w w w . j m r t . c o m . b r
Availableonlineatwww.sciencedirect.com
Original Article
The effect of heat treatment on the mechanical and tribological properties of dual size SiC reinforced A357 matrix composites
Avinash Lakshmikanthan
a,b, T. Ram Prabhu
c, Udayagiri Sai Babu
d,
Praveennath G. Koppad
e, Manoj Gupta
f, Munishamaiah Krishna
g, Srikanth Bontha
a,∗aDepartmentofMechanicalEngineering,NationalInstituteofTechnology,Surathkal575025,India
bDepartmentofMechanicalEngineering,NitteMeenakshiInstituteofTechnology,Bangalore560064,India
cCEMILAC,DefenceR&DOrganization,Bangalore560093,India
dDepartmentofMaterialsEngineering,IndianInstituteofScience,Bengaluru560012,India
eDepartmentofMechanicalEngineering,DayanandaSagarCollegeofEngineering,Bengaluru560078,India
fDepartmentofMechanicalEngineering,TheNationalUniversityofSingapore,10KentRidgeCrescent,119260Singapore,Singapore
gDepartmentofMechanicalEngineering,RVCollegeofEngineering,Bengaluru560059,India
a r t i c l e i n f o
Articlehistory:
Received21February2020 Accepted7April2020 Availableonline4May2020
Keywords:
Dualparticlesize(DPS)composites Stircasting
T6heattreatment Microstructure Mechanicalproperties Aging
Wear
a bs t r a c t
Inthepresentwork,theeffectofagingtemperatureandparticlesizeratioofSiCparticleson themechanicalandtribologicalpropertiesofA357compositesreinforcedwithdualparticle sizeSiCwereinvestigated.Thecompositeswerepreparedbymelt-stirringassistedperma- nentmoldcastingtechniquewithdifferentweightfractions(3%coarse+3%fine,4%coarse +2%fine,and2%coarse+4%fine)oflargeandsmallsizeSiCparticles.Thesethreeprepared compositesarereferredasDPS1,DPS2andDPS3composites.Thesolutionizingtempera- turewasmaintainedconstantat540◦Cfor9hwhiletheagingwasdoneat160◦C,180◦C and200◦C(T6treatment)for6h.Opticalandscanningelectronmicroscopystudiesshowed fairlyuniformdispersionofdualsizeSiCparticlesinA357matrixwithgoodinterfacial bonding.High-resolutiontransmissionelectronmicroscopyimagesshowedformationof uniformlydispersedneedle-likephaseandsphericalshaped-Mg2Siprecipitatesunder peakagingconditions.ComparedtoT6treatedA357alloy,theT6treatedDPSA357com- positesshowedimprovedyieldstrength,tensilestrength,hardnessandwearresistance.
Amongthethreecomposites,hardnessandwearresistanceofT6treatedDPS2composite wasfoundtobesignificantlyhigherwhencomparedtotheothertwocomposites(DPS1and DPS3).Ratiooflargeparticlestosmallparticlesalsoseemstoeffectthemechanicaland tribologicalproperties.Presenceofmoresmallparticleswasfoundtobegoodforstrength andductilitywhereasmorelargeparticleswerefoundtobegoodforhardnessandwear resistance.
©2020TheAuthor(s).PublishedbyElsevierB.V.Thisisanopenaccessarticleunderthe CCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).
∗ Correspondingauthor.
E-mail:[email protected](S.Bontha).
https://doi.org/10.1016/j.jmrt.2020.04.027
2238-7854/©2020The Author(s). PublishedbyElsevier B.V.Thisis anopen accessarticleunderthe CC BY-NC-NDlicense (http://
creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction
Owingtotheirlowdensity,highspecificstrength,andhigh wearresistance,aluminum-basedmetalmatrixcomposites arethemostpromisingmaterialsforvariousautomotiveand aerospace applications [1–4]. In particular, Al-Si-Mg alloys suchas A356 and A357 are used in many critical applica- tions like pistons, engineblocks, brake calipers, impellers, pump,andvalvecomponents.Theprimaryreasonsforusing these alloys for above applications are their high specific strength, excellent weldability, castability, and good corro- sionresistance.However,themechanicalpropertiesarehighly influencedbymicrostructure,chemicalcomposition, solidi- ficationconditions,and heattreatment.ThepresenceofSi andMgalongwithappropriateheattreatmentresultsinthe formationofMg2Siprecipitates,whichimprovethestrength significantly.Thegeneralprecipitationsequencecanbegiven as,GP-IZones→GP-IIzones/ (Mg5Si6,FCCstructure)→ Intermediateprecipitate→(Mg2Si,hexagonalstructure)pre- cipitates.Theage hardeningresponseofA357alloylargely dependsonfactorslikechemicalcomposition,solutionizing, andagingtemperatures,whichinturndeterminethemechan- icalproperties[5–9].
Al-Sialloy-basedmetalmatrixcompositesarefabricated usingbothliquidandpowdermetallurgyroutes.Theselec- tionofappropriateprocessingtechniqueisbasedonthetype andweightfractionofreinforcement,itsmorphologyandthe endapplicationoftheprocessedcomposite[10–15].Canakci etal.[10,11]usedpowderprocessingtechniqueforfabrication ofAlbasedMMC’s.Heretheyusedmethanolasaprocesscon- trolagent.Theyevaluatedthemicrostructureandmechanical propertiesofthedevelopedAl-MMC’s.Canakcietal.useda novel methodfor the fabricationof AA7075 powders from recycledchips usingmechanicalmilling[12].Canakcietal.
alsousedstircastingtechniquetofabricateAA2024composite reinforcedwithB4Cparticlesandstudiedtheeffectofparti- clesize,volumefraction,andwearbehaviorofthedeveloped MMC’s.Furtherartificialneuralnetwork(ANN)techniquewas usedtopredictthemechanicalbehaviorofdevelopedMMC’s [13–15].
Zulfiaetal.[16]intheirworkusedacombinationofstir castingandhotisostaticpressingtechniquesforfabrication ofA357/SiCcomposites.Thecompositeswith15%SiCwere initiallyfabricatedusingstircastingfollowedbyhotisostatic pressing at550◦C. Badiziet al. [17] usedstir casting tech- niquetofabricateA357compositewith1.5%SiC.Theyused aresistancefurnaceequippedwithanelectromagneticstir- rertoprocess thecomposite. Inanother work,Datta etal.
[18]studiedthecorrosionbehaviorofpowdermetallurgypro- cessedAl-Si-Mg/SiCcomposite.ElementalpowdersofAl,Si andMgalong with2%SiCwere mechanicallyalloyed, cold pressedandthensinteredtoobtaincomposite.Overall,stir castingtechniqueisusedtoproduceAl-Sicompositesowing toitflexibilityandlowcostofprocessing.
Takingacuefromitsgoodmanufacturingandmechani- calcharacteristics,severaleffortshavebeenmadetoreinforce Al-Si-Mgalloywithceramicparticulates.Themostcommonly usedceramicparticlesinclude,SiC,TiC,TiB2,andAl2O3,out ofwhichSiCisanoutstandingchoiceduetoitslowdensity,
highhardness,highelasticmodulusandexcellentchemical inertness.Yuetal.[19]studiedthereinforcingmechanismof TiB2inas-castA357/TiB2insitucomposites.Itwasobserved that mechanicalpropertiesincreasedduetoanincreasein dislocationdensityneartheboundaryof␣-AlandTiB2par- ticles. Kandemir et al.[20]studied themicrostructure, and mechanicalpropertiesofSiCreinforcedA357compositespro- cessed by ultrasoniccavitation method. Thehardness and tensilestrength ofthecompositeincreasedfrom60HVand 138MPato73HVand198MParespectivelywhenA357alloy wasreinforcedwithSiCparticles.Thestrengtheninginthe compositewasattributedtograinsizereductionandOrowan mechanism.However,theeffectofload-bearingmechanism wasfoundtobeminimal.Leonardetal.[21]comparedtheslid- ingwearbehaviorofA357alloysand30vol%SiCreinforced A357compositesatdifferentloadsrangingfrom6–74N.They observedthatatalowerloadof6N,theaveragewearcoef- ficientofthecompositewasfoundtobesignificantlylower than thatofthealloy.Atahigherloadof74N,theaverage wearcoefficientanddepthofdeformationofthecomposite wastwicethatofthealloy.
On theother hand,several works reportedthe effectof heat treatment on mechanical properties of A357 and its composites. Bloyceand Summers [22]studiedthe effectof heat treatmentonmechanicalproperties ofA357/SiC com- posites.Outofthetwoheattreatmentproceduresopted,the onewith540◦Csolutionizingand160◦Cagingtemperature showedbettermechanicalpropertiesforbothA357alloyand composites.Taghiabadietal.[23]reportedtheeffectofheat treatmentonascastAl-Si-MgcompositesreinforcedwithTiB2
particles.Tensilestrengthoftheheat-treatedcompositeswas foundtobehigherduetothestrengtheningeffectprovidedby Mg2Siprecipitates.StrengtheninginagehardenedA356/TiB2 compositeswasattributedtotheformationof,(Mg2Si)pre- cipitates.Dislocationpining,andtheirpileupsinthevicinity ofTiB2particleswerealsoreported[24].Itiswellknownthat themechanicalpropertieslikestrengthandwearresistance ofcompositeslargelydependonthesize,amount,morphol- ogyanddispersionofreinforcementinthemetalmatrix.In particular,theeffectofsizeofparticlesplaysavitalrolein decidingthestrengthandductilityoftheresultingcompos- ites. Micron-sized particles improvestrength atthe costof significant lossinductilitywhilesub-micronor nano-sized particlesimprovenotonlythestrengthbutalsotheductility.
Thishasledtoseveralstudiesonthedevelopmentofbimodal ortrimodalparticlereinforcedcomposites[24–27].Bindumad- havanet al.[25]studiedtheeffect ofdualsizeSiC(47 and 120m)onimpactenergyandwearrateofAl-Si-Mgcompos- ites.TheimpactenergyofdualsizeSiCcomposite(12.2J)was muchhigherthanthatofsingleparticlesizecomposite(6.7J).
Further,theweightlossduringweartestwaslessincaseof dualsizeSiCcomposite(30mg)whilehigherincaseofsin- gleparticlesizecomposite(47mg).Sharmaetal.[28]studied theeffectofbimodalsillimanite(1–20mand75–106m)on dry slidingwearbehaviorofAl-Sicompositesfabricatedby stircastingtechnique.Al-Sicompositehavingahigherweight fractionofsmall-sizedparticlesandlowerweightfractionof largeparticles (3:1)showed thehighestnano-hardnessand lowestwearratewhencomparedtoothercombinations.Over- allbimodalsizedreinforcement-basedcompositesarequite
attractiveoverconventionalcompositeswithsinglesizerein- forcement.Sofar,limitedworkhasbeenreportedontheeffect ofheattreatmentonmechanicalandtribologicalproperties ofA357compositereinforcedwithbimodalSiCparticles.The other aspectwhichisnot yetstudiedsystematicallyisthe effectofratiooflargetosmallparticlesonthemechanicaland tribologicalproperties.Findingtheoptimumratiooflargeto smallparticlesizeandvariationofpropertieswiththisratiois expectedtoprovidemoreinsightsintotheroleofbimodalpar- ticlereinforcementsinimprovingpropertiesofcomposites.
Inthepresentwork,anattemptismadetounderstandthe effectofheattreatmentonthemechanicaland tribological propertiesofA357compositesreinforcedwithdualsizeSiC particles.Theeffectofsolutionizingandvariousagingtem- peraturesalongwithdifferentweightfractionsofdualsize SiCparticlesonmicrostructure,strength,andwearresistance isstudied.Thestudywillfurthertheunderstandingofeffect ofagingtemperatureandratiooflargetosmallparticlesize onpropertiesofA357compositesreinforcedwithdualsizeSiC particles.
2. Experimental procedures
2.1. MaterialsandDPS-SiCcompositefabrication method
Al-7.4Si-0.54Mg (A357 alloy) with a theoretical density of 2.7g/ccwasselectedasamatrixmaterial,andSiCoftwodif- ferentparticlesizes(140±10m(Large)and30±5m(Small)) havingadensity3.21g/cc[29]wereusedasreinforcements.
TheSiCpowdersamples(twodifferentmeshsizes)andtheir morphologywithEDSanalysisareshowninFig.1(a)–(d).The fabrication ofA357dual particle size compositeshas been describedindetailinourpreviouswork[30,31].Imagesofcast sampleareshowninFig.2.Theprocessflowchartforfabrica- tionofA357compositereinforcedwithdualsizeSiCparticles ispresentedinFig.3.
As-cast A357 alloy and its DPS composites were sub- jectedtoT6heattreatmentorprecipitationtreatmentusing a muffle furnace equipped with a temperature controller.
The T6-heat treatment process consists of solutionizing, quenching, and aging. Theas-cast A357 alloy and its DPS composites were T6 heat treated using temperature-time cycles as shown in Fig. 4 and the description is provided below.
Step1:Solutionizingatatemperatureof540◦C±2◦Cfor9h whichiswidelyusedforproductionofA357alloysandits composites[32–34].
Step 2: Quenching in water to room temperature with a quenchdelaytimerestrictedto5–6s.
Step3:Aginginatemperaturerangeof160◦Cto200◦Cin stepsof20◦Cfor6h.
Theprecipitationheat-treatment(T6)cyclesshowninFig.4 fordifferentcasesaredesignatedasfollows:
(a) 540◦C(SolutionTreatment)for9h–quenchinginwater
−160◦C(aging)for6hisdenotedby540-9H-160-6H.
(b) 540◦C(SolutionTreatment)for9h–quenchinginwater
−180◦C(aging)for6hisdenotedby540-9H-180-6H.
Fig.1–MorphologyofSiCparticles,(a)SiCpowdersample(finesize)(b)MorphologyoffinesizeSiCparticleswithEDS analysis(c)SiCpowdersample(coarsesize)and(d)MorphologyofcoarsesizeSiCparticleswithEDSanalysis.
Fig.2–Imagesofcastsamples.
Fig.3–ProcessflowchartforfabricationofA357compositereinforcedwithdualsizeSiCparticles.
Fig.4–Precipitationheattreatment(T6)cycles.
Table1–Thealloy/composite,heattreatment,weightfractionofSiCparticlesandtheirdesignation.Herein,L:S correspondstoratioofwt.%ofcoarse(140±10m-L)andfine(30±5m-S)particlesofDualParticleSizeSiC.
Alloy/Composite HeatTreatment L:S(wt.%) Designation
(T6-treated)
As-CastA357alloy 540-9H-160-6H
Nil
A357-160◦C–6H
As-CastA357alloy 540-9H-180-6H A357-180◦C–6H
As-CastA357alloy 540-9H-200-6H A357-200◦C–6H
DPS1Composite 540-9H-160-6H
3:3
DPS1-160◦C–6H
DPS1Composite 540-9H-180-6H DPS1-180◦C–6H
DPS1Composite 540-9H-200-6H DPS1-200◦C–6H
DPS2Composite 540-9H-160-6H
4:2
DPS2-160◦C–6H
DPS2Composite 540-9H-180-6H DPS2-180◦C–6H
DPS2Composite 540-9H-200-6H DPS2-200◦C–6H
DPS3Composite 540-9H-160-6H
2:4
DPS3-160◦C–6H
DPS3Composite 540-9H-180-6H DPS3-180◦C–6H
DPS3Composite 540-9H-200-6H DPS3-200◦C–6H
(c) 540◦C(SolutionTreatment)for9h–quenchinginwater
−200◦C(aging)for6hisdenotedby540-9H-200-6H.
Thealloy/composite,heattreatment,weightfractionofSiC particlesandtheirdesignationispresentedinTable1.
2.2. PhaseanalysisandMicrostructural characterization
Theheat-treatedsamples(A357alloyanditsDPScomposites) werefurthercharacterizedaspersuitableASTMstandards.
Thecharacterizationandtestingcarriedoutonthesesamples issummarizedinFig.5.
XRD analysis of samples was conducted using X’Pert3 Powderdiffractometer(PANalytical,Malvern,UK)withCuK␣ radiation.Thestudywasperformedforthescananglerange of20◦ to80◦ atascanspeedof2◦/min.BeforeXRDstudies, thesampleswerecleanedwithacetoneandwerealsodriedin air.UsingstandardmetallurgicalproceduresasperASTME3- 17standardsthecompositeswerepolishedandetchedwith Keller’sreagent.Optical(Model:NikonLV150)andscanning
electronmicroscopy(Model:TESCANVega3LMU)studieswere carriedouttocheckthedispersionandbondingofSiCparticles withA357matrix.Inordertostudytheprecipitatesanddis- locations,transmissionelectronmicroscopyexaminationwas conductedusingJEOLJEM2100HighResolutionTransmission ElectronMicroscope(HRTEM).Forthis,samplesof3mmdiam- eterand10mthickwere preparedusingionbeammilling (Model691,Gatan).
2.3. Densitymeasurements
Theexperimentaldensity(exp)oftheA357alloyanditsDPS composites was measured using the Archimedes principle (ASTMD792-66standard)and,thetheoreticaldensity(th)was calculatedusingtheruleofmixtures[13,14,35,36].
2.4. Mechanicalandweartesting
ThehardnesstestwascarriedoutusingaMicroCumMacro- Vickers hardness testing machine (Model: VH1150) as per ASTM E384 standard. Tensile test was conducted as per
Fig.5–FlowchartofcharacterizationandtestingcarriedoutonDPS-SiCreinforcedA357MMCs.
Table2–Theoreticaldensity(th)andexperimentaldensity(exp)ofA357alloyanditsDPScomposites(T6-heattreated).
S/No Alloy/Composite Designation Theoreticaldensity(gm/cc) Experimentaldensity(gm/cc)
1 As-CastA357alloy A357-160◦C–6H 2.700 2.685
2 DPS1Composite DPS1-160◦C–6H 2.730 2.713
3 DPS2Composite DPS2-160◦C–6H 2.730 2.715
4 DPS3Composite DPS3-160◦C–6H 2.730 2.713
5 As-CastA357alloy A357-180◦C–6H 2.700 2.691
6 DPS1Composite DPS1-180◦C–6H 2.730 2.720
7 DPS2Composite DPS2-180◦C–6H 2.730 2.721
8 DPS3Composite DPS3-180◦C–6H 2.730 2.720
9 As-CastA357alloy A357-200◦C–6H 2.700 2.688
10 DPS1Composite DPS1-200◦C–6H 2.730 2.717
11 DPS2Composite DPS2-200◦C–6H 2.730 2.718
12 DPS3Composite DPS3-200◦C–6H 2.730 2.716
ASTME8M-15astandardtoevaluatetheyieldstrength,tensile strengthandductilityoftheheat-treatedcomposites.Tribo- logicalpropertiesi.e.wearratewasobtainedbyconducting dryslidingweartestusingpin-on-discmachine(ModelTR- 20LE,Ducom,India)asperASTM-G99standard.Forweartests, appliedloadwasvariedfrom10Nto30Ninstepsof5Nat afixedsliding velocity of2.5m/sec and sliding distanceof 1500m.Fracturesurfacesaftertensiletest,wornsurfaceand weardebrisafterweartestwerestudiedusingscanningelec- tronmicroscope.
3. Results and discussion
3.1. DensitymeasurementresultsofA357alloyand itsDPScompositeatT6-heattreatedcondition
Table 2 shows the density measurements (theoretical and experimental)ofA357alloyanditsDPScompositesatvarying agingtemperatures(160◦C,180◦C,and 200◦C).Thedensity valuesoftheDPScompositesareslightlyhighercomparedto theA357alloy.Thisisduetothepresenceofahigh-density ceramic material (SiCp) [13,37]. Variations in the density amongthecompositesheattreatedtodifferentconditionsare negligible.FromTable2,wecanobservethatthedifference inthetheoreticalandexperimentaldensitiesisinsignificant.
Thus,itcanbeconcludedthatthedispersionofSiCparticles wasfoundtobegoodwithalmostnoobservableporosityor anycastingdefects[38,39].
3.2. PhaseanalysisofA357alloyatT6-heattreated condition
Fig.6showstheXRDpatternsofA357alloyatdifferentaging temperatures(160◦C,180◦C,and200◦C).TheXRDanalysisof A357alloyrevealsthepresenceofAlandSiasmajorpeaks.
Inaddition,smallpeaksofMgandMg2Siintermetallicphases weredetectedwhichshowsthatMgand SiformtheMg2Si intermetallic precipitates as shown by EDS analysis. From thefigure,itcanbeobservedthatastheagingtemperature increases,theintensityofthepeaksalsoincreases.Similar trendshavebeenreportedinliterature[40].
Fig.6–(a)XRDpatternsofA357alloyatdifferentaging temperatures(a)XRDpatternofA357alloyat
540◦C-9H-160◦C-6H(b)XRDpatternofA357alloyat 540◦C-9H-180◦C-6H(c)XRDpatternofA357alloyat 540◦C-9H-200◦C-6H.
3.3. MicrostructuralanalysisofA357alloyatdifferent conditions(un-treatedandT6-heattreated)
Fig.7(a)showstheopticalmicrographofas-castA357alloy (untreatedcondition).Themicrographconsistsoftwophases namely␣-AlphaseandAl-Sieutecticphase.Themicrostruc- ture islargely dominated bycoarsesize ␣-Al grains which aresurroundedbyeutecticSiregionsrepeatedinperiodiccell patternsthatarefibrousinshape.
Fig. 7(b) and (c) show the optical micrographs of A357 alloysolutiontreatedat540◦Candagedat180◦Cand200◦C respectively. InFig. 7(b)fineglobular morphologyofeutec- ticsiliconparticles duetoheattreatmentcanbeobserved.
Similarresultswerereportedbyresearchers[41,42].Heattreat- mentresultsinthetransformationoffibrousshapeeutecticSi intofinespheroidizedSiparticlesuniformlydistributedinthe A357matrix.Heattreatment alsodissolves Mg2Siparticles, results instructural homogenization, and alters the shape ofeutecticSiparticles.Uponheattreatmentneckingcanbe seen in Si particles. With further increase in temperature from 160–180◦C,particle fragmentationand spherodization
Fig.7–(a)Opticalmicrographofas-castA357alloy(untreatedcondition)(b)Opticalmicrographofas-cast357alloyat 540◦C-9H-180◦C-6H(c)Opticalmicrographofas-cast357alloyat540◦C-9H-200◦C-6H(d)SEMmicrographwithEDS spectrumat540◦C-9H-180◦C-6H.
takesplace(Fig.7(b))[32,33].Further,fromFig.7(b)itcanbe observedthattheSiparticlesaresmallerandmoreuniformly distributed.ThefragmentationofSiparticlesreducesthepar- ticlesizeandincreasesparticlenumber,whichinturnleads tothestrengtheningofthealloy.Astheagingtemperatureis increasedfrom180◦Cto200◦C,coarseningofSiparticlescan beobserved(Fig.7(c)).
Fig.7(d)showstheSEMmicrographwithEDSspectrumof A357alloysolutiontreatedat540◦Candagedat180◦C.From theEDSspectrum,tracesofMglocatedattheAl-Siinterfaces canbefound.Typically,MgisaddedtotheAl–Sialloyforage hardeningthroughtheprecipitationofMg2Siprecipitates.In Fig.7(d),magnesiumpeakfromtheEDSanalysisconfirmsthat Mg2Siprecipitatesformasaresultofheattreatment.
3.4. MicrostructuralanalysisofDPScompositeat T6-heattreatedcondition
Fig. 8(a)–(c) shows the optical micrographs of heat-treated composites (solution treated at 540◦C and aged at180◦C) DPS1,DPS2andDPS3respectively.Itcanbeobservedfromall themicrographsthatbothdualsizesSiCparticleswerefound tobefairlyuniformlydistributedintheA357matrix.Fig.8(a) showsmicrographofDPS1compositewherethedispersionof
SiCparticleswasfoundtobeverygoodwithalmostnoobserv- ableporosityoranycastingdefects.However,asmallextentof clusteringofsmallsizeSiCparticleswasobservedinthecase ofDPS2compositeasshowninFig.8(b).MostoftheSiCparti- clesseeninmicrostructureareoflargesize,whichisduetothe highcontentoflargesizeparticleswhencomparedtosmall sizeparticles.Ontheotherhand,thedispersionofparticlesin DPS3compositewasreasonablyuniform,asshowninFig.8(c).
Small-scaleclusterformationofsmallsizeSiCparticleswere seenatfewspotsclosertolargeSiCparticlesinDPS3com- posite.Highshearrategeneratedduringmelt-stirringprocess pushessmallsizeparticles atafasterratewhencompared tolargeparticles.However,themovementofsmallparticles isrestrictedbylargeparticlesduetowhichtheygetsettled nearthem,andsameisseeninFig.8(b).Overalldispersionof dualsizeSiCparticleswasfoundtobereasonablyuniformin allthecompositesystems,andhardlyanycastingdefectlike porositywasseenonthesurface.TheadditionofSiCasrein- forcementenhancesagingkinetics,phaseformationreaction anditalsoactsasseedingforprecipitationduringtheheat treatmentprocess,whichfurtherleadstoalloystrengthening [43–45].ThesedualsizesSiCparticlesinfluencethestrength- eningofmatrixmaterialinasignificantwayduringtheheat treatmentprocess[45–48].
Fig.8–MicrographsofDPScompositesagedat540◦C-6H-180◦Cconditions.(a)OpticalmicrographofDPS1compositeat 180◦C(b)OpticalmicrographofDPS2compositeat180◦C(c)OpticalmicrographofDPS3compositeat180◦C.In(a)–(c),1 representsfineSiCp,2representscoarseSiCp,3showsclusteringoffineSiCp(d)EDSspectrumtakenonDPS2composite particleand(e)EDSspectrumatAl/SiCinterface.
Fig.8(d)showstheEDSanalysisofcompositeparticle in DPS2 composite. From the figure, Si and C peaks can be observedfrom the elementaldiffractionscanning analysis.
Si,CpeaksconfirmthepresenceofSiCparticlesintheA357 matrix.Fig. 8(e)showsEDSanalysisattheAl/SiCinterface.
TheinterfaceshowsthepresenceofMgpeakalongwithAl,Si andCpeaks.ThepresenceoffourelementsAl,Mg,Si,andC confirmsthepresenceofMg2SiattheAl-SiCinterface.
3.5. TEManalysisofA357alloyanditsDPScomposite atT6-heattreatedcondition
Precipitation is a very important aspect of age hardening whichdirectlyinfluencesthemechanicalpropertiesofamate- rial.Fig.9showsthebright-fieldTEMimagesofbothA357alloy anditscompositeswithdualsizeSiCparticlesthatwereaged at180◦Cforabout6h.TEMimageofA357alloyasdepicted
Fig.9–Bright-fieldTEMimagesofbothA357alloyanditsDPScompositesagedat540◦C-6H-180◦C.(a)A357alloy(b)DPS1 composite(c)DPS2composite(d)DPS3composite(e)modifiedSiparticleswithtwinsinDPS2composite.FromtheMarking 1representneedleshapedphase.
inFig.9(a)showsthepresenceofveryfinesizedprecipitates consisting ofMgand Si atoms.These fine shapedprecipi- tateswhichweresphericalinshapecorrespondto–Mg2Si withdiameterintherangeof20–40nm.Apartfromthesepre- cipitates, fewneedlescorresponding to phasewere also observedintheA357alloy.IncaseofDPS1andDPS2,along
withthe–Mg2Siprecipitates,needlesofphasewasalso observedasshowninFig.9(b)and(c).ComparedtoA357alloy, needle shaped phasewascomparatively high incaseof thesecomposites.Mostofthesefineneedleshadlengthinthe rangeof30–100nmanddiameterofabout∼5nminthepeak- agedheat-treatedconditions.Duetohighsiliconcontentin
thematrix,quenchinggivesrisetohighercontentofsupersat- uratedSiwhichfavorstheformationofphase[49].Further ahighmagnificationTEMmicrographasshowninFig.9(d)of DPS3compositeshoweduniformdispersionof–Mg2Sipre- cipitatesintheentire␣-Almatrix.Further,presenceofhigh siliconcontent inA357matrix requiredabovethestoichio- metricformationof–Mg2Siwillnotonlyfavorthenucleation oftheseprecipitatesbutalsostrengthofbothA357alloyand DPScomposites.However,itisinterestingtonotethatinboth A357alloyandcomposites,nophasewasobservedwhich otherwise isconsidered tobe nucleationsite for  phase [50,51].Fig.9(e)showsasmallcrystalofsiliconparticlewhose edgesaremoreroundedindicatingspheroidization.Darkcon- traststructuresresemblingtwinboundariesanddislocation networksarealsoseeninsidethesiliconparticle.Themor- phologicalchangesfromirregulartonearlyroundshapeand decreaseinsizefromcoarsetosmallaremainlyduetosolu- tiontreatment.Inadditiontothis,formationofprecipitates generatestressesinthematrixwhichiscompensatedbythe modificationinsiliconparticle[52].
3.6. Influenceofagingtemperatureontensile propertiesofA357alloyanditsDPScomposites
Fig.10(a)and(b)showthevariationoftensilestrength(ulti- mate&yield)ofA357alloyanditsDPScompositesatvarying agingtemperatures(160◦C,180◦C,and200◦C).FromFig.10(a) and(b)itcanbeobservedthattheadditionofparticulaterein- forcement enhancesthe tensilestrength ofthecomposites [53,54].Althoughallcompositessubjectedtoheattreatment givenearlysame tensilestrength (ultimate&yield) values, theDPS3compositeexhibitedslightlybetterstrengthproper- tiesinallthreeagingconditionsfollowedbyDPS1andDPS2.
Strengtheningeffectincompositescanbeattributedtonum- ber of particles present in a composite. Even though, the weightfractionofSiCissameforallcomposites,numberof particlesishighestinDPS3becauseoflargefractionofsmall particles.AfterDPS3,DPS1andDPS2havemorenumberof smallerparticlesinthatorder.SiCparticlesactasdislocation pinningsitesandhencecanimprovestrength.Possiblegrain refinement due toSiC particles and effectiveload transfer
Fig.10–TensiletestresultsofA357alloyanditsDPScompositesatvaryingagingtemperatures.Arrowsindicatedirection ofincreasingstrengthandnumbersonlinesindicateratiooflargetosmallparticles.
Fig.11–DuctilityresultsofA357alloyanditsDPScompositesatvaryingagingtemperatures.Arrowindicatesdirectionof increasingductilityandnumbersonlinesindicateratiooflargetosmallparticles.
frommatrixtocompositeparticlesarealsoexpectedtoplaya roleinincreaseinthestrengthvaluesofcomposites.So,the strengtheningofcompositesisaresultofsynergisticeffect ofgrainrefinement,precipitationhardening,Orowanlooping andefficientloadtransfer[55–60].
Further,fromFig.10(a)and(b),itcanbeobservedthatthe strengthvaluesincreasewithincreaseinagingtemperature from160◦Cto180◦Cbuttendtodropasthetemperatureis increasedto200◦C.Itshouldbenotedthathigheststrength valuesareobservedat180◦Cagingtemperature.Uponaging, increase in strength properties are due to precipitation of coherent–Mg2Siparticles.Uponoveraging,lossincoherence leadstolossinstrength.
Fig.11showsthevariationofpercentageelongationofA357 alloyanditsDPScompositesatvaryingagingtemperatures.
FromFig.11,itcanbeseenthatthecompositesexhibitlower ductility(measuredas%elongation)whencomparedtothe alloyatallagingtemperatures.PresenceofSiCparticlescould leadtoreductioninductilitybecausetheycanactasnucle- ationsitesforcracksandthushastenfailure.Themechanism offractureappearstobechangingfromalloytocomposites.
Also,fromFig.11,itcanbeobservedthatastheagingtem- peratureincreasesductilityincreasessubstantiallyforA357 alloywhereasitincreasesmarginallyforcomposites.Increase inductility inA357 alloy withaging temperature could be duetochangeinfracturemechanismfrominterdendriticto intradendriticuponoveraging(Fig.12(a)and(b)).Whereasfor composites,agingtemperaturehaslittleeffectbecausefrac- turemechanismremainstobeparticlepulloutirrespectiveof agingtemperature(Fig.12(c)–(h)).Analogoustrendshavebeen reportedinliterature[52].
3.7. FractographsofA357alloyanditsDPS compositesatvaryingagingtemperatures
TensilefracturesurfacesofA357alloyanditsDPScompos- iteswereanalyzedusingSEMandareshowninFig.12(a)–(h).
For the cases of 180◦C and 200◦C, large numbers of den- drite fractured regions were observed in the fractograph (Fig.12(a)and(b)).Thisconfirmsinter-dendriticcrackingasthe mainfracturemechanismasthesedendriteglobulespromote micro-crackpropagationduringtheloading[61].Ontheother hand,allDPScomposites(DPS1,DPS2andDPS3)atbothaging temperatures i.e. 180◦C for6h. and 200◦C for6h, showed nearlyidenticalfracturesurfaces.Thefracturesurfacescon- sistedofalargenumberofdimplesindicatingductilefailureby voidnucleationandcoalescencemechanisms.Thevoidnucle- ation takesplaceatAlmatrix/SiCinterface.Whenstressis applied,theplasticdeformationstartsbydislocationmove- ment. These dislocationsare blocked by the Almatrix/SiC interfacesresultingindislocationaccumulation.Thisbuilds upthestressaroundtheinterfacesresultinginmuchhigher stressthantheappliedstress.Whenthestressissufficientto cracktheinterface,themicrovoidpreferablynucleatesatthe interfaceduetostrongstressgradient.Duetothecreationof micro-voids,thecrackinitiatesatthemicrovoidandprop- agatesaroundtheSiCparticles.Eventually,theparticlesare pulledoutoftheA357matrixleavingbehindnearlycircular shapedvoids.Thesevoidsconnectwitheachotherthrough crackpropagationandfinallyleadtofractureformingadim- pledfracturedsurfaceasseeninFig.12(c)–(h).
3.8. Influenceofagingtemperatureonhardnessof A357alloyanditsDPScomposites
Fig. 13 shows the variation of hardnessof A357 alloy and its DPS composites at varying aging temperatures (160◦C, 180◦C,and200◦C).TheDPScompositesshowedanincrease inhardnesswhencomparedtoA357alloyatvaryingaging temperatures.Higherhardnessvaluesofcompositescanbe attributedtothepresenceofhardSiCparticles.Amongthe composites, DPS2 composite shows highest hardness and DPS3showsthe lowesthardnessatallthreeagingtemper- atures. This trend in hardness among composites can be
Fig.12–FractographsofA357alloyanditsDPSCompositesatvaryingagingtemperatures.Where(a)&(b)A357alloyat agingtemperatureof180◦Cand200◦C,(c)&(d)DPS1compositeatagingtemperatureof180◦Cand200◦C,(e)&(f)DPS2 compositeatagingtemperatureof180◦Cand200◦C,(g)&(h)DPS3compositeatagingtemperatureof180◦Cand200◦C.
rationalizedbasedonweightfractionoflargeSiC particles.
Smallsizeparticlesofferlessresistancetodeformationwhen comparedtocoarsesizeparticlesandhenceleadstolowhard- nessvalues[30,31]. HighesthardnessofDPS2composite is duetothepresenceofhighestweightfractionoflargesized particles.Similarly,lowesthardnessvaluesexhibitedbyDPS3 compositeisduetothepresenceoflowestweightfractionof largesizedparticles.
FromFig.13itcanbeobservedthatthehardnessvalues increase withaging temperature till 180◦C where it peaks and reducesbeyond180◦C.The increaseinhardness after heattreatmentcanbeattributedtoformationofhardMg2Si phasedueprecipitationhardening[62].Accordingtothepeak
hardnessvariationwithdifferentagingtemperatures,itwas foundthatthecompositeisunderagedat160◦Candover- agedat200◦C.Analogoustrendswerereportedinliterature [44,45,63].
3.9. SpecificwearrateofA357alloyanditsDPS compositesatvaryingagingtemperatures
Fig.14showstheplotofspecificwearrate(at30N)v/saging temperatureofA357alloyanditsDPScomposites.FromFig.14 it can be observed that as-cast alloy (A357) displayed the highestwearrate.ThereasonforhighestwearrateinA357 alloy can bedue toreasons suchas extensive subsurface
Fig.13–HardnesstestresultsofA357alloyanditsDPScompositesatvaryingagingtemperatures.Arrowindicates directionofincreasinghardnessandnumbersonlinesindicateratiooflargetosmallparticles.
deformation,highadhesivemetal-metalcontactassistedsur- face shear strain, the increasedcontact area of matrix to counter surface, and the absence ofload bearing particles [30,31,64].FromFig.14,itcanalsobeobservedthatDPScom- positesshowlesswearratewhencomparedtoA357alloy.This canbeattributedtothepresenceofhardSiCparticlesinDPS composites.SiCparticlesarehardandhencetheycanresist abrasion.Moreover,theyalsoreducecontactbetweencounter surfaceandsoftmatrixandsharesomeload.Reducedcontact betweencountersurfaceandmatrixandloadsharingleadsto reducedwearrate[65,66].Amongthecomposites,theDPS2 compositedisplayedleastwearratewhencomparedtoDPS1 andDPS3compositesatall agingtemperatures.Good wear resistance(leastwearrate)ofDPS2ismainlyduetopresence ofhighweightpercentoflargesizedSiCparticleswhichbear mostoftheappliedpressurethanthatofsmallsizedSiCpar- ticlesandA357matrix.Further,largesizedSiCparticleprotect thesmallsizedSiCparticlesfromgougingoutofthematrix therebyallowingthemtoprovideprotectionagainstweight lossforalonger time[25,31,67–69]. Itisinterestingtonote
therelationbetweenagingtemperaturesandwearresistance.
FromFig.14,itcanbeobservedthatbothA357alloyanditsDPS compositesshowdecreaseinwearratewithagingtempera- turetill180◦Cbutbeyondthistemperaturewearrateappears tobeincreasing.Thespecimensagedat180◦Cshowedbet- terwearresistancecomparedtothespecimensagedat160◦C and200◦Canditmaybeduetothepresenceand-Mg2Si precipitates[70,71].Thus,thespecimensagedat180◦Ccanbe consideredaspeakagedandthespecimenswhichareagedat 160◦Careconsideredasunderagedandthespecimenswhich areagedat200◦Careconsideredasoveraged.Similarresults werereportedbyseveralresearchers[63,72].
3.10. WornsurfaceanalysisofA357alloyanditsDPS compositesatvaryingagingtemperature
WornsurfacesofbothA357alloyanditsDPScompositesaged atdifferenttemperaturesof180◦Cand200◦Ctakenat30N loadareshowninFig.15(a)–(h).
Fig.14–EffectofagingtemperaturesonwearrateofA357alloyanditsDPScomposites.Arrowindicatesthedirectionof lowerspecificwearrateandnumbersonlinesindicateratiooflargetosmallparticles.
Fig.15–WeartracksofA357alloyanditsDPSCompositesataloadof30N,slidingvelocityof2.5m/sandslidingdistance of1500msubjectedtovaryingAgingtemperatures.Where(a)&(b)A357alloyatagingtemperaturesof180◦Cand200◦C,(c)
&(d)DPS1Compositeatagingtemperaturesof180◦Cand200◦C,(e)&(f)DPS2compositeatagingtemperaturesof180◦C and200◦C,(g)&(h)DPS3Compositeatagingtemperaturesof180◦Cand200◦C.Markings1–6representdelaminated wear-outarea,abrasion,thinploughedtrenches,deepploughedtrenches,craters,andslidingdirectionrespectively.
Worn surface of A357alloy atdifferent aging tempera- tures(180◦Cand200◦C)isshown inFig. 15(a)and (b).Itis observedthat wearmechanismchanges withtemperature.
At peak aging temperature, 180◦C, wear is predominantly caused bythe surface delamination. When temperature is increasedto 200◦C,instead of surface delamination, deep groovesareobservedwhichisanindicationofplasticdefor- mation.So,athightemperatures,wearmechanismchanges fromsurfacedelaminationtointenseplasticdeformationand materialremoval.Boththewornsurfacesshowwideandpar- allelgroovesrunninginslidingdirectionwithlargecavitiesin betweenthem.Theformationofcavitiescanbeattributedto delaminationofsurfacematerialofthealloy.Atahighload
of30N,thesofteningofsurfacetakesplaceduetofrictional resistanceasaresultofsurfacematerialofthealloygetting weldedtothecounterfacesurface.Duetoincreaseinadhesive natureofpinandalloy,delaminationoccurseasily.Itappears thattheextentofdelaminationishigherincaseof200◦Caged alloywhichmaybeduetoitslowhardnesswhencompared tothatof180◦Cagingcondition.
TheextentofdelaminationappearstobelessinDPS1com- positecomparedtothatofthealloyasseeninFig.15(c)and (d).HardSiCparticlesinDPS1compositeprotrudeoutofcom- positesurfaceduringweartesting processand avoiddirect contactbetweencompositesurfaceandcounterfacesurface.
Duetothis,theextentofdelaminationisdecreased.
ThewornsurfaceofDPS2compositeisnearlysmoothfor bothagingtemperaturesasshowninFig.15(e)and(f).Thisis mainlyduetopresenceofhigherweightfractionoflargesize SiCparticleswhichtendtotakemostoftheappliedloadand protectsmallsizedSiCparticlesaswellasthematrix[73,74].
Theselargeparticlesavoiddirectcontactbetweenthecounter- facesurfaceandcompositesurfacewhichiswhythegroove widthissmaller whencomparedtothatofA357alloyand othertwocomposites.
Ontheotherhand,thewornsurfaceofDPS3compositewas almostsimilartothatofDPS1composite.Deformationgrooves anddelaminationweretheprimaryreasonsofweightlossin thiscomposite.ThewornsurfaceofDPS3compositeattwo agingtemperaturesof180◦Cand200◦CasshowninFig.15(g) and(h) showchangesinthedeformationmechanismfrom delaminationat180◦Cagingtemperaturetodeformationat 200◦Cagingtemperature.
3.11. Three-dimensionalsurfacetopographiesofworn surfaceA357alloyanditsDPScompositesatvarying agingtemperatures
Three-dimensionalsurfacetopographiesofthewornsurface ofA357alloyanditsDPScompositestakenataloadof30N, slidingvelocityof2.5m/sandslidingdistanceof1500mare showninFig.16(a)–(h).IncaseofA357alloy,it canbeseen fromFig.16(a)and(b)thatthesurfaceshowedfeaturesofsur- facedelaminationandformationofdeepgroovessupporting theevidenceobtainedusingSEM(asshowninFig.15(a)and (b)).FurthercomparedtoaRavalueof8.00mat180◦Caging temperaturethealloyagedat200◦CshowedhigherRavalueof 8.44m.LowestRavaluesof2.60and2.71mwereobtained atagingtemperatureof180and200◦CforDPS2composite.
Theseobservationsarewellinlinewiththelowspecificwear rateobtainedforthiscomposite.Further,comparedtoA357
Fig.16–Three-dimensionalsurfacetopographiesofthewornsurfaceofA357alloyanditsDPScompositesataloadof30N, slidingvelocityof2.5m/sandslidingdistanceof1500msubjectedtovaryingagingtemperatures.Where(a)&(b)A357alloy atagingtemperaturesof180◦Cand200◦C,(c)&(d)DPS1compositeatagingtemperaturesof180◦Cand200◦C,(e)&(f)DPS2 compositeatagingtemperaturesof180◦Cand200◦C,(g)&(h)DPS3compositeatagingtemperaturesof180◦Cand200◦C.
Fig.17–WeardebrisofA357alloyanditsDPSCompositesataloadof30N,slidingvelocityof2.5m/sandslidingdistance of1500msubjectedtovaryingagingtemperatures.Where(a)&(b)A357alloyatagingtemperaturesof180◦Cand200◦C,(c)
&(d)DPS1compositeatagingtemperaturesof180◦Cand200◦C,(e)&(f)DPS2compositeatagingtemperaturesof180◦C and200◦C,(g)&(h)DPS3compositeatagingtemperaturesof180◦Cand200◦C.Markings1–5representfleck-likedebris, fiber-likedebris,ruptureddebris,ribbeddebrisandcoillikedebrisrespectively.
alloyandothercompositestheundulationsobservedonworn surfaceofDPS2issignificantlyless(seeFig.15(e)and(f)).Also, comparedtoA357alloy,theDPScompositesshowedlesserRa valueswhichisattributedtoresistanceofferedbydualsize SiCparticles.Theasperitiesofcounterfacesurfacearepre- ventedfrompenetratinginsidethematrixbytheSiCparticles duetowhich thesurfaceroughnessvaluesare quitelesser forDPS composites. Unlike in several works [75,76] where thecompositesshowedgreaterundulationsascomparedto alloy,hereinthisworknosuchobservationsweremade.The depthofvalleysandwidthofgrooveswerefoundtobehigher forA357alloycomparedtothatofDPScomposites.Thisis mainlybecauseofhigherhardnessvaluesforDPScomposites
ascomparedtoA357alloy.Overalltheseresultsarewellinline withprecedingsub-sections(3.9and3.10).Further,compared toDPScompositesA357alloyexhibitedhigherRavaluesdue tohigherwearrate.Alongwiththisthesurfacetopographies ofDPScompositesshowednoabnormaldepth inthe worn surfaceindicatingabsenceofpull-outofSiCparticles.
3.12. WeardebrisanalysisofA357alloyanditsDPS compositesatvaryingagingtemperature
WeardebriswascollectedfrombothA357alloyanditsDPS composites after 180◦C and 200◦C aging temperatures for a fixed load of30N,sliding velocity of2.5m/s and sliding
distanceof1500m.InthecaseofA357alloythesizeofwear debriscollectedfor180◦Cwasmuchsmaller(∼300m)than thatcollectedfor200◦C(∼600m)whichisshowninFig.17(a) and(b).InthecaseofDPS1compositethesizeofweardebris showedsimilartrendasthatofA357alloy.Weardebrissizeof
∼100mand∼180mwasobtainedforthecompositeaged at180◦Cand200◦CrespectivelyasshowninFig.17(c)and(d).
Ontheotherhand,DPS2compositeweardebrisasshownin Fig.17(e)and(f)havesizesapproximately∼50mand100m forthecompositesagedat180◦Cand200◦Crespectively.The weardebrissizeofDPS2compositeisverysmallwhencom- paredtothatofA357alloyandothertwocomposites.Most ofthedebrishadirregularflakelikemorphologywithsharp edgesindicatingdelaminationasprimarywearmechanism.
Thesmall sizeofwear debriscan beattributedto highest hardnessofDPS2composite forall casesofaging temper- ature.Similarly,forDPS3composite,weardebrishasasize of150mand 200mapproximately forthe samplesaged at180◦Cand200◦C respectivelyasshown inFig. 17(g)and (h).TheweardebrissizeandmorphologyofDPS3composites isalmostsameforboththeagingtemperaturesasshownin Fig.17(g)and(h).Overallitcanbeobservedthatatpeakaging temperatureof180◦C,bothA357alloyand DPScomposites showedsmallerweardebrissizewhich isattributedtothe presenceofuniformlydispersedhardeningphasessuchas and-Mg2Siprecipitatescomparedtotheoveragedcondition.
3.13. EffectofratioofDPSparticlesonmechanicaland wearpropertiesofDPScomposites
ItiswellknownthatDPScompositesshowbettermechani- calandwearpropertiescomparedtosingleparticlereinforced composites.DPScompositeshavebothsmallsizeandlarge sizeparticles invaryingproportion.However,it isnotclear whatshouldbeagood proportionoflargeand smallsized particlesthatwouldgiveoptimummechanicalandwearprop- erties.Thisquestion hasnotbeenstudiedinearlierworks.
Fromthiswork,itwasfoundthatsmallsizedparticlesaregood forstrengthpropertieswhilelargesizedparticlesaregoodfor hardnessandwearproperties.
FromFig.10(a) and(b)weseethathigh YSandUTSare realizedwhen small sized particle proportion ishigher (at L:S=0.5).Ductilityalsoshowssimilartrendasthatofstrength (referFig.11)anditisbetterwhenthecompositehashigher proportionofsmallparticles(atL:S=0.5).However,goodhard- nessandwearpropertiesareobtainedwhentheproportionof largeparticlesishigher(L:S=2)asshowninFigs.13and14.As explainedinpervioussections,goodhardnessandwearprop- ertiesaremainlyduetolargesizedparticlestakingtheload andhence compositeswithhigherratioofL:Saregood for wearproperties.Whereas,strengthandductilityaremainly theresultofdislocationpinningandbowingwhicharegood whenparticlesizeissmaller.Hencesmallerparticlesaregood forstrengthproperties.
4. Conclusions
Thefollowingconclusionsweredrawnfromthepresentwork:
1. MechanicalandwearpropertiesofA357compositerein- forced with dual size SiC particles were studied after agingatvarying temperatures((540◦C-6H-160◦C,540◦C- 6H-180◦Cand540◦C-6H-200◦C)).
2. Microscopyanalysisshowed fairlyuniformdispersionof dualsizeSiCparticlesinA357matrix.
3. FromthedensitymeasurementsofA357alloyanditsDPS compositesatvaryingtemperaturesitcanbeconcluded thatthedispersionofSiCparticleswasfoundtobegood withalmostnoobservableporosityoranycastingdefects.
4. TEManalysisshowedtheformationof”-semi-coherent phaseandMg2Siprecipitate(-phase)alongwithSiCparti- cles.Thesephasesleadtotheimprovementinmechanical
&wearpropertiesinbothA357alloyanditsDPScompos- ites.
5. Allthecomposites(DPS1,DPS2andDPS3)showedimprove- mentinmechanicalandwearpropertieswhencompared toA357alloy.
6. Overall,itcanbeconcludedthatforthesametotalweight percentageofSiCreinforcement,ratiooflargetosmallpar- ticlesinfluencesmechanicalandwearproperties.Higher proportionofsmallerparticlesimprovestrengthandduc- tilitywhereas,higherproportionoflargerparticlesimprove hardnessandwearproperties.
Conflicts of interest
Theauthorsdeclarenoconflictsofinterest.
references
[1]KumarRV,KeshavamurthyR,PeruguCS,KoppadPG,Alipour M.Influenceofhotrollingonmicrostructureand
mechanicalbehaviourofAl6061-ZrB2in-situmetalmatrix composites.MaterSciEngA2018;738:344–52.
[2]MirjavadiSS,etal.EffectofhotextrusionandT6heat treatmentonmicrostructureandmechanicalpropertiesof Al-10Zn-3.5Mg-2.5Cunanocompositereinforcedwith graphenenanoplatelets.JManufProcess2018;36:264–71.
[3]SethuramD,KoppadPG,ShettyH,AlipourM,KordS.
CharacterizationofgraphenereinforcedAl-Sn nanocompositeproducedbymechanicalalloyingand vacuumhotpressing.MaterTodayProc2018;5(11):24505–14.
[4]MirjavadiSS,etal.Effectofmulti-passfrictionstir processingonthemicrostructure,mechanicalandwear propertiesofAA5083/ZrO2nanocomposites.JAlloysCompd 2017;726:1262–73.
[5]CeschiniL,MorriA,MorriA,GamberiniA,MessieriS.
Correlationbetweenultimatetensilestrengthand solidificationmicrostructureforthesandcastA357 aluminiumalloy.MaterDes2009;30(10):4525–31.
[6]WangQ,DavidsonC.Solidificationandprecipitation behaviourofAl-Si-Mgcastingalloys.JMaterSci 2001;36(3):739–50.
[7]TanY-H,LeeS-L,LinY-L.EffectsofBeandFeadditionson themicrostructureandmechanicalpropertiesofA357.0 alloys.MetallMaterTransA1995;26(5):1195–205.
[8]EdwardsG,StillerK,DunlopG,CouperM.Theprecipitation sequenceinAl–Mg–Sialloys.ActaMater
1998;46(11):3893–904.
[9]WangQ.Microstructuraleffectsonthetensileandfracture behaviorofaluminumcastingalloysA356/357.MetallMater TransA2003;34(12):2887–99.
[10]CanakciA,VarolT,NazikC.Effectsofamountofmethanol oncharacteristicsofmechanicallyalloyedAl-Al2O3
compositepowders.MaterTechnol2012;27:320–7.
[11]CanakciA,VarolT,ErtokS.Theeffectofmechanicalalloying onAl2O3distributionandpropertiesofAl2O3particle reinforcedAl-MMCs.SciEngCompos2012;19:227–35.
[12]CanakciA,VarolT.Anovelmethodfortheproductionof metalpowderswithoutconventionalatomizationprocess.J CleanProd2015;99:312–9.
[13]CanakciA,ArslanF,VarolT.Physicalandmechanical propertiesofstircastingprocessedAA2024/B4Cp composites.SciEngComposMater2014;21:505–15.
[14]CanakciA,ArslanF,VarolT.Effectofvolumefractionand sizeofB4Cparticlesonproductionandmicrostructure propertiesofB4Creinforcedaluminumalloycomposites.
MaterSciTechnol2013;29:954–60.
[15]CanakciA,OzsahinS,VarolT.Predictionofeffectof reinforcementsizeandvolumefractionontheabrasivewear behaviorofAA2014/B4CpMMCsusingartificialneural network.ArabJSciEng2014;39:6351–61.
[16]ZulfiaA,AtkinsonHV,JonesH,KingS.Effectofhotisostatic pressingoncastA357aluminiumalloywithandwithoutSiC particlereinforcement.JMaterSci1999;34:4305–10.
[17]BadiziRM,Askari-PaykaniM,ParizadA,ShahverdiHR.
EffectsofelectromagneticfrequencyandSiCnanoparticles onthemicrostructurerefinementandmechanicalproperties ofAlA357-1.5wt%SiCnanocomposites.IntJMetalCast 2018;12:565–73.
[18]DattaJ,DattaS,BanerjeeMK,BandyopadhyayS.Effectof scandiumadditiononthecorrosionbehaviorof
Al–Si–Mg–SiCpmetalmatrixcomposites.Composites:PartA 2004;35:1003–8.
[19]YuB,ZhangYJ,ZhaoZ,ZhaoF,CaiQ,LiuC.Thereinforcing mechanismofTiB2inTiB2/A357composite.ActaMetallSin EnglLett2009;16(5):375–8.
[20]KandemirS.Microstructureandmechanicalpropertiesof A357/SiCnanocompositesfabricatedbyultrasonic cavitation-baseddispersionofball-millednanoparticles.J ComposMater2017;51(3):395–404.
[21]LeonardA,PerrinC,RainforthW.Microstructuralchanges inducedbydryslidingwearofaA357/SiCmetalmatrix composite.MaterSciTechnol1997;13(1):41–8.
[22]BloyceA,SummersJ.Staticanddynamicpropertiesof squeeze-castA357-SiCparticulateDuralcanmetalmatrix composite.MaterSciEngA1991;135:231–6.
[23]TaghiabadiR,MahmoudiM,EmamyGhomyM,CampbellJ.
Effectofcastingtechniquesontensilepropertiesofcast aluminiumalloy(Al–Si–Mg)andTiB2containingmetal matrixcomposite.MaterSciTechnol2003;19(4):497–502.
[24]ZhangLJ,QiuF,WangJ-G,WangH-Y,JiangQ-C.
MicrostructuresandmechanicalpropertiesoftheAl2014 compositesreinforcedwithbimodalsizedSiCparticles.
MaterSciEngA2015;637:70–4.
[25]BindumadhavanP,WahHK,PrabhakarO.Dualparticlesize (DPS)composites:effectonwearandmechanicalproperties ofparticulatemetalmatrixcomposites.Wear
2001;248(1–2):112–20.
[26]AroraR,KumarS,SinghG,PandeyO.Influenceofparticle sizeandtemperatureonthewearpropertiesof
rutile-reinforcedaluminiummetalmatrixcomposite.J ComposMater2015;49(7):843–52.
[27]ZhangQ,WuG,SunD,ChenG,JiangL.Microstructureand thermalconductionpropertiesofanAl-12Simatrix compositereinforcedwithdualsizedSiCparticles.JMater Sci2004;39(1):303–5.
[28]SharmaS,NandaT,PandeyO.Effectofdualparticlesize (DPS)ondryslidingwearbehaviourofLM30/sillimanite composites.TribolInt2018;123:142–54.
[29]YangMJ,ZhangDM,GuXF,ZhangLM.EffectsofSiCparticle sizeonCTEsof/Alcompositesbypulsedelectriccurrent sintering.MaterChemPhys2006;99:170–3.
[30]AvinashL,RamprabhuT,BonthaS.TheEffectonthedry slidingwearbehaviorofgravitycastA357reinforcedwith dualsizesiliconcarbideparticles.ApplMechMater 2016;829:83–9.
[31]LakshmikanthanA,BonthaS,KrishnaM,KoppadPG, RamprabhuT.Microstructure,mechanicalandwear propertiesoftheA357compositesreinforcedwithdualsized SiCparticles.JAlloysCompd2019;786:570–80.
[32]ApelianD,ShivkumarS,SigworthG.Fundamentalaspectsof heattreatmentofcastAl-Si-Mgalloys.AFSTrans
1989;97:727–42.
[33]ShivkumarS,KellerC,TrazzeraM,ApelianD.Precipitation hardeninginA356alloys.In:Production,refining,fabrication andrecyclingoflightmetals.Elsevier;1990.p.264–78.
[34]HandbookA.Heattreating.ASMInt1991;4(10).
[35]AjithKumarKK,ViswanathA,RajanTPD,PillaiUTS,PaiBC.
Physical,mechanical,andtribologicalattributesofstir-cast AZ91/SiCpcomposite.ActaMetallSin(EnglLett)
2014;27:295–305.
[36]PrasadaDS,ShobabC,RamanaiahN.Investigationson mechanicalpropertiesofaluminumhybridcomposites.J MaterResTechnol2014;3(1):79–85.
[37]HuY,WuT,GuoY,WangW,SongM,QianL,etal.Effectsof T6treatment,tensiletemperature,andmassfractionofSiC onthemechanicalpropertiesofSiCp/6061Alcomposites.
Materials2019;12:1602.
[38]RaoC,SelvarajN,VeereshkumarG.Studiesonmechanical anddryslidingwearofAl6061–SiCcomposites.ComposB Eng2012;43(3):1185–91.
[39]T.RamPrabhu,M.Murugan,B.P.Chiranth,R.K.Mishra,N.
Rajini,P.Marimuthu,P.DineshBabu,G.SuganyaEffectsof Dual-PhaseReinforcementParticles(FlyAsh+Al2O3)onthe WearandTensilePropertiesoftheAA7075AlAlloyBased Composites.
[40]AversaA,LorussoM,TrevisanF,AmbrosioEP,CalignanoF, ManfrediD,etal.Effectofprocessandpost-process conditionsonthemechanicalpropertiesofanA357alloy producedvialaserpowderbedfusion.Metals2017;7(2):68.
[41]AkhterR,IvanchevL,BurgerH.Effectofpre/postT6heat treatmentonthemechanicalpropertiesoflaserweldedSSM castA356aluminiumalloy.MaterSciEngA
2007;447(1–2):192–6.
[42]MaubeSE,WangombeDN,MarangaSM,KihiuJM.Effectof coolingrateandheattreatmentonthemicrostructureand impactresistanceofrecycledaluminiumsandcastalloy.J SustainResEng2014;1(1).
[43]CottuJP,CoudercJJ,ViguierB,BernardL.InfluenceofSiC reinforcementonprecipitationandhardeningofametal matrixcomposite.JMaterSci1992;27:3068–74.
[44]Yamano ˘gluR,KarakulakE,ZerenA,ZerenM.Effectofheat treatmentonthetribologicalpropertiesof
Al–Cu–Mg/nanoSiCcomposites.MaterDes2013;49:820–5.
[45]MyriounisD,HasanS,MatikasT.Heattreatmentand interfaceeffectsonthemechanicalbehaviorofSiC-particle reinforcedaluminiummatrixcomposites.JASTMInt 2008;5(7):1–10.
[46]ChristmanT,SureshS.Microstructuraldevelopmentinan aluminumalloy-SiCwhiskercomposite.ActaMetall 1988;36(7):1691–704.
[47]ManoharanM,LewandowskiJ.In-situdeformationstudiesof analuminummetal-matrixcompositeinascanning electronmicroscope.ScrMetall1989;23(10):1801–4.
[48]KaruppusamyT,VelmuruganC,Thirumalaimuthukumaran M.Experimentalstudyonthemechanicalpropertiesofheat treatedaluminiumcomposites.MaterResExpress
2019;6:096552.
[49]SjolanderE,SeifeddineS.TheheattreatmentofAl–Si–Cu–Mg castingalloys.JMaterProcessTechnol2010;210(10):1249–59.
[50]LiB,LuoB,HeK,ZengL,FanW,BaiZ.Effectofagingon interfacecharacteristicsofAl–Mg–Si/SiCcomposites.JAlloys Compd2015;649:495–9.
[51]LiuC,MaP,ZhanL,HuangM,LiJ.SoluteSn-induced formationofcomposite/precipitatesinAl-Mg-Sialloy.
ScrMater2018;155:68–72.
[52]WangT,ZhaoY,ChenZ,ZhengY,KangH.Thebimodaleffect ofLaonthemicrostructuresandmechanicalpropertiesof in-situA356–TiB2composites.MaterDes2015;85:724–32.
[53]ArsenaultR,EverettR.Tensileandcompressivepropertiesof metalmatrixcomposites4.AcademicPress;1991.
[54]GaneshV,ChawlaN.Effectofparticleorientationanisotropy onthetensilebehaviorofmetalmatrixcomposites:
experimentsandmicrostructure-basedsimulation.Mater SciEngA2005;391(1–2):342–53.
[55]MirjavadiSS,etal.InfluenceofTiO2nanoparticles
incorporationtofrictionstirwelded5083aluminumalloyon themicrostructure,mechanicalpropertiesandwear resistance.JAlloysCompd2017;712:795–803.
[56]CaiC,GengH,WangS,GongB,ZhangZ.Microstructure evolutionofAlSi10Mg(Cu)alloyrelatedtoisothermal exposure.Materials2018;11(5):809.
[57]BembalgeO,PanigrahiS.Developmentandstrengthening mechanismsofbulkultrafinegrainedAA6063/SiCcomposite sheetswithvaryingreinforcementsizerangingfromnanoto microdomain.JAlloysCompd2018;766:355–72.
[58]UmaruO,AbdulwahabM,TokanA,BelloA,UmarH.Effectof doublethermalageingtreatmentonthemechanical propertiesofAl–Cu–Mg/3%ricehuskashcomposite.Results Phys2016;6:342–5.
[59]ZhuH,GuoJ,JiaJ.Correlationoftheagingcharacteristics anddeformationbehaviorofA357alloy.JMaterEngPerform 2001;10(2):186–91.
[60]PrabhuTR.Effectsofageingtimeonthemechanicaland conductivitypropertiesforvariousroundbardiametersof AA2219Alalloy.EngSciTechnolIntJ2017;20(1):133–42.
[61]ChenZ,HaoX,WangY,ZhaoK.In-situobservationoftensile fractureinA357castingalloys.JMaterSciTechnol
2014;30:139–45.
[62]SharmaV,KumarS,PanwarRS,PandeyO.Microstructural andwearbehaviorofdualreinforcedparticle(DRP) aluminumalloycomposite.JMaterSci2012;47(18):6633–46.
[63]RavikumarM,ReddappaH,SureshR.Studyonmechanical andtribologicalcharacterizationofAl2O3/SiCpreinforced aluminummetalmatrixcomposite.Silicon
2018;10(6):2535–45.
[64]PrabhuTR.Effectofbimodalsizeparticlesreinforcementon thewear,frictionandmechanicalpropertiesofbrake composites.Tribol–MaterSurfInterfaces2016;10(4):
163–71.
[65]RaoR,DasS,MondalD,DixitG.Dryslidingwearbehaviour ofcasthighstrengthaluminiumalloy(Al–Zn–Mg)andhard particlecomposites.Wear2009;267(9–10):1688–95.
[66]RajeevV,DwivediD,JainS.Effectofloadandreciprocating velocityonthetransitionfrommildtoseverewearbehavior ofAl–Si–SiCpcompositesinreciprocatingconditions.Mater Des2010;31(10):4951–9.
[67]ChungS,HwangBH.Amicrostructuralstudyofthewear behaviourofSiCp/Alcomposites.TribolInt1994;27(5):
307–14.
[68]ChawlaKK.Metalmatrixcomposites.MaterSciTechnol 2006.
[69]SongW,KrauklisP,MouritzA,BandyopadhyayS.Theeffect ofthermalageingontheabrasivewearbehaviourof age-hardening2014Al/SiCand6061Al/SiCcomposites.Wear 1995;185(1–2):125–30.
[70]PedersenL,ArnbergL.Theeffectofsolutionheattreatment andquenchingratesonmechanicalpropertiesand
microstructuresinAlSiMgfoundryalloys.MetallMaterTrans A2001;32(3):525–32.
[71]GuanLY,LiBL,QiP,WeiLJ,NieZR.Effectofheattreatment onthemicrostructureandpropertyofAl-Si-Mgalloy.Mater SciForum2016;850:768–72.
[72]ChackoM,NayakJ.Agingbehaviourof6061Al-15Vol%SiC compositeinT4andT6treatments.IntJChemMolNucl MaterMetallEng2014;8(3):195–8.
[73]RajmohanT,PalanikumarK,RanganathanS.Evaluationof mechanicalandwearpropertiesofhybridaluminiummatrix composites.TransNonferrousMetSocChina
2013;23(9):2509–17.
[74]SinghJ,ChauhanA.Overviewofwearperformanceof aluminiummatrixcompositesreinforcedwithceramic materialsundertheinfluenceofcontrollablevariables.
CeramInt2016;42(1):56–81.
[75]SardarS,KarmakarSK,DasD.TribologicalpropertiesofAl 7075alloyand7075/Al2O3compositeundertwo-body abrasion:astatisticalapproach.JTribol2018;140:051602.
[76]SardarS,PradhanSK,KarmakarSK,DasD.Modelingof abradedsurfaceroughnessandwearresistanceof aluminummatrixcomposites.JTribol2019;141:0716.