• Tidak ada hasil yang ditemukan

Copyright IIT Kharagpur

N/A
N/A
Protected

Academic year: 2024

Membagikan "Copyright IIT Kharagpur"

Copied!
5
0
0

Teks penuh

(1)

Copyright

IIT Kharagpur

(2)

Copyright

IIT Kharagpur

1 Introduction 1

1.1 Literature Survey and Motivation . . . 3

1.1.1 Analog Performance Modeling . . . 4

1.1.2 Generation/Selection of an Optimal System Topology . . . 5

1.1.3 High-Level Specification Translation . . . 7

1.2 Overview and Contributions of the Thesis . . . 8

1.2.1 Problem Definition . . . 8

1.2.2 Generation of High-Level Performance Models . . . 8

1.2.3 Top-Down Methodology for Generation of an Optimal Topol- ogy for Linear Analog Systems . . . 9

1.2.4 High-Level Specification Translation . . . 11

1.2.5 Contributions . . . 12

1.3 Organization of the rest of the Thesis . . . 12

2 Optimization-based Analog High-Level Design Methodology 15 2.1 Generic Methodology . . . 16

2.1.1 Simulation-based Approach . . . 16

2.1.2 Equation-based Approach . . . 18

2.2 High-Level Model Generation . . . 19

2.2.1 Behavioral Model Generation . . . 19

2.2.1.1 Analytical Techniques . . . 20

2.2.1.2 Fitting or Regression Methods . . . 22

2.2.1.3 Symbolic Model Generation Methods . . . 23

2.2.1.4 Model Order Reduction Methods . . . 24

2.2.2 Performance Estimation Model Generation . . . 24

2.2.2.1 Bottom-Up Approach . . . 24

(3)

Copyright

IIT Kharagpur

ii CONTENTS

2.2.2.2 Top-Down Approach . . . 25

2.2.3 Feasibility Model Generation . . . 26

2.3 Optimization Methods . . . 26

2.3.1 Deterministic Methods . . . 27

2.3.2 Stochastic Methods . . . 27

2.3.3 Multi-Objective Optimization Method . . . 28

2.4 Topology Generation/Selection Methods . . . 30

2.4.1 Selection before or after sizing . . . 30

2.4.2 Selection during sizing . . . 31

2.4.3 Top-Down Generation . . . 31

2.5 Summary . . . 32

3 Generation of High-Level Performance Estimation Models 33 3.1 High-Level Performance Estimation Models . . . 33

3.2 Regression-based Model Generation . . . 35

3.2.1 Sample Space and Design of Experiments . . . 35

3.2.2 Training Data Generation and Scaling . . . 37

3.2.3 Regression Using LS-SVM . . . 40

3.2.3.1 Selection of Hyper parameters . . . 41

3.2.4 Quality Measures . . . 45

3.3 Comparison with Existing Methodologies . . . 45

3.4 Topology Sizing Methodology using GA . . . 47

3.5 Experimental Results . . . 47

3.5.1 Experiment 1 . . . 49

3.5.2 Experiment 2 . . . 53

3.5.3 Experiment 3 . . . 53

3.6 Conclusion . . . 60

4 Top-Down Generation of an Optimal Topology 63 4.1 Top-Down Topology Generation Methodology . . . 64

4.1.1 Outline of the Methodology . . . 64

4.1.2 Transfer Function and State Space Representation . . . 66

4.1.3 Topology Generation . . . 68

4.1.3.1 Functional Topology Generation . . . 68

4.1.3.2 Component-Level Topology Generation . . . 69

(4)

Copyright

IIT Kharagpur

4.1.4 Topology Transformation . . . 71

4.1.5 Performance Estimation . . . 76

4.1.5.1 Sensitivity minimization . . . 76

4.1.5.2 Hardware Complexity . . . 79

4.1.5.3 Relative Power Consumption . . . 80

4.1.6 Topology Exploration and Selection . . . 81

4.1.6.1 Feasible Gm Value Constraints . . . 81

4.1.6.2 Non-overload Constraints . . . 82

4.1.7 Complete Flow of the Topology Generation Process for CT ΣΔ Modulator System . . . 82

4.1.7.1 Related Work on ΣΔ Modulator Synthesis . . . 83

4.1.7.2 Methodology . . . 85

4.2 Comparison with Existing Methodologies . . . 85

4.3 Experimental Results . . . 87

4.3.1 Experiment 1 . . . 87

4.3.2 Experiment 2 . . . 92

4.3.3 Experiment 3 . . . 95

4.4 Conclusion . . . 100

5 High-Level Specification Translation 103 5.1 Problem Formulation . . . 103

5.2 Feasible Design Space Construction . . . 105

5.2.1 Application Bounded Space . . . 105

5.2.2 Circuit Realizable Space . . . 106

5.2.3 Feasible Design Space . . . 107

5.3 Feasible Design Space Identification . . . 108

5.3.1 Accuracy Measurement . . . 108

5.4 Design Space Exploration . . . 109

5.4.1 Cost Function Formulation . . . 111

5.4.1.1 Primary Objectives . . . 111

5.4.1.2 Secondary Objectives . . . 111

5.4.2 Exploration Algorithm . . . 112

5.5 Comparison with Existing Methodologies . . . 112

5.6 Experimental Results . . . 113

5.6.1 Experiment 1 . . . 113

(5)

Copyright

IIT Kharagpur

iv CONTENTS

5.6.2 Experiment 2 . . . 117

5.6.3 Experiment 3 . . . 119

5.7 Conclusion . . . 122

6 Conclusion and Directions for Further Research 125 6.1 Summary and Conclusions . . . 125

6.1.1 Contributions . . . 127

6.1.2 Tools developed . . . 128

6.2 Directions for Further Research . . . 129

A Least Squares Support Vector Machine 131 A.1 Least-Squares Support Vector Regression . . . 132

A.2 Least-Squares Support Vector Classification . . . 134

B Global Optimization Techniques 137 B.1 Genetic Algorithm . . . 137

B.2 Simulated Annealing . . . 140

Referensi

Dokumen terkait

In translating, a translator can use some methods as s as suggested by Newmark (1988), namely: (1) Word-for-word translation, (2) Literal translation, (3) Faithfull

The general methodology used to design a linear array for matrix multiplication given in [19] assuming that we will partition the 2- D array into m-rows is as follows: x The

For example, it could be used as 1 a preacher’s guide to creational emblems and typologies for sermons and teaching, 2 a teaching resource for Christian outdoor recreation

Methodology Discovering and Analyzing the LR Briefly stated, the method for discovering the LR and assessing its place in the textual transmission is as follows: 1 determine the

Module 2: The International Framework From Copyright for Librarians Contents 1 Learning objective 2 Case study 3 Lesson 4 The Rationale for the International System 5 International

The findings of the students’ translation method in translating report text No Translation Method Number of Occurrence Percentage 1 Word for word translation 60 14% 2

1 Correct code 2 Output runs fast 3 Compiler runs fast 4 Compile time proportional to program size 5 Support for separate compilation 6 Good diagnostics for syntax errors 7 Works

693 Figure 1: Methodology Flow Chart Literature Review Methodology Assigned aerodynamic for the Model 1, Model 2, Model 3 and Model 4 Discussion and Conclusion Lift Coefficient