Color screening in 2+1 flavor QCD, testing EQCD and spectral functions
Free energy of static quark anti-quark at T>0 and deconfinement transition in 2+1 flavor QCD
Onset of color screening and EQCD
Spatial string tension and further tests of EQCD
Spectral functions and heavy quark diffusion constant
Deconfinement and color screening in QCD
The free energy of static quark anti-quark pair agrees with the T=0 potential for r << 1/T The free energy of static quark anti-quark pair is screened for r>r
scrat any temperature r
scr ~ 1/T => Debye screening
2+1 flavor QCD, continuum extrapolated, TUMQCD, PRD 98 (2018) 054511
-4 -3 -2 -1 0
F
QQ_(r,T)-T ln 9 [GeV]
r [fm]
T [MeV]
0
1600 1200800 500 320 260 220 180 160 140
0.01 0.02 0.03 0.06 0.1 0.2 0.3 0.6
0.01 0.02 0.03 0.06 0.1 0.2 0.3 0.6
Deconfinement and color screening in QCD (cont’d)
Pure glue ≠ QCD !
Deconfinement transition happens at lower temperature but the Polyakov loop behaves smoothlyaround T
c, Z(3) symmetry plays no apparent role
How to define deconfinement transition in QCD ?
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
150 200 250 300 350 400 450 500 T [MeV]
L
ren(T)
stout, cont.
HISQ, cont.
SU(3)
SU(2)
Polyakov and gas of static-light hadrons
Energies of static-light mesons:
Megias, Arriola, Salcedo, PRL 109 (12) 151601
Bazavov, PP, PRD 87 (2013) 094505
Ground state and first excited states are from lattice QCD
Michael, Shindler, Wagner, arXiv1004.4235
Wagner, Wiese, JHEP 1107 016,2011
Higher excited state energies
are estimated from potential model
Gas of static-light mesons only works for T < 145 MeV
100 200 300 400 500 600
120 140 160 180 200
T [MeV]
F
Q(T) [MeV] HISQ
stout
Free energy of an isolated static quark:
1
2
The entropy of static quark
S
Q= @F
Q@ T
The onset of screening corresponds to peak is S
Qand its position coincides with T
c1 1.5 2 2.5 3 3.5 4 4.5 5
140 160 180 200 220 240 260 280 300 T [MeV]
SQ
Tχ(Nτ)
Nτ=6 local fit global 1/Nτ4 fit HRG
1 1.5 2 2.5 3 3.5 4 4.5 5
120 140 160 180 200 220 240 260 280 300 T [MeV]
SQ
Tχ(Nτ)
Nτ=8 local fit global 1/Nτ4 fit global 1/Nτ2 fit HRG
1 1.5 2 2.5 3 3.5 4 4.5 5
120 140 160 180 200 220 240 260 280 300 T [MeV]
SQ
Tχ(Nτ)
Nτ=10 local fit global 1/Nτ4 fit global 1/Nτ2 fit HRG
1 1.5 2 2.5 3 3.5 4 4.5 5
120 140 160 180 200 220 240 260 280 300 T [MeV]
SQ
Tχ(Nτ)
Nτ=12 local fit global 1/Nτ4 fit global 1/Nτ2 fit HRG
TUMQCD, PRDD9 3 (2 01 6) 1 14 50 2
The entropy of static quark
S
Q= @F
Q@ T
At low T the entropy S
Qincreases reflecting the increase of states the heavy quark can be coupled to; at high temperature the static quark only “sees” the medium within a Debye radius, as T increases the Debye radius decreases and S
Qalso decreases
The peak in the entropy is broader and smaller for smaller quark mass Weak coupling (EQCD) calculations work for T> 1500 MeV
Berwein et al, PRD 93 (2016) 034010
0 1 2 3 4 5 6 7 8 9 10
0.8 1 1.2 1.4 1.6 1.8 2 SQ
T/Tc
Nf=2+1, mπ=161 MeV Nf=3, mπ=440 MeV Nf=2, mπ=800 MeV Nf=0
T [MeV]
SQ(T) LO
NLO, µ=(1-4)π T NNLO lattice
0 0.1 0.2 0.3 0.4 0.5
1000 1500 2000 2500 3000 3500 4000 4500 5000
TUMQCD, PRDD93 (2016) 114502
Free energy of a static quark anti-quark pair at high T
Conjecture: in QCD the work is reduced due to cancelation of color singlet and octet contribution
e
FQQ¯(r,T)/T= 1
9 e
FS(r,T)/T+ 8
9 e
FO(r,T)/TFierz idenity:
ij lk= 1
N
c ik lj+ 2T
ikaT
ljae
FS(r,T)/T= 1
N
ch trW (r)W
†(0) i , W (r ) =
N
Y
⌧ 1⌧=0
U
0(r, ⌧ )
The work to separate the Q Q ¯ pair from distance r
1to r
2: F
QQ¯(r
2) F
QQ¯(r
1)
LO:
The LO result for F
QQ¯is recovered F
S= 4
3
↵
sr e
mDr+ F
1, F
O= + 1 6
↵
sr e
mDr+ F
1Leading order in perturbation theory:
F
QQ¯(r, T ) = 1 9
↵
2sr
2T exp( 2m
Dr) + F
1In QED at leading order:
F
QQ¯(r, T ) = ↵
r exp( m
Dr) + F
1Free energy of a static quark anti-quark pair at high T (cont’d)
The definition of F
Srequires gauge fixing Is it possible to have a gauge invariant decomposition of F
QQ¯into singlet and octet contributions ?
Yes, for r ⌧ 1/T using pNRQCD
L
Ais Polyakov loop in the adjoint representation e
FQQ¯(r,T)= h S (r, 1/T )S (r, 0) i + L
Ah O
a(r, 1/T )O
a(r, 0) i
e
FQQ¯(r,T)= 1
9 e
fs(r,T)/T+ 8
9 e
fo(r,T)/T, f
s= V
s(r) + O (↵
2srT
2), f
o= V
o(r) N
c↵
sm
D2 + O (↵
2srT
2)
Brambilla et al, PRD 82 (2010) 074019
Berwein et al, PRD 96 (2017) 014025 The naïve and the pNRQCD decomposition into singlet and octet agree
To calculate F
QQ¯(r, T ) and F
S(r, T ) for r ⇠ 1/m
Danother EFT, namely EQCD, should be used
.
F
s= f
s+ O (↵
s3T ) + O (↵
2srT
2), F
O= f
o+ O (↵
3sT ) + O (↵
2srT
2)
<latexit sha1_base64="5eAUhcr55jqMutvPFEV+BGK13Vc=">AAACW3iclVFLSwMxGMyuj9b1VRVPXoJFaFHK7iroRRCE4q0KrS102+XbNNuGZh8kWaEs9Ud60oN/RUxrDz56cSAwzHzDl0yClDOpbPvNMFdW19YLxQ1rc2t7Z7e0t/8ok0wQ2iIJT0QnAEk5i2lLMcVpJxUUooDTdjC+nfntJyokS+KmmqS0F8EwZiEjoLTkl0Tdl9ehL09zjwDHjWnFA56OwJf9c9ysLpFdLJp9t3r2XPcbOpn8O+mXynbNngP/Jc6ClNEC937pxRskJItorAgHKbuOnapeDkIxwunU8jJJUyBjGNKupjFEVPbyeTdTfKKVAQ4ToU+s8Fz9nsghknISBXoyAjWSv72ZuMzrZiq86uUsTjNFY/K1KMw4VgmeFY0HTFCi+EQTIILpu2IyAgFE6e+wdAnO7yf/JY9uzdH84aJ84y7qKKIjdIwqyEGX6AbdoXvUQgS9og+jYBSNd3PFtMytr1HTWGQO0A+Yh5/wTbFT</latexit><latexit sha1_base64="5eAUhcr55jqMutvPFEV+BGK13Vc=">AAACW3iclVFLSwMxGMyuj9b1VRVPXoJFaFHK7iroRRCE4q0KrS102+XbNNuGZh8kWaEs9Ud60oN/RUxrDz56cSAwzHzDl0yClDOpbPvNMFdW19YLxQ1rc2t7Z7e0t/8ok0wQ2iIJT0QnAEk5i2lLMcVpJxUUooDTdjC+nfntJyokS+KmmqS0F8EwZiEjoLTkl0Tdl9ehL09zjwDHjWnFA56OwJf9c9ysLpFdLJp9t3r2XPcbOpn8O+mXynbNngP/Jc6ClNEC937pxRskJItorAgHKbuOnapeDkIxwunU8jJJUyBjGNKupjFEVPbyeTdTfKKVAQ4ToU+s8Fz9nsghknISBXoyAjWSv72ZuMzrZiq86uUsTjNFY/K1KMw4VgmeFY0HTFCi+EQTIILpu2IyAgFE6e+wdAnO7yf/JY9uzdH84aJ84y7qKKIjdIwqyEGX6AbdoXvUQgS9og+jYBSNd3PFtMytr1HTWGQO0A+Yh5/wTbFT</latexit><latexit sha1_base64="5eAUhcr55jqMutvPFEV+BGK13Vc=">AAACW3iclVFLSwMxGMyuj9b1VRVPXoJFaFHK7iroRRCE4q0KrS102+XbNNuGZh8kWaEs9Ud60oN/RUxrDz56cSAwzHzDl0yClDOpbPvNMFdW19YLxQ1rc2t7Z7e0t/8ok0wQ2iIJT0QnAEk5i2lLMcVpJxUUooDTdjC+nfntJyokS+KmmqS0F8EwZiEjoLTkl0Tdl9ehL09zjwDHjWnFA56OwJf9c9ysLpFdLJp9t3r2XPcbOpn8O+mXynbNngP/Jc6ClNEC937pxRskJItorAgHKbuOnapeDkIxwunU8jJJUyBjGNKupjFEVPbyeTdTfKKVAQ4ToU+s8Fz9nsghknISBXoyAjWSv72ZuMzrZiq86uUsTjNFY/K1KMw4VgmeFY0HTFCi+EQTIILpu2IyAgFE6e+wdAnO7yf/JY9uzdH84aJ84y7qKKIjdIwqyEGX6AbdoXvUQgS9og+jYBSNd3PFtMytr1HTWGQO0A+Yh5/wTbFT</latexit><latexit sha1_base64="5eAUhcr55jqMutvPFEV+BGK13Vc=">AAACW3iclVFLSwMxGMyuj9b1VRVPXoJFaFHK7iroRRCE4q0KrS102+XbNNuGZh8kWaEs9Ud60oN/RUxrDz56cSAwzHzDl0yClDOpbPvNMFdW19YLxQ1rc2t7Z7e0t/8ok0wQ2iIJT0QnAEk5i2lLMcVpJxUUooDTdjC+nfntJyokS+KmmqS0F8EwZiEjoLTkl0Tdl9ehL09zjwDHjWnFA56OwJf9c9ysLpFdLJp9t3r2XPcbOpn8O+mXynbNngP/Jc6ClNEC937pxRskJItorAgHKbuOnapeDkIxwunU8jJJUyBjGNKupjFEVPbyeTdTfKKVAQ4ToU+s8Fz9nsghknISBXoyAjWSv72ZuMzrZiq86uUsTjNFY/K1KMw4VgmeFY0HTFCi+EQTIILpu2IyAgFE6e+wdAnO7yf/JY9uzdH84aJ84y7qKKIjdIwqyEGX6AbdoXvUQgS9og+jYBSNd3PFtMytr1HTWGQO0A+Yh5/wTbFT</latexit>
/T
/T
Free energy at short distances: lattice results vs. pNRQCD
-20 -10 0 10 20 30 40 50 60
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 VS(r)-FS(r,T) [MeV]
rT
Continuum limit
-20 -10 0 10 20 30 40 50 60
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Final value
-20 -10 0 10 20 30 40 50 60
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 -20
-10 0 10 20 30 40 50 60
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 -20
-10 0 10 20 30 40 50 60
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Nτ≥6, O4 /= 0
-20 -10 0 10 20 30 40 50 60
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Nτ≥8, O4= 0
-20 -10 0 10 20 30 40 50 60
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Nτ
-20 -10 0 10 20 30 40 50 60
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
12
-20 -10 0 10 20 30 40 50 60
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
10
-20 -10 0 10 20 30 40 50 60
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
8
-20 -10 0 10 20 30 40 50 60
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
6
-20 -10 0 10 20 30 40 50 60
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
4
-20 -10 0 10 20 30 40 50 60
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 -20
-10 0 10 20 30 40 50 60
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 -20
-10 0 10 20 30 40 50 60
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 -20
-10 0 10 20 30 40 50 60
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 -20
-10 0 10 20 30 40 50 60
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 -20
-10 0 10 20 30 40 50 60
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 -20
-10 0 10 20 30 40 50 60
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 -20
-10 0 10 20 30 40 50 60
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 -20
-10 0 10 20 30 40 50 60
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 -20
-10 0 10 20 30 40 50 60
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.006 0.008 0.01 0.012 0.014 0.016
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 r2 TFQQ_(r,T)
rT 0.006
0.008 0.01 0.012 0.014 0.016
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
fit data uncor.
αs3 cor.
The di↵erence between V
sand F
Sis small as expected for rT < 0.3
works ! Construct pNRQCD prediction for F
QQ¯using the lattice data for F
Sand V
sas proxy for f
stogether with the relation:
f
o= 1
8 f
s+ 3↵
3s8r
✓ ⇡
24 3
◆
The interaction of static Q and ¯ Q is vacuum like for rT < 0.3
T=407 MeV
TUMQCD, PRD 98 (2018) 054511
Free energy in the screening regime: lattice vs. weak coupling
1e-3 1e-2 1e-1
0.2 0.4 0.6 0.8 1 1.2
rT
T [MeV]
1e-3 1e-2 1e-1
0.2 0.4 0.6 0.8 1 1.2
-9r2 TFQQ_(r,T)
421 5814
1e-4 1e-3 1e-2 1e-1 1e0
0.5 1 1.5 2
rT
T [MeV]
1e-4 1e-3 1e-2 1e-1 1e0
0.5 1 1.5 2
T [MeV]
-rFS(r,T)/CF
220 333 421 1222 2923 5814
TUMQCD, PRD 98 (2018) 054511
_ _
Coulomb gauge
Lattice results are in reasonable agreement with NLO weak coupling result for rT<0.6,
at larger distances, non-pertubtative effects (due to chromo-magnetic sector ) become important F
S(r, T ) =
4↵
se
mDr3r (1 + ↵
s( Z
1(µ) + rT f
1(rm
D))) F
QQ¯(r, T ) =
↵
2se
2mDr9r
2T (1 + ↵
s( Z
1(µ) + rT f (rm
D)))
NLO in EQCD results are available for ¯ F
i(r, T ) = F
i(r, T ) F
1(T )
Nadkarni, PRD 33 (1986) 3738 Burnier et al, JHEP 01 (2010) 054
Spatial string tension at T>0 and dimensional reduction
non-perturbative
Calculated perturbatively
Laine, Schröder, JHEP0503(05) 067 Cheng et al., PRD 78 (2008) 034506
EQCD :
magnetic screening
r0 =0.469fm
Pressure and screening mass in the 3d effective theory
100 101 102 103
T / Tc 0.0
0.5 1.0 1.5 2.0
p / T4
Stefan-Boltzmann law O(g6ln
-
1g ) + fitted O(g6) full EQCD + fitted O(g6) 4d lattice data100 101 102 103
T / Tc 0.0
0.5 1.0 1.5 2.0 2.5 3.0
(e - 3p) / T4
Stefan-Boltzmann law O(g6ln
-
1g ) + fitted O(g6) full EQCD + fitted O(g6) 4d lattice dataFigure 6: Left: the best fit of our result to 4d lattice data for
p/T4at
Nf= 0 [28]. Our result comes out as a function of
T /ΛMS; for converting to
T /Tcwe scanned the interval
Tc/ΛMS= 1.10
. . .1.35 (dark band). For comparison, with the light band we show the outcome for
FMSR ≡0 [29]. Right: the corresponding trace anomaly, (e
−3p)/T
4=
Td(p/T
4)/dT .
physical stripe of Fig. 1. Comparing with the lower order terms in Eq. (A.1), Eq. (4.2) also has a reasonable magnitude, and indicates that perturbation theory within EQCD is in fact a useful tool at all parameter values corresponding to the 4d theory. In principle, the numerical result could also be compared with improved resummation methods defined within EQCD (see, e.g., refs. [31]–[33]).
At the same time, from the phenomenological point of view, our result is somewhat of a disappointment: as shown in Fig. 6, the match to 4d lattice data in the range T /T
c≥ 3.0 is not particularly smooth. In fact, as shown in the figure, including the newly determined ≥ 5- loop remainder decreases the quality of the fit significantly. This implies that, unfortunately, we are not in a position to realize our original goal of offering consolidated crosschecks for the N
f̸ = 0 QCD pressure in the interesting temperature range T /T
c∼ 1.5 . . . 3.0.
On the other hand, our study raises the theoretical question of what kind of effects could be responsible for the mismatch between our results and that of 4d lattice simulations. On the mundane side, one possibility would be a substantial contribution from the condensate denoted by ∂
xF
MS= ⟨(Tr [ ˆ A
20])
2⟩
a− ... . Unfortunately its systematic inclusion would require a significant amount of new analytic and numerical work; moreover, as order-of- magnitude estimates and previous preliminary simulations suggest, it appears unlikely that this condensate could significantly change the qualitative behaviour that we have observed.
On a more adventurous note, let us point out that, qualitatively, the reason for the mis- match is that the condensate in Eq. (4.1) is too large, and grows rapidly as y (or T ) de- creases (note that for N
f= 0, the range T /T
c= 10
0...10
3corresponds to y ≃ 0.3...1.2, or
10 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
1 10 100 1000 10000
m
E/T
T/T
cFIG. 16. The electric screening masses in units of the temperature. Shown are the electric masses m
Efor the first (filled circles) and the second (open circles) set of h. The line represent the fit for the temperature dependence of the electric mass from 4d simulations. The open triangles are the values of the electric mass for h values obtained from perturbative reduction in the metastable region (the last column in Table III). Some data points at the temperature T ∼ 70T
cand T ∼ 9000T
chave been shifted in the temperature scale for better visibility.
As one can see from the figure the agreement between the masses obtained from 4d and 3d simulation is rather good. The electric mass shows some dependence on h. For relatively low temperatures (T < 50T
c) the best agreement with the 4d data for the electric mass is obtained for values of h corresponding to 2-loop dimensional reduction and lying in the metastable region. This fact motivated our choice of the parameters of the effective theory at T = 2T
cin section III. For higher temperatures, however, practically no distinction can be made between the three choices of h.
Before closing the discussion on the choice of the parameters of the effective 3d theory let us compare our procedure of fixing the parameters of the effective theory with that proposed in [9]. In Ref. [9] the gauge coupling was fixed by matching the data on Polyakov loop correlators determined in lattice simulation to the corresponding value calculated in lattice perturabtion theory. The resulting gauge couplings turned out to be considerably smaller than the corresponding ones used in our analysis, e.g. for T = 2T
cit gave g
2= 1.43 while our procedure gives g
2(2T
c) = 2.89.
The scalar couplings were fixed according to 1-loop perturbation theory [9]. Using this procedure the authors of Ref.
[9] obtained a good description of the Polyakov loop correlator in terms of the 3d effective theory, however, the spatial Wilson loop whose large distance behavior determines the spatial string tension was not well described in the reduced 3d theory. The reason for this is the fact that the value of the Polyakov loop correlator is cut-off dependent and therefore it is not very useful for extracting the renormalized coupling.
[1] D.J. Gross, R.D. Pisarski and L.G. Yaffe, Rev. Mod. Phys. 53 (1981) 43 [2] F. Karsch, A. Patk´ os and P. Petreczky, Phys. Lett B401 (1997) 69
[3] J.O. Andersen, E. Braaten and M. Strickland, Phys. Rev. Lett. 83 (1999) 2139; Phys.Rev. D 61 (2000) 014017; Phys.Rev.
D 61 (2000) 074016
[4] J.-P. Blaizot, E. Iancu and A. Rebhan, Phys. Rev. Lett. 83 (1999) 2906; Phys.Lett. B470 (1999) 181 [5] R. Kobes, G. Kunstatter and A. Rebhan, Phys. Rev. Lett. 64 (1990) 2992; Nucl. Phys. B355 (1991) 1 [6] A. Rebhan, Nucl. Phys. B430 (1994) 319
[7] P. Arnold and L.G. Yaffe, Phys. Rev. D52 (1995) 7208
[8] F. Karsch, M. Oevers and P. Petreczky, Phys. Lett. B442 (1998) 291 [9] P. Lacock, D.E. Miller and T. Reisz , Nucl. Phys. B369 (1992) 501
[10] L. K¨ arkk¨ ainen, P. Lacock, B. Petersson and T.Reisz Nucl.Phys. B395 (1993) 733
[11] L. K¨ arkk¨ ainen P. Lacock, D.E. Miller, B. Petersson and T.Reisz, Nucl. Phys. B418 (1994) 3 [12] K. Kajantie, M. Laine, K. Rummukainen and M. Shaposhnikov, Nucl. Phys. B503 (1997) 357 [13] M. Laine and O. Philipsen, Phys. Lett. B459 (1999) 259
[14] A. Hart and O. Philipsen, Nucl.Phys. B572 (2000) 243
17 Pressure in EQCD
Kajantie et al, PRD79 (2009) 045018
Electric screening mass from gluon propagator
Cucchieri et al, PRD64 (2001) 036001
Line is the fit to the 4d lattice results.
Different symbols correspond to
different choices of the 3d mass
parameter
) , ( )
, ( )
, (
, ) 0 , 0 ( )
, ( )
, ,
(
3x x
x J
J x J
e x d T
p G
H H
H H
x p i
t y t
y t
t t
G
=
= ò
× +Euclidean correlators and spectral functions
µ
µ
g g
g
g ×
=
G
H1 ,
5, , 5) (
) ,
( t T D i t
G =
>-
ò
¥-
=
0sinh( /( 2 ))
)) 2 /(
1 (
cosh(
) , ( )
,
( T
T T d
T
G w
t w w
ws t
) ( ) ( 1 Im
2
) ( )
( w s w
p p
w
w -
<= =
>
D
RD D
Lattice QCD is formulated in imaginary time
Physical processes take place in real time
) , ( )
0 , 0 ( )
, , (
, ) 0 , 0 ( )
, ( )
, , (
3 3
x t J J
e x d T
p t D
J x t J e
x d T
p t D
H H
x p i
H H
x p i
ò ò
×
<
×
>
=
=
if
fit the large distance behavior of the lattice correlation functions
This is not possible for Maximum Entropy Method (MEM)
Current-current correlators and heavy quark diffusion
⇢
µ⌫V(!) ⌘
Z
11
dte
i!tZ
d
3x D
[ ˆ J
µ(t, ~ x), J ˆ
⌫(0, ~ 0)] E
drag constant
X
i
⇢
iiV(!)
! ' 3
q2D ⌘
2⌘
2+ !
2, ! < !
U V, ⌘ = T M
1 D
Spatial diffusion constant ~ mean free path (weak coupling)
D ⇠ 1 g
4T
(M)⌘ M
2!
23T
q2X
i
2T ⇢
iiV(!)
!
⌘⌧!<!U V!
U VMomentum diffusion coefficient
(M)= 2T
2/D
For large quark mass the transport peak is very narrow even for strong coupling and its difficult to reconstruct it accurately from Euclidean correlator calculated on the lattice area under the peak ~
q2heavy quark coefficient ~ width of the peak
Current-current correlators in the heavy quark limit
0 1 2
ω / m
D -10 1 2 3 4
[ κ ( ω )- κ ] / [g
2C
FT m
D2/ 6 π ]
Landau cuts
full result - 2 (ω/mD)2 full result
= 1 3T
X
3i=1
!
lim
!0
M
lim
!1M
2q 2
Z
11
dt e
i!(t t0)Z
d
3~ x
⌧ 1 2
⇢ d ˆ J
i(t, ~ x)
dt , d ˆ J
i(t
0, ~ 0) dt
0G
E(⌧ ) = 1 3
q2T
X
i
Z
d
3x Dh
†
gE
i✓
†gE
i✓ i
(⌧, ~ x) h
†
gE
i✓
†gE
i✓ i
(0, ~ 0) E d ˆ J
idt = 1 M
n ˆ
†gE
iˆ ✓ ˆ
†gE
i✓ ˆ o
+ O ⇣ 1 M
2⌘
Caron-Huot, Laine, Moore, JHEP 0904 (2009) 053
t ! i⌧
G
E(⌧ ) =
Z
10
d!
⇡ ⇢(!) cosh ⌧
2T1! sinh
2T!G
E(⌧ ) = 1
3 X
3i=1
D ReTr h
U ( , ⌧ ) gE
i(⌧, ~ 0) U (⌧ , 0) gE
i(0, ~ 0) iE D ReTr[U ( , 0)] E
Integrate out , ✓
Transport coefficient ~ intercept of the spectral function not its width
= lim
!!0
2T
! ⇢(!)
Calculating the electric field strength correlator on the lattice
Straightforward to discretize by deforming the path of the Wilson lines to spatial direction
Challenge : MC noise
multilevel algorithm + link integration (only works for pure glue theory)
Luscher, Weisz, JHEP 0109 (2010), 010; Parisi, Petronzio, Rapuano, PLB 128 (1983) 418
100 150 200
configuration -40
-20 0 20 40
a4 G lat
standard link multi multi + link
T = 2.25 Tc, β = 7.457, 643x 24 τ T = 0.5
Francis, Kaczmarek, Laine, et al, arXiv:1109.3941, arXiv:1311.3759, PRD 92 (2015) 116003 Gnorm(⌧) = g2CF ⇡2T4
cos2(⇡⌧T)
sin4(⇡⌧T) + 1 3 sin2(⇡⌧T)
0 1 2 3 4 5
κ / T
31αa 1αb 1βa 1βb 2αa 2αb 2βa 2βb
3a BGM
model
strategy (i) strategy (ii) T
~
1.5 Tc10
-110
010
110
2ω / T 10
-110
010
110
210
3ρ
E/ ( ω T
2)
φUV(a)
model 1αa model 2αa model 3a BGM
T
~
1.5 Tc, Tc = 1.24 ΛMS_
Extracting the spectral function and the diffusion constant
= lim
!!0
2T
! ⇢(!) = (1.8 3.4)
Francis, Kaczmarek, Laine, et al, PRD 92 (2015) 116003
Fit the lattice using a forms of the spectral function constrained by low and high energy asymptotic behavior + corrections
⇢
high(!) = g
2(µ
!)C
F6⇡ !
3, µ
!= max(!, ⇡T )
⇢
low(!) = !
2T
T 3
<latexit sha1_base64="1IjxI4w4XI8sp6eYIv+fbgzfeJo=">AAAB6nicdVBNS8NAEJ34WetX1aOXxSJ4Kkka2norePFYsV/QxrLZbtulm03Y3Qgl9Cd48aCIV3+RN/+Nm7aCij4YeLw3w8y8IOZMadv+sNbWNza3tnM7+d29/YPDwtFxW0WJJLRFIh7JboAV5UzQlmaa024sKQ4DTjvB9CrzO/dUKhaJpp7F1A/xWLARI1gb6bZ5Vx4UinbpslZxvQqyS7ZddVwnI27VK3vIMUqGIqzQGBTe+8OIJCEVmnCsVM+xY+2nWGpGOJ3n+4miMSZTPKY9QwUOqfLTxalzdG6UIRpF0pTQaKF+n0hxqNQsDExniPVE/fYy8S+vl+hRzU+ZiBNNBVkuGiUc6Qhlf6Mhk5RoPjMEE8nMrYhMsMREm3TyJoSvT9H/pO2WHMNvvGLdXcWRg1M4gwtwoAp1uIYGtIDAGB7gCZ4tbj1aL9brsnXNWs2cwA9Yb58xnI2v</latexit><latexit sha1_base64="1IjxI4w4XI8sp6eYIv+fbgzfeJo=">AAAB6nicdVBNS8NAEJ34WetX1aOXxSJ4Kkka2norePFYsV/QxrLZbtulm03Y3Qgl9Cd48aCIV3+RN/+Nm7aCij4YeLw3w8y8IOZMadv+sNbWNza3tnM7+d29/YPDwtFxW0WJJLRFIh7JboAV5UzQlmaa024sKQ4DTjvB9CrzO/dUKhaJpp7F1A/xWLARI1gb6bZ5Vx4UinbpslZxvQqyS7ZddVwnI27VK3vIMUqGIqzQGBTe+8OIJCEVmnCsVM+xY+2nWGpGOJ3n+4miMSZTPKY9QwUOqfLTxalzdG6UIRpF0pTQaKF+n0hxqNQsDExniPVE/fYy8S+vl+hRzU+ZiBNNBVkuGiUc6Qhlf6Mhk5RoPjMEE8nMrYhMsMREm3TyJoSvT9H/pO2WHMNvvGLdXcWRg1M4gwtwoAp1uIYGtIDAGB7gCZ4tbj1aL9brsnXNWs2cwA9Yb58xnI2v</latexit><latexit sha1_base64="1IjxI4w4XI8sp6eYIv+fbgzfeJo=">AAAB6nicdVBNS8NAEJ34WetX1aOXxSJ4Kkka2norePFYsV/QxrLZbtulm03Y3Qgl9Cd48aCIV3+RN/+Nm7aCij4YeLw3w8y8IOZMadv+sNbWNza3tnM7+d29/YPDwtFxW0WJJLRFIh7JboAV5UzQlmaa024sKQ4DTjvB9CrzO/dUKhaJpp7F1A/xWLARI1gb6bZ5Vx4UinbpslZxvQqyS7ZddVwnI27VK3vIMUqGIqzQGBTe+8OIJCEVmnCsVM+xY+2nWGpGOJ3n+4miMSZTPKY9QwUOqfLTxalzdG6UIRpF0pTQaKF+n0hxqNQsDExniPVE/fYy8S+vl+hRzU+ZiBNNBVkuGiUc6Qhlf6Mhk5RoPjMEE8nMrYhMsMREm3TyJoSvT9H/pO2WHMNvvGLdXcWRg1M4gwtwoAp1uIYGtIDAGB7gCZ4tbj1aL9brsnXNWs2cwA9Yb58xnI2v</latexit><latexit sha1_base64="1IjxI4w4XI8sp6eYIv+fbgzfeJo=">AAAB6nicdVBNS8NAEJ34WetX1aOXxSJ4Kkka2norePFYsV/QxrLZbtulm03Y3Qgl9Cd48aCIV3+RN/+Nm7aCij4YeLw3w8y8IOZMadv+sNbWNza3tnM7+d29/YPDwtFxW0WJJLRFIh7JboAV5UzQlmaa024sKQ4DTjvB9CrzO/dUKhaJpp7F1A/xWLARI1gb6bZ5Vx4UinbpslZxvQqyS7ZddVwnI27VK3vIMUqGIqzQGBTe+8OIJCEVmnCsVM+xY+2nWGpGOJ3n+4miMSZTPKY9QwUOqfLTxalzdG6UIRpF0pTQaKF+n0hxqNQsDExniPVE/fYy8S+vl+hRzU+ZiBNNBVkuGiUc6Qhlf6Mhk5RoPjMEE8nMrYhMsMREm3TyJoSvT9H/pO2WHMNvvGLdXcWRg1M4gwtwoAp1uIYGtIDAGB7gCZ4tbj1aL9brsnXNWs2cwA9Yb58xnI2v</latexit>
Lattice calculations of the vector spectral functions:
Ding et al, PRD 83 (11) 034504
Fit parameters : Different choices of :