x) y2(x)
¿
f(x , y2(x))d y2
dx −f(x , y1(x))d y1 dx
In this problem ,the limits on t are independent of s . ∴ the last 2 terms are 0 .
tnf(t) } L¿
F(s)=L f(t)=∫
0
∞
e−stf(t)dt
taking the derivative with respect to s on both the sides , we obtain
dF(s) ds = d
ds∫
0
∞
e−stf(t)dt
dF(s) ds =∫
0
∞ ∂
∂ s e−stf (t)dt ... Leibniz rule
dF(s) ds =−∫
0
∞
e−stf (t)tdt=−L{tf (t) } D.U.
If we consider the derivative once more , we obtain
d2F d s2=∫
0
∞
e−stf (t)t2dt = L{t2f(t)}
We can consider the higher order derivatives and obtain ,
L{tnf(t)}=(−1)ndnF(s)
d sn (12)
Example 7.1:
Determine L{t e−4t}
From the above theorem , f(t)=e−4t;n=1 , F(s)=s+14
d F(s)
ds = −1
(s+4)2 therefore L{t e−4t}=¿ (s+−14)2 Example 7.2:
Determine L{t2sin 2t}
In this case we need to consider the second derivative of L{sin 2t}.
d2
d s2
[
(s22+4)]
¿dsd[
(s−22+4s)2]
=(s−22+4)2+(s82+s42)3L{t2sin 2t}=¿ −2
(s2+4)2+
8s2
(s2+4)3 (13) Example 3:
Find L{t2cosat}=(−1)2dsd22
[
s2+sa2]
D.U.8s3
(a2+s2)3
−6s
(a2+s2)2 or
L{t2cosat}= 8s3
(a2+s2)3−
6s
(a2+s2)2 (14)
8. Laplace transform of functions which are divided by t
L{f(t) t }=∫
s
∞
F(u)du (15)
Proof: F(s) is L{f(t)}
Using the definition of Laplace transform, we obtain
∫0
∞
f(t)e−tu [¿dt]du
∫
s
∞
F(u)du=∫
s
∞
¿
due to the convergence of the function we can change the order of integration to obtain
¿¿
f(t)e−tudu
∫0
∞
∫s
∞
¿dt¿ = ∫
0
∞
−f(t)e−st dt
−t = L{Ft(t) }
since the value of the integral at the upper limit is 0 . Example 8.1:
Evaluate L
{
∫0x sint tdt}
Comparing with the above formula ,
f(t)=sint and L
{
sint t}
=∫∞s u21+1du=¿ π2−tan−1s=tan−11sWe next apply the previous theorem
L
{
∫0x f(t)dt}
=F(s)sf(t)=sint
t and therefore
L
{
∫0x sint tdt}
=1s tan−11s (16)9. Laplace transform of periodic functions
We consider a periodic function f(t) with a period T . Thus
f(t+T)=f(t)
substituting the expression for LT we have,
∫0
∞
f(t)e−stdt=∫
0 T
f(t)e−stdt +
f(t)e−stdt+¿∫
2T 3T
f(t)e−stdt+..
∫T 2T
¿
in the second integral, we substitute,
t−T=u ;t=u+T , dt=du; and the limits change to (0, T) . Thus the second integral is
∫0 T
f(u+T)e−s(u+T)du=e−sT∫
0 T
f(u)e−sudu as f(u+T)=f(u)
for the next integral we substitute t−2T=u; and the integral reduces to
∫0 T
f(u+2T)e−s(u+2T)du=e−2sT∫
0 T
f(u)e−sudu
similarly by substituting in the following integrals we obtain an infinite geometric series of the form
1+e (¿¿−sT+e−2sT+e−3sT+…)∫
0 T
f(u)e−sudu=[∫
0 T
f(u)e−sudu] 1 1−e−sT
¿
Thus Laplace transform of a periodic function f(t) with period T is
L{f(t)}= 1 1−e−sT∫
0 T
f (u)e−sudu (17)
Example 9.1:
Determine the Laplace transform of the periodic function f (t) which has a period of 4. f(t)=2for0≤ t ≤2;f(t)=−2for2≤ t ≤4
We evaluate ∫
0 4
f(t)e−stdt=∫
0 2
2e−stdt+∫
2 4
−2e−stdt
= 2(1−es −2s)+2s(e−4s−e−2s)
Hence the Laplace transform of the given square wave is
2(1−2e−2s+4e−4s) 1−e−4s
Example 9.2:
Determine the Laplace transform of a saw tooth wave with period 2
f(t)=t for0≤ t ≤2 ;
Fig 3 saw tooth wave with period 2
∫
0 2
t e−stdt=2e−2s
−s +∫
0 2 e−st
s dt=2e−2s
−s −[e−2s−1 s2 ]
Thus the Laplace transform of a sawtooth wave of period 2 is given by
2e−2s
−s −[e−2s−1 s2 ] 1−e−2s
Example 9.3 :
Find the Laplace transform of the half wave rectified wave
f(t)=Vsin ωt for 0≤ ωt ≤ π
f(t)=0 for π ≤ ωt ≤2π
Fig 4 Output of half wave rectifier
∫
0 π/ω
e−t(s−iω)−e−t(s+iω) 2i
Vsinωt e−stdt+0=V[¿¿dt]
f(t)e−stdt=∫
0 π ω
¿
∫0 T
¿
V
2i
[
es−iω−t(s−iω)−e−t(s+iω) s+iω]
π/ω0
=V
2i
[
1−es−iω−π(s−iω)/ω−1−e−π(s+iω)/ω s+iω]
V
2i
[
2−s−iωeπs/ω−2−es+iω−πs/ω]
¿2Vi[
4iω+s(
e−πsω −es2πs+ω)
ω−iω(e2 −πsω +eπsω)]
Thus the Laplace transform of the rectified half wave sine wave isV
2i
[
4iω+s(
e−πsω −se2πs+ω)
ω−iω(e2 −πsω +eπsω)]
1−e−2sπ/ω
10. More Laplace transforms Example10.1:
Determine L{sin√t}
We consider the sine series sin√t=√t−(√t)3
3! +(√t)5
5! −…
L{sin√t}=L
{
√t−(√3!t)3+(√t)55! −…
}
L { √t}=Γ(32) /s
3
2 ; L
{
(√3t!)3}
= Γ(5 2)
3! s5/2 ; L
{
(√5t!)5}
=Γ(7 2) 5! s7/2
Γ
(
12)
=√π where Γ represents the gamma function which is defined by the following integral.Γ(n+1)=∫
0
∞
xn−1e−xdx and Γ(n+1)=n Γ(n) Substituting these values in eqn (1) ,
L { sin√t}=2√sπ3/2−√π
s5/2.1 2.3
2. 1 3!+√π
s7/2.1 2.3
2.5 2. 1
5!−…
L { sin√t}=¿ 2√sπ3/2
[
1−41s+321s2−…]
= 2√sπ3/2[
1−41s+(4s)122!−…]
L { sin√t}=¿ 2√sπ3/2e
−1
4s (18)
11. Evaluation of integrals using Laplace transforms Example11.1:
Evaluate ∫
0
∞ sintx
x dx using Laplace transform.
L
{
sint t}
=∫∞s u21+1du=¿ π2−tan−1s=tan−11s We can change the variable tx=y and the result is unaltered.s=0 , ∫
0
∞ sintx
x dx = π2−¿ tan−10=¿ π2
L∫
0
∞ sintx
x dx=¿ π
2 (19)
12. Laplace Transforms of Integrals of Functions 1. Determine the Laplace transform of ∫
t
∞ e−p p dp
Let f(t)=∫
t
∞ e−p
p dp
Taking the derivative on both sides and considering the derivative of an integral of a function is the function, we obtain , f'(t)=¿ et−t ;
t f'(t)=e−t
L{t f'(t)}= 1
s+1 ; using L{tng(t)}=(−1)nd sdnnG(s) G(s)=¿ L{g(t) }
Thus L{t f'(t)}=−dds L{f'(t)}=−dds [sF(s)−f(0)] = −dsd[sF(s)] as f(0) is not a function of s .
−d
ds [sF(s)] = s+11
integrating both sides with respect to s , −sF(s)=lns+11 or
F(s)=1
sln(s+1) L∫
t
∞ e−p
p dp=¿ 1
sln(s+1) (20)
Exercises:
1. Determine the Laplace transform of the following functions.
a) sinh24t
b) sinhat/t c) (et)(t+1) d) cos2(2t)
e) et(t+1)2
2. Determine the Laplace transform of the following functions.
a) f(t)=¿ ( t−3¿u(t−3) t>0 b) f(t)=0 for 0<t ≤3
f(t)=1, 3≤t ≤5
f(t)=0,t ≥5
3. Determine the Laplace transform of a step function.
f(t)=a for t ≥2; f(t)=0 for 0<t ≤ a 4. Find Laplace transform of
(a) f(t)=e3tt−1 (b) f(t)=2t e−tsin2t
5. Evaluate the following integrals using Laplace transforms a) ∫
0
∞ e−2tsin 2t
t dt b) ∫
0
∞
t e−2tcost dt 6. Draw the output of a full wave rectifier and determine its Laplace transform given that f(t)=|sinωt| , a is the period of the output.
7. Verify the initial value theorem for the following functions a) t2−cost b) tsin 2t
8. Verify the final value theorem for the following functions a) e−t+4 b) e−tcos 2t
9. Evaluate the Laplace transform of cos3t .
10. Draw a triangular wave and determine the Laplace transform of the function representing this wave. Treat the time period of the wave as 2a and its amplitude as 1.
11. Using L { sin√t}=¿ 2√sπ3/2e
−1
4s and L{f'(t)}=sF(s)−f(0) , determine L{2 cos√t
√t }.