Coupled Phase Oscillators: N → ∞
M. Lakshmanan
Centre for Nonlinear Dynamics School of Physics Bharathidasan University Tiruchirappalli – 620024
India
SERC School on ”Nonlinear Dynamics”
Panjab University, Chandigarh
27-30, January 2014
Coupled Phase Oscillators: N → ∞
Kuromoto model of coupled phase oscillators:
dθi
dt =ωi+ K N
N
X
j=1
sin(θj(t)−θi(t))
In the N→ ∞ limit, the state of the oscillator system can be described by a continuous distribution functionf(ω, θ,t)
Coupled Phase Oscillators: N → ∞
dθi
dt = ωi +K
N X
j
h
ei(θj−θi)−e−(θj−θi)i
= ωi +K 2i
1 N
Xeiθj
e−iθi −K 2i
1 N
Xe−iθj
eiθi
= ωi +K
2i h
re−iθi −r∗eiθii
r = N1 PN j=1eiθj
=⇒ order parameter
Coupled Phase Oscillators: N → ∞
Continuity equation
∂f
∂t + ∂
∂t(vf) = 0
=⇒
∂f
∂t + ∂
∂θ
ω+ K 2i
re−iθ−r∗eiθ f = 0 where
r(t) = Z 2π
0
dθ Z ∞
−∞
dω eiθf(θ, ω,t) (|r(t)| ≤1)
Ott - Antonsen Ansatz:
Expanding f(θ, ω,t) as a Fourier series in θ f(θ, ω,t) =
∞
X
m=−∞
cm(ω,t)eimθ
Ott - Antonsen Ansatz:
Consider a restricted class of fn(ω,t):
fn(ω,t) = [α(ω,t)]n,|α(ω,t)| ≤1 Then
r = Z 2π
0
dθ Z ∞
−∞
dω f eiθ
= Z ∞
−∞
dω Z 2π
0
dθ eiθ+
∞
X
n=1
αnei(n+1)θ+
∞
X
n=1
(α∗)ne−i(n−1)θ
!g(ω) π
= Z ∞
−∞
dω g(ω) α∗(ω, t)
Ott - Antonsen Ansatz:
Then the continuity equation becomes
∞
X
n=1
nαn−1∂α
∂t einθ+c.c
+[−K 2
r e−iθ+r∗ eiθ 1 +
∞
X
n=1
αn einθ+c.c
! +ω
∞
X
n=1
inαn einθ+c.c
! + K
2i
∞
X
n=1
n rαn ei(n−1)θ+c.c
−K 2i
∞
X
n=1
r∗ n α∗n ei(n+1)θ+c.c ]
Macroscopic Equations:
Equating coefficients of powers of einθ and c.c:
∂α
∂t +K
2(r α2−r∗) +iω α= 0 But r(t) =R∞
−∞dω g(ω) α∗(ω,t) Let
Lorentzian g(ω) =(∆
π) 1
[(ω−ω0)2+ ∆2]
=1 π
1
(ω−ω0−i∆) − 1 (ω−ω0+i∆)
Macroscopic Equations:
(ω0 − i∆)
Then
r∗ = Z ∞
−∞
dω α(ω,t) ∆ 2π
1
[(ω−ω0)2+ ∆2]
=−1 2πi
I
c
dω α(ω,t) (ω−ω0+i∆)
=α(ω0−i∆, t)
By changing the variables (θ, ω)−→
θ−ω0(t), ω−ω∆0 we can set ω0= 0, ∆ = 1
Macroscopic Equations:
r(t) =α∗(−i, t)
=⇒ drdt + K2(r∗r2−r) +r = 0 with r(t) =ρ(t) eiφ
=⇒ dρdt + K2(ρ2−1)ρ+ρ= 0
dρ dt +
1−1
2K
ρ+ K 2ρ3 =0
φ˙t =0
Synchronized/ desynchronized states
ρ(t)
R =
1 +{
R ρ(0)
−1} e(1−12K)t −12
whereR = 1−K212
For K <Kc = 2, r −→0 as t → ∞ For K >2, r → 1− K212
Synchronized/ Desynchronized states
Linear Stability
ρ=ρ0+ξ(t) =⇒ dξdt + 1−12K ξ= 0 ξ =c0 e−(1−K2)t
(i)ρ= 0: Stable forK <2, Unstable forK >2.
(ii)ρ=ρc = 1−K212
: dξdt + 1−K2
ξ+ 3ρ2e ξ= 0
=⇒ dξdt + (K −2)ξ= 0
=⇒ ξ =c e−(K−2)t
References
E. Ott and T. M. Antonsen, Low dimensional behavior of large systems of globally coupled oscillators, Chaos18, 037113 (2008)
V. K. Chandrasekar, Jane H. Sheeba and M. Lakshmanan, Mass synchronization: occurrence and its control with possible applications to brain dynamics, Chaos20, 045106 (2010).