• Tidak ada hasil yang ditemukan

Behavioral Implications of Causal Misperceptions Part I

N/A
N/A
Protected

Academic year: 2024

Membagikan "Behavioral Implications of Causal Misperceptions Part I"

Copied!
51
0
0

Teks penuh

(1)

Behavioral Implications of Causal Misperceptions Part I

Ran Spiegler (TAU & UCL)

ES Winter School, Delhi

December 2019

(2)

Equilibrium without Rational Expectations

β€’ Standard equilibrium analysis in economics:

1. Steady state approach (even in dynamic models) 2. Agents best-reply to their beliefs.

3. Agents’ beliefs reflect perfect understanding of the steady- state empirical regularities.

β€’ Research program: Keep 1+2, relax 3

(3)

Examples from the Literature

β€’ Sampling: Players evaluate action-consequence mapping via finite samples (Osborne-Rubinstein 1998)

β€’ Coarseness: Beliefs are measurable w.r.t a partition of all contingencies (Piccione-Rubinstein 2003, Jehiel 2005)

β€’ β€œCursedness”: Players cannot perceive dependence of endogenous variables on factors other than their information (Eyster-Rabin 2005)

β€’ NaΓ―ve extrapolation from selective samples (Esponda 2008)

(4)

Common Feature

β€’ Agents interpret statistical regularities through the prism of a (wrong) subjective model.

– The model involves errors of causal attribution.

– The concepts differ in the kind of causal misattribution they assume and the data agents use to β€œestimate” their model.

β€’ In this lecture series: A formalism of equilibrium with non-rational expectations that takes this description as a starting point

(5)

In this Lecture Series…

β€’ Decision makers are endowed with subjective causal models, formalized as directed acyclic graphs (DAGs).

– Relying heavily on a rich Statistics/AI literature on probabilistic graphical models (β€œBayesian networks”)

β€’ Capturing agents who β€œmistake correlation for causation”

β€’ Partial unification of earlier approaches

(6)

In this Lecture Series…

β€’ Bayesian networks offer tools for representing causal

misperceptions and analyzing their behavioral implications.

β€’ Applications: Health/lifestyle/occupational decisions, demand for education, monetary policy, narratives and political beliefs,

contracting with agents who misperceive their production function

β€’ Opening the door for the study of causal reasoning by people other than Joshua Angrist...

(7)

Sources

β€’ Forthcoming article in Annual Rev. of Econ.

β€’ Three specific papers:

1. β€œBayesian Networks and Boundedly Rational Expectations” (QJE 2016)

2. β€œCan Agents with Causal Misperceptions be Systematically Fooled?” (JEEAforthcoming) 3. β€œA Model of Competing Narratives” (joint with Kfir Eliaz)

β€’ Bayesian networks in Statistics and AI (Lauritzen 1996, Cowell et al.

1999, Pearl 2009, Koller-Friedman 2009, Pearl-Mackenzie 2018)

β€’ Psychology of causal reasoning (Sloman 2005, Lagnado-Sloman 2015)

(8)

Lecture Plan

β€’ Lecture 1: Individual Behavior

– Using DAGs to represent causal misperceptions

– Individual decision making as β€œpersonal equilibrium”

β€’ Lecture 2: Interaction

– Leader-follower model

– A β€œmonetary policy” application

β€’ Lecture 3: Endogenous Causal Models

– A model of competing political narratives

(9)

β€’ An agent chooses whether to consume a dietary supplement.

β€’ Three variables take values in {0,1}:

– π‘Žπ‘Ž represents the agent’s action (1 means consuming) – β„Ž represents state of health (1 means good health) – 𝑐𝑐 represents blood chemical level (1 means abnormal)

β€’ The agent’s payoff is β„Ž βˆ’ π‘˜π‘˜π‘Žπ‘Ž, where π‘˜π‘˜ > 0 is constant.

Example: The Dieter’s Dilemma

(10)

β€’ 𝑝𝑝 is a long-run (steady-state) distribution over π‘Žπ‘Ž, β„Ž, 𝑐𝑐.

β€’ 𝑝𝑝 β„Ž = 1 = 0.5, independently of π‘Žπ‘Ž.

– The agentΚΉs rational choice would be 𝒂𝒂 = 𝟎𝟎.

β€’ 𝑝𝑝 𝑐𝑐 = 1 π‘Žπ‘Ž, β„Ž) = (1 βˆ’ π‘Žπ‘Ž)(1 βˆ’ β„Ž)

– Chemical level is normal if the agent is healthy or if he takes the supplement.

The Dieter’s Dilemma

(11)

β€’ The agent has a subjective causal model, represented by a directed acyclic graph (DAG) 𝑅𝑅 over the three variables:

π‘Žπ‘Ž β†’ 𝑐𝑐 β†’ β„Ž

– A causal chain from action to health via chemical level

β€’ The agent fits his causal model to the long-run distribution:

𝑝𝑝𝑅𝑅 π‘Žπ‘Ž, β„Ž, 𝑐𝑐 = 𝑝𝑝 π‘Žπ‘Ž 𝑝𝑝 𝑐𝑐 π‘Žπ‘Ž 𝑝𝑝(β„Ž|𝑐𝑐)

The Dieter’s Dilemma

(12)

β€’ The agent relies on 𝑝𝑝𝑅𝑅 π‘Žπ‘Ž, β„Ž, 𝑐𝑐 = 𝑝𝑝 π‘Žπ‘Ž 𝑝𝑝 𝑐𝑐 π‘Žπ‘Ž 𝑝𝑝(β„Ž|𝑐𝑐) to compute

𝑝𝑝𝑅𝑅 β„Ž π‘Žπ‘Ž = οΏ½

𝑐𝑐𝑝𝑝 𝑐𝑐 π‘Žπ‘Ž 𝑝𝑝(β„Ž|𝑐𝑐)

β€’ Why doesn’t the agent directly estimate 𝑝𝑝 β„Ž π‘Žπ‘Ž ? – The benefit of using models

– Differential availability of data about various correlations

The Dieter’s Dilemma

(13)

β€’ 𝑅𝑅: π‘Žπ‘Ž β†’ 𝑐𝑐 β†’ β„Ž assumes β„Ž βŠ₯ π‘Žπ‘Ž | 𝑐𝑐. This assumption is false:

– Given normal chemical level, if we learn that the agent didn’t take the supplement, we infer that he must be healthy.

β€’ 𝑝𝑝 π‘Žπ‘Ž, β„Ž, 𝑐𝑐 = 𝑝𝑝 π‘Žπ‘Ž 𝑝𝑝 β„Ž 𝑝𝑝(𝑐𝑐|π‘Žπ‘Ž, β„Ž)

– This is consistent with a β€œtrue” causal model π‘Žπ‘Ž β†’ 𝑐𝑐 ← β„Ž. – 𝑅𝑅 exhibits reverse causality w.r.t the true model.

The Dieter’s Dilemma

(14)

β€’ The agent’s subjective expected utility from π‘Žπ‘Ž:

οΏ½β„Žπ‘π‘π‘…π‘…(β„Ž|π‘Žπ‘Ž)(β„Ž βˆ’ π‘˜π‘˜π‘Žπ‘Ž) = 𝑝𝑝𝑅𝑅 β„Ž = 1 π‘Žπ‘Ž βˆ’ π‘˜π‘˜π‘Žπ‘Ž

β€’ Does 𝑝𝑝𝑅𝑅 β„Ž π‘Žπ‘Ž correctly measure the causal effect of π‘Žπ‘Ž on β„Ž given the agent’s subjective model?

β€’ Mistaking correlation for causation

The Dieter’s Dilemma

(15)

𝑝𝑝𝑅𝑅 β„Ž π‘Žπ‘Ž = οΏ½

𝑐𝑐𝑝𝑝 𝑐𝑐 π‘Žπ‘Ž 𝑝𝑝(β„Ž|𝑐𝑐)

β€’ The agent computes the effect of π‘Žπ‘Ž on β„Ž as if β„Ž βŠ₯ π‘Žπ‘Ž | 𝑐𝑐.

β€’ But we saw that 𝑝𝑝 does not satisfy this property.

– It follows that 𝑝𝑝(β„Ž|𝑐𝑐) is not invariant to 𝑝𝑝(π‘Žπ‘Ž).

– Calls for an equilibrium notion of subjective maximization!

The Dieter’s Dilemma

(16)

β€’ β€œPersonal equilibrium” : If 𝑝𝑝 π‘Žπ‘Ž > 0, then π‘Žπ‘Ž maximizes subjective expected utility w.r.t 𝑝𝑝𝑅𝑅 β„Ž π‘Žπ‘Ž .

β€’ Need to introduce trembles for definition to be precise.

The Dieter’s Dilemma

(17)

β€’ Look for a personal equilibrium with full support:

π‘Šπ‘Šπ‘Šπ‘Šπ‘Šπ‘Š = 𝑝𝑝𝑅𝑅 β„Ž = 1 π‘Žπ‘Ž = 1 βˆ’ 𝑝𝑝𝑅𝑅 β„Ž = 1 π‘Žπ‘Ž = 0 = π‘˜π‘˜

𝑝𝑝𝑅𝑅 β„Ž = 1|π‘Žπ‘Ž = οΏ½

𝑐𝑐𝑝𝑝 𝑐𝑐 π‘Žπ‘Ž 𝑝𝑝 β„Ž = 1 |𝑐𝑐

β€’ Just calculate the relevant conditional probabilities!

β€’ 𝛼𝛼 = 𝑝𝑝 π‘Žπ‘Ž = 1 denotes the probability of taking the supplement.

The Dieter’s Dilemma

(18)

β€’ Recall: β„Ž = 1 is good health, 𝑐𝑐 = 0 is normal chemical level.

β€’ 𝑝𝑝 𝑐𝑐 = 0 π‘Žπ‘Ž = 1 = 1 𝑝𝑝 𝑐𝑐 = 0 π‘Žπ‘Ž = 0 = 0.5

β€’ 𝑝𝑝 β„Ž = 1 𝑐𝑐 = 1 = 0 𝑝𝑝 β„Ž = 1 |𝑐𝑐 = 0 = 0.5+0.5𝛼𝛼0.5

β€’ Condition for interior equilibrium

π‘Šπ‘Šπ‘Šπ‘Šπ‘Šπ‘Š = 𝑝𝑝 𝑐𝑐 = 0 π‘Žπ‘Ž = 1 βˆ’ 𝑝𝑝 𝑐𝑐 = 1 |π‘Žπ‘Ž = 0 οΏ½ 𝑝𝑝 β„Ž = 1 𝑐𝑐 = 0

= 0.5 οΏ½ 0.5+0.5𝛼𝛼0.5 = π‘˜π‘˜

The Dieter’s Dilemma

(19)

β€’ 𝛼𝛼 = (1 βˆ’ 2π‘˜π‘˜)/2π‘˜π‘˜

β€’ An interior (unique) equilibrium exists for π‘˜π‘˜ ∈ 0. 25, 0.5 .

β€’ Summary:

– The agent misreads 𝑐𝑐 βˆ’ β„Ž correlation as a causal effect of 𝒄𝒄 on 𝒉𝒉. – This results in equilibrium β€œmixing” (with sub-optimal

consumption with positive long-run frequency).

The Dieter’s Dilemma

(20)

Bayesian Networks

β€’ π‘₯π‘₯0, π‘₯π‘₯1, … , π‘₯π‘₯𝑛𝑛 is a collection of variables, π‘₯π‘₯𝑖𝑖 ∈ 𝑋𝑋𝑖𝑖.

β€’ 𝑋𝑋 = 𝑋𝑋0 Γ— β‹―Γ— 𝑋𝑋𝑛𝑛

β€’ 𝑝𝑝 ∈ βˆ†(𝑋𝑋) is an objective long-run probability distribution.

β€’ Standard chain rule (arbitrary enumeration of variables):

𝑝𝑝 π‘₯π‘₯ = 𝑝𝑝 π‘₯π‘₯0 𝑝𝑝(π‘₯π‘₯1|π‘₯π‘₯0) β‹― 𝑝𝑝(π‘₯π‘₯𝑛𝑛|π‘₯π‘₯0, … ,π‘₯π‘₯π‘›π‘›βˆ’1)

(21)

Bayesian Networks

β€’ A causal model is a directed acyclic graph (DAG) (𝑁𝑁, 𝑅𝑅): – 𝑁𝑁 is a set of nodes that represent variables.

– 𝑅𝑅 is a set of directed links (use 𝑗𝑗𝑅𝑅𝑗𝑗 or 𝑗𝑗 β†’ 𝑗𝑗 interchangeably) that represent perceived causal relations.

– 𝑅𝑅 𝑗𝑗 = {𝑗𝑗 ∈ 𝑁𝑁|𝑗𝑗𝑅𝑅𝑗𝑗} is the set of β€œimmediate causes of 𝑗𝑗”.

– I’ll often suppress 𝑁𝑁 and identify causal models with 𝑅𝑅.

(22)

Bayesian Networks

β€’ Factorize 𝑝𝑝 according to 𝑅𝑅:

𝒑𝒑

𝑹𝑹

𝒙𝒙 = οΏ½

π’Šπ’Šβˆˆπ‘΅π‘΅

𝒑𝒑(𝒙𝒙

π’Šπ’Š

|𝒙𝒙

𝑹𝑹(π’Šπ’Š)

)

β€’ 1 β†’ 0 β†’ 3 ← 2 β‡’ 𝑝𝑝𝑅𝑅 π‘₯π‘₯ = 𝑝𝑝 π‘₯π‘₯1 𝑝𝑝 π‘₯π‘₯2 𝑝𝑝 π‘₯π‘₯0 π‘₯π‘₯1 𝑝𝑝(π‘₯π‘₯3|π‘₯π‘₯0, π‘₯π‘₯2)

β€’ Fully connected DAG β‡’ Standard chain rule

β€’ Empty DAG β‡’ 𝑝𝑝𝑅𝑅 π‘₯π‘₯ = 𝑝𝑝(π‘₯π‘₯0) β‹― 𝑝𝑝(π‘₯π‘₯𝑛𝑛)

(23)

Bayesian Networks

β€’ The set of distributions that are consistent with 𝑝𝑝𝑅𝑅 constitute a Bayesian network.

– Representing conditional-independence assumptions

– Platform for algorithmic probabilistic inference (Pearl 1988, Cowell et al. 1999, Koller-Friedman 2009)

– Platform for algorithmic causal inference (Pearl 2009)

(24)

What does 𝑅𝑅 Mean in Present Context?

β€’ 𝑅𝑅 encodes a systematic distortion of objective distributions into subjective beliefs.

β€’ Unlike the subjective-priors approach, here the primitive is not a belief but a belief distortion function.

β€’ In larger models, 𝑅𝑅 will be part of an agent’s β€œtype”.

(25)

β€’ Suppose 𝑛𝑛 = 2 and 𝑝𝑝 π‘₯π‘₯ ≑ 𝑝𝑝 π‘₯π‘₯0 𝑝𝑝 π‘₯π‘₯1 𝑝𝑝(π‘₯π‘₯2|π‘₯π‘₯0, π‘₯π‘₯1). – Consistent with a β€œtrue DAG”: 0 β†’ 2 ← 1

β€’ Subjective DAGs that exhibit specific errors:

Coarse reasoning 0 β†’ 2 1 (omitting a link) Reverse causality 0 β†’ 2 β†’ 1 (inverting a link)

Capturing Belief Errors

(26)

β€’ Suppose 𝑛𝑛 = 2 and 𝑝𝑝 π‘₯π‘₯ ≑ 𝑝𝑝 π‘₯π‘₯0 𝑝𝑝 π‘₯π‘₯1|π‘₯π‘₯0 𝑝𝑝(π‘₯π‘₯2|π‘₯π‘₯0).

– Consistent with a β€œtrue DAG”: 2 ← 0 β†’ 1

– Interpret 0 as a state of Nature and 2 as an opponent’s move

β€’ A subjective DAG that exhibits an attribution error (reorienting a link): 0 β†’ 1 β†’ 2

– β€œIllusion of control”: 1 represents a decision maker’s action – Analogical reasoning: 1 is an β€œanalogy class”

Capturing Belief Errors

(27)

β€’ Suppose 𝑛𝑛 = 3 and 𝑝𝑝 π‘₯π‘₯ ≑ 𝑝𝑝 π‘₯π‘₯0 𝑝𝑝 π‘₯π‘₯1 𝑝𝑝(π‘₯π‘₯2|π‘₯π‘₯0, π‘₯π‘₯1)𝑝𝑝(π‘₯π‘₯3|π‘₯π‘₯1).

1

– Consistent with a β€œtrue DAG”: 0 β†’ 2 β†’ 3

β€’ Subjective DAG that exhibits confounder neglect: 0 β†’ 2 β†’ 3

– Omitting a node and its links

– Causal interpretation of confounding-based correlation

Capturing Belief Errors

(28)

β€’ Suppose 𝑛𝑛 = 2 and 𝑝𝑝 π‘₯π‘₯ ≑ 𝑝𝑝 π‘₯π‘₯0 𝑝𝑝 π‘₯π‘₯1|π‘₯π‘₯0 𝑝𝑝(π‘₯π‘₯2|π‘₯π‘₯0)𝑝𝑝(π‘₯π‘₯3|π‘₯π‘₯1, π‘₯π‘₯2).

1

– Consistent with a β€œtrue DAG”: 0 β†’ 2 β†’ 3

β€’ Subjective DAG that neglects a causal channel: 0 β†’ 2 β†’ 3

– Unawareness of some causal channels

– Neglecting indirect/equilibrium effects of economic policies

Capturing Belief Errors

(29)

Observationally Equivalent DAGs

Definition: 𝑅𝑅 and 𝑄𝑄 are equivalent if 𝑝𝑝𝑅𝑅 ≑ 𝑝𝑝𝑄𝑄 for every 𝑝𝑝.

β€’ 1 β†’ 2 and 2 β†’ 1 are equivalent since

𝑝𝑝 π‘₯π‘₯1 𝑝𝑝 π‘₯π‘₯2 π‘₯π‘₯1 = 𝑝𝑝 π‘₯π‘₯2 𝑝𝑝(π‘₯π‘₯1|π‘₯π‘₯2)

β€’ Observational equivalence β‰  Causal equivalence

(30)

β€’ Proposition (Frydenberg 1990, Verma-Pearl 1991): Two DAGs are equivalent if and only if they have the same undirected version and the same set of β€œimmoralities” (𝑗𝑗 β†’ π‘˜π‘˜ ← 𝑗𝑗

without a direct link between 𝑗𝑗 and 𝑗𝑗).

– 0 β†’ 2 β†’ 1 and 0 ← 2 ← 1 are equivalent.

– 0 β†’ 2 β†’ 1 and 0 β†’ 2 ← 1 are not equivalent.

Observationally Equivalent DAGs

(31)

Decision Model

β€’ For simplicity, let us focus on an uninformed DM.

– π‘₯π‘₯0 is the DMΚΉs action.

– 0 is an ancestral node in true and subjective DAGs.

β€’ 𝑝𝑝 π‘₯π‘₯βˆ’0 π‘₯π‘₯0 π‘₯π‘₯ is exogenous and fixed.

β€’ 𝑝𝑝(π‘₯π‘₯0) π‘₯π‘₯0 is the DM’s (endogenous) strategy.

β€’ 𝑒𝑒: 𝑋𝑋 ⟢ ℝ is the DM’s vNM function.

(32)

β€’ Subjective EU maximization: If 𝑝𝑝(π‘₯π‘₯0) > 0, π‘₯π‘₯0 should maximize

οΏ½

π‘₯π‘₯βˆ’0

𝑝𝑝𝑅𝑅 π‘₯π‘₯βˆ’0 π‘₯π‘₯0 𝑒𝑒(π‘₯π‘₯0, π‘₯π‘₯βˆ’0)

β€’ The DM treats 𝑝𝑝𝑅𝑅 π‘₯π‘₯βˆ’0 π‘₯π‘₯0 as the causal effect of π‘₯π‘₯0 on π‘₯π‘₯βˆ’0.

β€’ β€œMistaking correlation for causation”?

β€’ The assumption that 0 is ancestral in 𝑅𝑅 ensures the DM does not err in this regard (Pearl’s β€œdo-calculus” (2009))

Decision Model

(33)

β€’ Subjective EU maximization: If 𝑝𝑝(π‘₯π‘₯0) > 0, π‘₯π‘₯0 should maximize

οΏ½

π‘₯π‘₯βˆ’0

𝑝𝑝𝑅𝑅 π‘₯π‘₯βˆ’0 π‘₯π‘₯0 𝑒𝑒(π‘₯π‘₯0, π‘₯π‘₯βˆ’0)

β€’ Do-calculus is left outside the scope of this lecture series.

β€’ The DM has a wrong causal model, but he draws correct causal inferences from observational data given the model.

Decision Model

(34)

β€’ Subjective EU maximization: If 𝑝𝑝(π‘₯π‘₯0) > 0, π‘₯π‘₯0 should maximize

οΏ½

π‘₯π‘₯βˆ’0

𝑝𝑝𝑅𝑅 π‘₯π‘₯βˆ’0 π‘₯π‘₯0 𝑒𝑒(π‘₯π‘₯0, π‘₯π‘₯βˆ’0)

β€’ As we saw in the β€œDieter’s Dilemma”, 𝑝𝑝𝑅𝑅 π‘₯π‘₯βˆ’0 π‘₯π‘₯0 may be ill- defined without knowing 𝑝𝑝(π‘₯π‘₯0) (the DM’s strategy).

β€’ Need for an equilibrium model of individual choice

Decision Model

(35)

Definition: A strategy 𝑝𝑝(π‘₯π‘₯0) π‘₯π‘₯0 with full support is a personal πœ€πœ€-equilibrium if whenever 𝑝𝑝(π‘₯π‘₯0) > πœ€πœ€,

π‘₯π‘₯0 ∈ π‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘₯π‘₯ π‘₯π‘₯0β€² οΏ½

π‘₯π‘₯βˆ’0

𝑝𝑝𝑅𝑅 π‘₯π‘₯βˆ’0 π‘₯π‘₯0β€² 𝑒𝑒(π‘₯π‘₯0β€², π‘₯π‘₯βˆ’0)

β€’ A personal equilibrium is a limit of personal πœ€πœ€-equilibria.

– Because 0 is an ancestral node, the exact perturbation doesn’t matter (it would in an informed-DM model).

Personal Equilibrium

(36)

β€’ Consider a three-variable environment:

– π‘Žπ‘Ž is the DM’s action.

– πœƒπœƒ is an exogenous state of nature.

– 𝑧𝑧 is a consequence.

β€’ 𝑝𝑝 π‘Žπ‘Ž, πœƒπœƒ, 𝑧𝑧 ≑ 𝑝𝑝 π‘Žπ‘Ž 𝑝𝑝 πœƒπœƒ 𝑝𝑝(𝑧𝑧|π‘Žπ‘Ž, πœƒπœƒ)

β€’ 𝑝𝑝 is consistent with a β€œtrue DAG” π‘Žπ‘Ž β†’ 𝑧𝑧 ← πœƒπœƒ.

When is Personal Equilibrium Needed?

(37)

β€’ True DAG: π‘Žπ‘Ž β†’ 𝑧𝑧 ← πœƒπœƒ – 𝑝𝑝 πœƒπœƒ, 𝑧𝑧 π‘Žπ‘Ž = 𝑝𝑝 πœƒπœƒ 𝑝𝑝 𝑧𝑧 π‘Žπ‘Ž, πœƒπœƒ

β€’ Subjective DAG: π‘Žπ‘Ž β†’ 𝑧𝑧 πœƒπœƒ

– 𝑝𝑝𝑅𝑅 πœƒπœƒ, 𝑧𝑧 π‘Žπ‘Ž = 𝑝𝑝 πœƒπœƒ 𝑝𝑝 𝑧𝑧 π‘Žπ‘Ž = 𝑝𝑝 πœƒπœƒ βˆ‘πœƒπœƒβ€² 𝑝𝑝 πœƒπœƒβ€² 𝑝𝑝 𝑧𝑧 π‘Žπ‘Ž, πœƒπœƒβ€²

– Invariant to (𝑝𝑝 π‘Žπ‘Ž )π‘Žπ‘Ž ; personal equilibrium is reducible to maximization w.r.t a wrong belief.

Coarse Reasoning

(38)

β€’ True DAG: π‘Žπ‘Ž β†’ 𝑧𝑧 ← πœƒπœƒ – 𝑝𝑝 πœƒπœƒ, 𝑧𝑧 π‘Žπ‘Ž = 𝑝𝑝 πœƒπœƒ 𝑝𝑝 𝑧𝑧 π‘Žπ‘Ž, πœƒπœƒ

β€’ Subjective DAG: π‘Žπ‘Ž β†’ 𝑧𝑧 β†’ πœƒπœƒ

β€’ 𝑝𝑝𝑅𝑅 πœƒπœƒ, 𝑧𝑧|π‘Žπ‘Ž = 𝑝𝑝 𝑧𝑧 π‘Žπ‘Ž 𝑝𝑝 πœƒπœƒ 𝑧𝑧 = 𝑝𝑝 𝑧𝑧 π‘Žπ‘Ž βˆ‘π‘Žπ‘Žβ€² 𝒑𝒑 𝒂𝒂′|𝒛𝒛 𝑝𝑝(πœƒπœƒ|π‘Žπ‘Žβ€², 𝑧𝑧)

β€’ 𝑝𝑝𝑅𝑅 πœƒπœƒ, 𝑧𝑧|π‘Žπ‘Ž is sensitive to (𝑝𝑝 π‘Žπ‘Ž )π‘Žπ‘Ž ; personal equilibrium is not reducible to maximization (as in the β€œDieter’s Dilemma”).

Reverse Causality

(39)

β€’ When is personal equilibrium reducible to maximization?

– 𝑝𝑝𝑅𝑅 οΏ½ π‘₯π‘₯0 shouldn’t change with the marginal of 𝑝𝑝 over π‘₯π‘₯0.

Definition: 𝑅𝑅 is c-rational w.r.t a β€œtrue DAG” π‘…π‘…βˆ— if for every 𝑝𝑝, π‘žπ‘ž that are consistent with π‘…π‘…βˆ—, if 𝑝𝑝 οΏ½ π‘₯π‘₯0 = π‘žπ‘ž(οΏ½ |π‘₯π‘₯0) for every π‘₯π‘₯0, then 𝑝𝑝𝑅𝑅 οΏ½ π‘₯π‘₯0 = π‘žπ‘žπ‘…π‘…(οΏ½ |π‘₯π‘₯0) for every π‘₯π‘₯0.

C-Rationality

(40)

β€’ π‘₯π‘₯𝑖𝑖 βŠ₯𝑅𝑅 π‘₯π‘₯𝑗𝑗 | π‘₯π‘₯𝐴𝐴 denotes a conditional-independence property that holds for all distributions that are consistent with 𝑅𝑅.

β€’ This property has a computationally simple graphical characterization known as d-separation.

– Patterns of β€œpath blocking”

– Basic material in any introduction to Bayesian networks

C-Rationality

(41)

Proposition: Let π‘…π‘…βˆ— 0 = 𝑅𝑅 0 = βˆ…. Then, 𝑅𝑅 is c-rational w.r.t π‘…π‘…βˆ— iff 0 βˆ‰ 𝑅𝑅(𝑗𝑗) implies π‘₯π‘₯𝑖𝑖 βŠ₯π‘…π‘…βˆ— π‘₯π‘₯0 | π‘₯π‘₯𝑅𝑅(𝑖𝑖).

β€’ Illustrating the result for π‘…π‘…βˆ— : 0 β†’ 2 ← 1 – Coarse reasoning 0 β†’ 2 1 – 𝑅𝑅 1 = βˆ… ; and indeed, π‘₯π‘₯1 βŠ₯π‘…π‘…βˆ— π‘₯π‘₯0 .

C-Rationality

(42)

Proposition: Let π‘…π‘…βˆ— 0 = 𝑅𝑅 0 = βˆ…. Then, 𝑅𝑅 is c-rational w.r.t π‘…π‘…βˆ— iff 0 βˆ‰ 𝑅𝑅(𝑗𝑗) implies π‘₯π‘₯𝑖𝑖 βŠ₯π‘…π‘…βˆ— π‘₯π‘₯0 | π‘₯π‘₯𝑅𝑅(𝑖𝑖).

β€’ Illustrating the result for π‘…π‘…βˆ— : 0 β†’ 2 ← 1 – Reverse causality 0 β†’ 2 β†’ 1 – 𝑅𝑅 1 = {2} ; but not π‘₯π‘₯1 βŠ₯π‘…π‘…βˆ— π‘₯π‘₯0| π‘₯π‘₯2 .

C-Rationality

(43)

β€’ True DAG π‘…π‘…βˆ—: π‘Žπ‘Ž β†’ 𝑠𝑠 ← πœƒπœƒ β†’ 𝑀𝑀

β€’ The DM is a parent.

– π‘Žπ‘Ž ∈ [0,1] is the parent’s investment in his child’s education.

– πœƒπœƒ ∈ {0,1} is the child’s β€œinnate ability”.

– 𝑠𝑠 ∈ {0,1} is the child’s school performance.

– 𝑀𝑀 ∈ {0,1} is the child’s labor-market outcome.

Example: Spurious Demand for Education

(44)

β€’ True DAG π‘…π‘…βˆ—: π‘Žπ‘Ž β†’ 𝑠𝑠 ← πœƒπœƒ β†’ 𝑀𝑀

β€’ 𝑒𝑒 is purely a function of π‘Žπ‘Ž and 𝑀𝑀.

β€’ The parent’s subjective DAG is 𝑅𝑅: π‘Žπ‘Ž β†’ 𝑠𝑠 β†’ 𝑀𝑀.

β€’ Interpretation: πœƒπœƒ is an unobservable confounder; the parent’s error is that he ignores it.

Demand for Education

(45)

β€’ True DAG π‘…π‘…βˆ—: π‘Žπ‘Ž β†’ 𝑠𝑠 ← πœƒπœƒ β†’ 𝑀𝑀

β€’ The parent’s DAG 𝑅𝑅: π‘Žπ‘Ž β†’ 𝑠𝑠 β†’ 𝑀𝑀 violates c-rationality:

– 𝑅𝑅 𝑀𝑀 = {𝑠𝑠} , but not 𝑀𝑀 βŠ₯π‘…π‘…βˆ— π‘Žπ‘Ž|𝑠𝑠

– Reason: 𝑝𝑝 𝑀𝑀 𝑠𝑠 = βˆ‘πœƒπœƒ 𝑝𝑝 πœƒπœƒ 𝑠𝑠 𝑝𝑝(𝑀𝑀|πœƒπœƒ) , and 𝑝𝑝 πœƒπœƒ 𝑠𝑠 is sensitive to parental investment.

– Easy to check graphically using d-separation

Demand for Education

(46)

β€’ Put more structure on exogenous components of 𝑝𝑝.

β€’ 𝑝𝑝 𝑠𝑠 = 1 π‘Žπ‘Ž, πœƒπœƒ = π‘Žπ‘Žπœƒπœƒ ; 𝑝𝑝 𝑀𝑀 = 1 πœƒπœƒ = πœƒπœƒπœƒπœƒ

– 𝑠𝑠 = 1 represents success at school.

– 𝑀𝑀 = 1 represents success in the labor market.

– High ability (πœƒπœƒ = 1) is necessary for both.

– School success as such is irrelevant for labor-market success.

Demand for Education

(47)

β€’ 𝑝𝑝 πœƒπœƒ = 1 = 𝛿𝛿 ; 𝑝𝑝 𝑠𝑠 = 1 π‘Žπ‘Ž, πœƒπœƒ = π‘Žπ‘Žπœƒπœƒ ; 𝑝𝑝 𝑀𝑀 = 1 πœƒπœƒ = πœƒπœƒπœƒπœƒ

β€’ 𝑒𝑒 π‘Žπ‘Ž, 𝑀𝑀 = 𝑀𝑀 βˆ’ 0.5π‘Žπ‘Ž2

β€’ Under rational expectations, the parent chooses π‘Žπ‘Žβˆ— = 0.

– Parental investment doesn’t affect the child’s ability, which is the sole determinant of his labor-market outcome.

Demand for Education

(48)

Result: Under 𝑅𝑅: π‘Žπ‘Ž β†’ 𝑠𝑠 β†’ 𝑀𝑀, there is a unique personal equilibrium. The parent plays π‘Žπ‘Žβˆ—βˆ— > 0 given by

π‘Žπ‘Žβˆ—βˆ— = πœƒπœƒπ›Ώπ›Ώ(1 βˆ’ 𝛿𝛿)

1 βˆ’ 𝛿𝛿 + 𝛿𝛿(1 βˆ’ π‘Žπ‘Žβˆ—βˆ—)

– Marginal cost = Perceived marginal benefit

– Long-run behavior affects perceived marginal benefit.

– π‘Žπ‘Žβˆ—βˆ— increases with πœƒπœƒ and as 𝛿𝛿 moves away from 0 or 1.

Demand for Education

(49)

β€’ 𝑝𝑝 𝑠𝑠 = 1 π‘Žπ‘Ž = π›Ώπ›Ώπ‘Žπ‘Ž. Perceived benefit from investment π‘Žπ‘Ž is:

𝑝𝑝 𝑠𝑠 = 1 π‘Žπ‘Ž οΏ½ 𝑝𝑝 𝑀𝑀 = 1 𝑠𝑠 = 1 + 𝑝𝑝 𝑠𝑠 = 0 π‘Žπ‘Ž οΏ½ 𝑝𝑝 𝑀𝑀 = 1 𝑠𝑠 = 0 = 𝑝𝑝 𝑀𝑀 = 1 𝑠𝑠 = 0 + 𝑝𝑝 𝑠𝑠 = 1 π‘Žπ‘Ž οΏ½ 𝑝𝑝 𝑀𝑀 = 1 𝑠𝑠 = 1 βˆ’ 𝑝𝑝 𝑀𝑀 = 1 𝑠𝑠 = 0

β€’ 𝑝𝑝 𝑀𝑀 = 1 𝑠𝑠 = 1 = πœƒπœƒ because high ability is necessary for success at school.

β€’ In contrast, 𝑠𝑠 = 0 can result from πœƒπœƒ = 0 or low π‘Žπ‘Ž.

Sketch of Proof

(50)

𝑝𝑝 𝑀𝑀 = 1 𝑠𝑠 = 0 = 𝑝𝑝(πœƒπœƒ = 1) οΏ½ βˆ‘π‘Žπ‘Žβ€² 𝑝𝑝(π‘Žπ‘Žβ€²) οΏ½ (1 βˆ’ π‘Žπ‘Žβ€²) οΏ½ πœƒπœƒ

𝑝𝑝 πœƒπœƒ = 0 + 𝑝𝑝(πœƒπœƒ = 1) οΏ½ βˆ‘π‘Žπ‘Žβ€² 𝑝𝑝(π‘Žπ‘Žβ€²) οΏ½ (1 βˆ’ π‘Žπ‘Žβ€²) = π›Ύπ›Ύπœƒπœƒ

– The parent’s chosen value of π‘Žπ‘Ž does not feature in this term!

β€’ Perceived benefit of investment π‘Žπ‘Ž is π›Ύπ›Ύπœƒπœƒ + π›Ώπ›Ώπ‘Žπ‘Ž οΏ½ πœƒπœƒ βˆ’ π›Ύπ›Ύπœƒπœƒ .

β€’ Marginal perceived benefit from π‘Žπ‘Ž is 𝛿𝛿 πœƒπœƒ βˆ’ π›Ύπ›Ύπœƒπœƒ .

– Overestimation gets worse when 𝑝𝑝(π‘Žπ‘Žβ€²) shifts to the right. This complementarity could lead to multiple equilibria for other 𝑐𝑐.

Sketch of Proof

(51)

β€’ DAGs represent subjective causal models.

β€’ The factorization formula 𝑝𝑝𝑅𝑅 represents systematic belief

distortion due to fitting a wrong causal model to long-run data Personal equilibrium: Subjective EU maximization w.r.t 𝑝𝑝𝑅𝑅

β€’ Bayesian-network tool (d-separation) helps understanding when to expect equilibrium effects

Summary of Part 1

Referensi

Dokumen terkait