• Tidak ada hasil yang ditemukan

Deterministic vs. stochastic models

N/A
N/A
Protected

Academic year: 2025

Membagikan "Deterministic vs. stochastic models"

Copied!
12
0
0

Teks penuh

(1)

Deterministic vs. stochastic models

• In deterministic models, the output of the model is  fully determined by the parameter values and the  initial conditions

initial conditions.

Stochastic models possess some inherent randomness.  

The same set of parameter values and initial  conditions will lead to an ensemble of different  outputs.p

• Obviously, the natural world is buffeted by 

stochasticity But stochastic models are considerably stochasticity.  But, stochastic models are considerably  more complicated.  When do deterministic models  provide a useful approximation to truly stochastic 

? processes?

(2)

Demographic vs. environmental stochasticity

Demographic stochasticity describes the randomness  that results from the inherently discrete nature of 

individuals It has the largest impact on small individuals.  It has the largest impact on small  populations.

Environmental stochasticity describes the randomness  resulting from any change that impacts an entire 

population (such as changes in the environment).  Its 

p p ( g )

impact does not diminish as populations become large.

(3)

Stochastic models, brief mathematical considerations

• There are many different ways to add stochasticity to  the same deterministic skeleton.

• Stochastic models in continuous time are hard.

• Gotelli provides  a few results that are specific to one  way of adding stochasticity.

(4)

Demographic stochasticity has its biggest impact on small populations

6 runs of stochastic logistic growth model, carrying capacity = 10

(5)

Demographic stochasticity has its biggest impact on small populations

6 runs of stochastic logistic growth model, carrying capacity = 1000

(6)

A stochastic version of the geometric population growth model

1  ( )

t t

N λ t N

• Suppose thatSuppose that  has the following probability distribution:has the following probability distribution:

= 0.9 with probability ½ 1 1 i h b bili ½

= 1.1 with probability ½

What are typical behaviors of this population?

(7)
(8)
(9)
(10)
(11)

• Stochastic population growth yields log‐normally  distributed population sizes

• Many small populations, few large onesy p p , g

• The rate of change of the average population size  overestimates the “typical” growth rate

overestimates the  typical  growth rate  experienced by most populations.

(12)

• Mathematical details, for those interested:

 

1

 

1 t t

t E Nt

E N E λ

    

      

 

 

0 0

E E λ

N   N  

 

    

 

 

Average rate of 

change of the  Rate of change 

of the average

• (this is Jensen’s inequality)

population of the average 

population

• (this is Jensen s inequality)

Referensi

Dokumen terkait