• Tidak ada hasil yang ditemukan

EJMS-1911159

N/A
N/A
Protected

Academic year: 2024

Membagikan "EJMS-1911159"

Copied!
19
0
0

Teks penuh

(1)

Volume 3, Number 2, 2020, Pages 297-315 https://doi.org/10.34198/ejms.3220.297315

Received: November 13, 2019; Accepted: March 3, 2020

2010 Mathematics Subject Classification: 33B99, 33C15, 33C45, 33C60.

Keywords and phrases: Exton’s double hypergeometric function, Hurwitz-Lerch zeta functions, Mellin- Barnes integrals, operational connections, summation formulas.

Copyright © 2020 Maged G. Bin-Saad et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium,

Hurwitz Zeta Function of Two Variables and Associated Properties

M. A. Pathan1, Maged G. Bin-Saad2 and J. A. Younis3

1 Centre for Mathematical Sciences, Peechi P.O., Kerala-680653, India e-mail: [email protected]

2 Department of Mathematics, Aden University, Kohrmakssar P.O. Box 6014, Yemen e-mail: [email protected]

3 Department of Mathematics, Aden University, Kohrmakssar P.O. Box 6014, Yemen e-mail: [email protected]

Abstract

The main objective of this work is to introduce a new generalization of Hurwitz-Lerch zeta function of two variables. Also, we investigate several interesting properties such as integral representations, operational connections and summation formulas.

1. Introduction

The Exton hypergeometric function HEA::GB;;CM;;DN of two variables [9, p.339 (13)] is defined by

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

 

x y

n m g e

d c b H a

N M G E

D C B A D C B A

N M G

E ,

;

;

; :

;

;

;

; :

; :

;

; :

[ ( ) ] [ ( ) ] ( ) [ ] ( ) [ ]

[ ( ) ] [ ( ) ] ( [ ) ] ( ) [ ]

,

(

0 1,0 1

)

,

!

0 !

, 2

2 < < < <

=

= + +

+

+ x y

j y i x n m g

e

d c b

a i j

j

i E i j G i j M i N j

D j C i j B i j A i

(1.1)

(2)

where for the sake of convenience (in the contracted notation),

( )

aA denotes the array of A parameters given by a1,a2,...,aA in the contracted notation of Slater [17, p.54]. The symbol ∆

(

M;a

)

represents an array of M parameters

M M a M

a M

a 1

..., 1,

, + + −

[21, p.47, pp.213].

The special case A= E =0 in (1.1) reduces to the Kampé de Feriet double hypergeometric function [22, p.423 (26), see also[23, p.23 (1.2,1.3)]

( ) ( ) [ ( ) ] ( ) [ ] ( ) [ ]

[ ( ) ] ( [ ) ] ( ) [ ]

! ! , ,

,

0 ,

;

; : 0

;

; : 0

;

;

;

; j

y i x n m g

d c b

y x H

y x F

j i j

i G i j M i N j

D j C i j B i D

C B

N M G D

C B

N M

G

= +

= +

=

(

0< x <1,0 < y <1

)

. (1.2) Similarly, when B=G = 0, then (1.1) reduce to the double hypergeometric function due to Exton [10, p.137 (1.2)]

( ) [ ( ) ] [ ( ) ] ( ) [ ]

[ ( ) ] [ ( ) ] ( ) [ ]

! ! , ,

0

, 2

; 2 :

;

: j

y i x n m e

d c a

y x X

j i j

i E i j M i N j

D j C i j A i D

C A

N M

E

= +

= +

(

0< x <1, 0< y <1

)

(1.3) which, for A= D = E = N =0 and y = 0 we shall obtain the generalized hypergeometric function CFM defined by [20, p.19 (23)]

( )

( ) [ ( ) ]

( )

[ ]

=

 =

 

0

! ,

;

;

i

i M i C i M

C M

C i

x m x c

m

F c (1.4)

where C and M are positive integers or zero; mM ≠0, −1, −2,.... The Hurwitz-Lerch zeta function Φ

(

z, s,a

)

is defined by (see [8, 19])

( )

( ) ( ( ) )

=

∈ < > =

+ ∈

= Φ

0

0; when 1; 1when 1.

\ ,

, ,

i

s i

z s

z s

a i a a z

s

z CZ C R

(1.5) Recently many researchers investigated and studied various generalizations of the Hurwitz-Lerch zeta function Φ

(

z,s,a

)

. The latest development and properties of such
(3)

generalizations is found in the recent work of various researchers (see e.g., [2, 3, 4, 5, 6, 7, 14, 16, 18, 19, 24, 25]). Very recently, Pathan and Daman [16] introduced another generalization in terms of double series representation:

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

ν = µ λ γ β

α γ ν + +

µ λ β

= α φ

0 , ,

; , :

;

, ,

! , !

, ,

j i

j i s j

i

j j i q i

p

j t i z qj pi a a

s t

z (1.6)

Where γ,ν,a

{

0,1,2,...

}

, s∈C, p,q >0, R

( )

s >0 when z , t <1 and

(

γ+ν+s−α−β−λ−µ

)

>0

R when z , t =1.

Motivated essentially by various extensions of the Hurwitz-Lerch zeta function, we introduce a new extension of the generalized Hurwitz-Lerch zeta function of two variables defined as follows:

(

z t s a

)

w v r n m l k h q

p, Φα::β;;γ;;λ,,µ::ν;;ρ;;σ , , ,

[ ( ) ] [ ( ) ] ( ) [ ] ( ) [ ]

[ ( ) ] [ ( ) ] [ ( ) ] ( ) [ ]

! !

( )

,

0

, 2

2

s j i j

i n i j r i j v i w j

m j l i j k i j h i

qj pi a j i

t z

+ σ +

ρ ν

µ

λ γ β

=

α

= + +

+

+ (1.7)

where α1,...,αh1,...,βk, γ1,..., γl1,..., λm ∈C; µ1,...,µn1,..., νr, ρ1,...,

v,

ρ σ1,...,σw,a∈C\Z0; p,q > 0; s∈C, R

( )

s >0 when z , t <1; and

(

µ1+...+µn1+...+νr1+...+ρv1+...+σw +s −α1−...−αh

R −β1

)

0

...

...

...−βk −γ1− −γl −λ1− −λm > when z , t =1. Some special cases of (1.7) are given below.

In the case when h = k =n =r =0,l = m= 2 and v = w=1, then (1.7) reduces to equation (11) of [16] which is given in (1.6). In the case when k = r =0, then we get

( ) [ ( ) ] [ ] ( ) ( ) [ ]

[ ( ) ] [ ( ) ] ( ) [ ]

! !

( )

, ,

, ,

0

, 2

; 2 : ,

; :

; : ,

; : ,

s j i j

i n i j v i w j

m j l i j h i w

v n m l h q p

qj pi a j i

t a z

s t

z µ ρ σ + +

λ γ

= α

Φ

= +

σ + ρ µ λ γ

α (1.8)

where α1,...,αh, γ1,..., γl, λ1,...,λm ∈C; µ1,...,µn1,..., ρv1,...,σw, a

;

\Z0

C p,q >0; s∈C, R

( )

s > 0 when z , t <1; and R

(

µ1+...+µn1+

h w

v +σ + +σ +s−α − −α ρ

+ ... ...

... 1 1 −γ1...−γl −λ1...−λm

)

> 0 when z , .

=1

t Similarly, if h = n =0, we have

(4)

( ) [ ( ) ] ( ) [ ] ( ) [ ]

[ ( ) ] [ ( ) ] ( ) [ ]

! !

( )

, ,

, ,

0 ,

;

; ,

;

;

;

; ,

;

; ,

s j i j

i r i j v i w j

m j l i j k i w

v r m l k q p

qj pi a j i

t a z

s t

z ν ρ σ + +

λ γ

= β

Φ

= +

σ + ρ ν λ γ

β (1.9)

where β1,...,βk, γ1,..., γl1,...,λm ∈C; ν1,..., νr1,...,ρv1,..., σw, a

;

\Z0

C p, q >0; s∈C, R

( )

s > 0 when z , t <1; and R

(

ν1+...+νr1+...+

1 1+...+σ + −β σ

+

ρv w s...−βk −γ1...−γl −λ1...−λm

)

>0 when z , t ,

=1 which, for l = m= v = w=0, we obtain the following:

( ) [ ( ) ]

[ ( ) ]

! !

( )

, ,

, ,

0 , ,

, ,

s j i j

i r i j

j k i r

k q p

qj pi a j i

t a z

s t

z ν + +

= β

Φ

= +

ν +

β (1.10)

where β1,...,βk ∈C; ν1,...,νr, a∈C\Z0; p,q >0; s∈C, R

( )

s >0 when

; 1 , t <

z and R

(

ν1+...r + s−β1...−βk

)

> 0 when z , t =1. Now, if in (1.10), we let p = q =1, then after some simplification, we have

( ) [ ( ) ]

[ ( ) ] ( )

( )

,

! ,

, ,

0 ,

, 1 , 1

s N

N r N

k N r

k N a N

t a z

s t

z +

+ ν

= β

Φ

= ν

β (1.11)

where β1,...,βk ∈C; ν1,...,νr, a∈C\Z0; s∈C, R

( )

s > 0 when z , t <1; and

(

ν1+...r +s−β1...−βk

)

>0

R when z , t =1. By making suitable

adjustments in the number of numerator and denominator parameters of (1.11), it gives the following relationships:

(

, , ,

) (

, ,

)

,

1 1 ,

1 Φβ z t s aβ z +t s a (1.12)

(

, , ,

) (

, ,

)

,

11 1 ,

1 Φ z t s az +t s a (1.13)

(

,

)

, ,

2, , 1 2

1 1

1 1 ,

1 s a = ζ s a

 

Φ  (1.14)

where φβ, Φ and ζ

(

s,a

)

are the generalized Hurwitz-Lerch zeta function (see [11, p.100, (1.5)]), the Hurwitz-Lerch zeta function defined by (1.5) and the Hurwitz zeta function (see [8, p.24, (1)]), respectively.
(5)

2. Integral Representations

Theorem 2.1. The following integral representation holds true for

(

, , ,

)

:

;

; : ,

;

; :

;

; : ,

;

; :

,q h k l m n r v w z t s a

p Φα β γ λ µ νρ σ

(

z t s a

)

w v r n m l k h q

p, Φα::β;;γ;;λ,,µ::ν;;ρ;;σ , , ,

( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

: ; ; ; , ,

;

;

; 1 :

0

;

; :

;

; :

1e H ze te dx

s x

qx px w

v r n

m l k h m l k h

w v r n ax

s µα νβ ργ λσ

= Γ (2.1)

(

min

{

R

( ) ( )

s ,R a

}

>0 when z1

(

z1

)

, t1

(

t1

)

; R

( )

s >1 when z =1,

)

.

=1 t

Proof. Using Eulerian integral formula (see, e.g., [8]):

( )

( ) ∫∞ − −( + + ) ( { ( ) ( ) } )

> ∈

= Γ +

+ 1 0 1 , min , 0; , 0

j N i a

s dx

e s x

j i

a s s a i j x R R (2.2)

in (1.7) and then, changing the order of the integral and the summation, and using definition (1.1), yields the proof of (2.1).

Similarly, by means of the relation (2.2), we can give the following corollary.

Corollary 2.1. The following integral representations for p,qΦhα::lγ;;mλ,,nµ::vρ;;wσ

(

z,t,s,a

)

,

(

z t s a

)

w v r m l k q

p, Φβ;;γ;;λ,,ν;;ρ;;σ , , , and p,qΦβk,,νr

(

z,t, s,a

)

in (1.8), (1.9) and (1.10) holds true:

(

z t s a

)

w v n m l h q

p, Φα::γ;;λ,,µ::ρ;;σ , , ,

( )

( ) ( ) ( ) ( ) ( ) ( )

µα ργ λσ

= Γ

0

; : ;

1 : , ,

;

; :

;

; 1 :

dx te ze X

e s x

qx px w

v n

m l m h

l hv w ax n

s (2.3)

(

z t s a

)

w v r m l k q

p, Φβ;;γ;;λ,,ν;;ρ;;σ , , ,

( ) ( ) ( ) ( )

( ) ( ) ( )

νβ ργ λσ

= Γ

0

;

;;

1 ; ,

;

;

;

;

; 1 ;

dx te ze F

e s x

qx px w

v r

m l m k

l kv w ax r

s (2.4)

(6)

and

( )

( )

( )

( )

ν

β 

 

 +

ν β

= Γ

Φ 0

1 ,

, ,

; 1 ;

, ,

, x e F ze te dx

a s s t

z px qx

r k r ax k s r

k q

p (2.5)

(

min

{

R

( ) ( )

s ,R a

}

>0 when z ≤1

(

z ≠1

)

, t ≤1

(

t ≠1

)

; R

( )

s >1 when z =1,

)

.

=1 t

Theorem 2.2. Each of the following integrals for p,qΦhα::kβ;;lγ;;mλ,,nµ::rν;;vρ;;wσ

(

z,t, s, a

)

holds true when h = n,k = r and l =v, respectively

(

z t s a

)

w v r n m l k n q

p, Φα::β;;γ;;λ,,µ::ν;;ρ;;σ , , ,

( ) ( )

( )

α Γ

( ) (

α Γ µ α

)

Γ

(

µ α

) ∫ ∫ α − α − ( − )µ−α − Γ

µ Γ µ

= Γ 1

0 1 0

1 1 1 1

1 1 1 1

1 x 1 xnn 1 x 1 1

n n n

n L L

L L

L

(

1

) (

2 2 , 1 , ,

)

1 ,

1

;

; ,

;

;

;

; ,

;

; ,

1 1 k l m r v w n n n

q

p x x z x x t s a dx dx

x n n L L L

L − µ α Φβ γ λ ν ρσ

×

( ) ( ) ( )

(

R αu > 0,R µu −αu >0, u =1, 2,..., n

)

, (2.6)

(

z t s a

)

w v k n m l k h q

p, Φα::β;;γ;;λ,,µ::ν;;ρ;;σ , , ,

( ) ( )

( )

β Γ

( ) (

β Γν β

)

Γ

(

ν β

) ∫π ∫π( )β − ( )ν −β − Γ

ν Γ ν

= Γ 2

0 2

0 2

1 2 1

2 1 2 1

1 1 1

1 sin 1 cos 1 1

2 x x

k k k

k k

L L L

L

(

sin

) (

cos

)

: ; , : ;

(

sin2 1 sin2 ,

; : ,

; : 2 ,

2 1 2 2 1

z x x

x

xk k k k k pq h l m n v w L k

L β ν β Φα γ λ µ ρ σ

×

)

,

, , sin

sin2x1L 2xkt s a dx1Ldxk

( ) ( ) ( )

(

R βu > 0, R νu −βu > 0, u =1,2,..., k

)

, (2.7)

(

z t s a

)

w l r n m l k h q

p, Φα::β;;γ;;λ,,µ::ν;;ρ;;σ , , ,

( ) ( )

( ) ( ) ( ) ( ) ∫∞ ∫∞( ) ( )ρ

γ ρ

γ

+ γ +

− ρ Γ γ

− ρ Γ γ Γ γ Γ

ρ Γ ρ

= Γ

0 0

1 1

1 1 1

1 1

1

1

1 1

1

l l

l l l

l l

l

x x x

x L

L L L

L

(7)

(

1 1

) (

1

)

, , , 1 ,

; 1 : ,

; :

; : ,

; :

, l

l l w

r n m k h q

p z t s a dx dx

x x x

x L  L

 

+ Φ +

× α β λ µ ν σ

( ) ( ) ( )

(

R γu >0,R ρu −γu >0, u =1, 2,...,l

)

. (2.8) Proof. To prove each of the integral representations from (2.6) to (2.8), it is enough to substitute the expression of the generalized Hurwitz-Lerch zeta function in each integrand and then to change the order of the integral and the summation, and finally taking into account the following Eulerian integrals (see, e.g., [8, p. 9-11], [19, Section 1.1]:

(

a,b

)

=

01x 1

(

1x

)

1dx,

B a b (2.9)

(

a,b

)

=2

0π2

(

sinx

)

2 1

(

cosx

)

2 1dx,

B a b (2.10)

( )

( )

+ +

= 0

1

, 1

, dx

x b x

a

B a b

a

(2.11)

( ) ( )

(

R a > 0, R b >0

)

.

Theorem 2.3. The following integral representations holds true:

(

z t s a

)

w v r n m l k n q

p, Φα::β;;γ;;λ,,µ::ν;;ρ;;σ , , ,

( ) ( )

( )

α Γ

( ) (

α Γµ α

)

Γ

(

µ α

) ( )

Γ

(α + +α + )

Γ

µ Γ µ

= Γ

0 0

1 1 1

1 1x1 x ay

n n n

n e n n

s L L

L L

L

(

1 1

)

µ1 1 1

(

1

)

µ α 1 1

× e x α L e xn n n ys

( ) ( ) ( )

( ) ( ) ( )

; ; ; ( ), ( ) ,

;

;

;

2 1 2

;

;;

; ze 1 te 1 dx dx dy

F x x py x x qy n

w v r

m l m k

l kv w

r L n L n  L

 

σ ρ ν

λ γ

× β + + + + + +

( ) ( )

{ } ( ) ( ) ( )

(

min R s ,R a >0;R αu > 0, R µu −αu >0, u =1, 2,..., n

)

, (2.12)

(

z t s a

)

w v k n m l k h q

p, Φα::β;;γ;;λ,,µ::ν;;ρ;;σ , , ,

(8)

( ) ( )

( ) ( ) ( ) ( ) ( ) ∫∞ ∫∞ ( )ν ( )ν

β β

+ Γ +

β

− ν Γ β

− ν Γ β Γ β Γ

ν Γ ν

= Γ

0 0

1 1 1 1

1 1

1 1

1

1

1 1

1

k k

k ay s k k

k k

k

x x

e y x x

s L

L L L

L

L

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )



+ +

+ σ +

ρ µ

λ γ

× α ν ν ν ν t

x x

e x z x

x x

e x X x

k

k k

k qy k

k py w

v n

m l m h

l hv w

n 1 1

, 1

; 1

; :

;

; :

1

1 1

1 1

; 1 : ;

: L

L L

L

1 dx dy, dx L k

×

( ) ( )

{ } ( ) ( ) ( )

(

min R s ,R a >0; R βu >0,R νu −βu >0, u =1, 2,..., k

)

. (2.13) Proof. Using (2.2) and the Eulerian Beta function formula [8, p.11 (24)]

(

,

) ( ) (

1

)

,

( ( )

0,

( )

0

)

,

0

1 > >

=

e e dx a b

b a

B x a x b R R

which implies that

(

z t s a

)

w v r n m l k n q

p, Φα::β;;γ;;λ,,µ::ν;;ρ;;σ , , ,

( ) ( )

( )

α Γ

( ) (

α Γµ α

)

Γ

(

µ α

) ( )

Γ

(

)

µ α Γ

µ Γ µ

= Γ

0 0

1 1

1 1

1 1 x1 1 1

n n n

n e

s L

L L

L

(

exn

)

µnαn eα x eαnxnys eay

×L1 1 11L 1

[ ( ) ] ( ) [ ] ( ) [ ]

[ ( ) ] [ ( ) ] ( ) [ ] (

( )

) (

( )

)

=

+ + +

+

+ +

+

+

σ ρ ν

λ γ

× β

0 ,

2 2

!

!

1 1

j i

j qy x x i py x x w j

v i j r i

m j l i j k i

j i

te

ze L n L n

1 dx dy. dx L n

×

in view of definition (1.2), immediately yields the first equality (2.12). By employing formulas (2.2) and (2.11), and exploiting the same procedure leading to (2.12) one can derive the second equality (2.13).

Now, by using the contour integral [8, p.14 (4)]

( )

=

( )

π

( )+

( )

( )

π

Γ 0 1 , arg ,

sin 2

1 x e dx x

s

s i s x (2.14)

we can give the following theorem without proof.

(9)

Theorem 2.4. Let R

( )

a >0 and arg

( )

x ≤π. Then

(

z t s a

)

w v r n m l k h q

p, Φα::β;;γ;;λ,,µ::ν;;ρ;;σ , , ,

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )+ µα νβ ργ σλ π

− Γ

= − 0 1 :: ;;;; , .

;

;

; :

;

;

; : 2

1 x e H ze te dx

i

s px qx

w v r n

m l k m h

l k hr v w ax n

s

(2.15) Theorem 2.5. The following Mellin-Barnes contour integral representation of (1.7) holds true:

(

z t s a

)

w v r n m l k h q

p, Φα::β;;γ;;λ,,µ::ν;;ρ;;σ , , ,

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ∫ ∫

∏ ∏ ∏ ∏

∏ ∏ ∏ ∏

= = = =

= = = =

λ Γ γ

Γ β Γ α Γ π

σ Γ ρ Γ ν

Γ µ

Γ

=

z t

C C

h u

k u

l u

m u

u u

u u

n u

r u

v u

w u

u u

u u

1 1 1 1

2

1 1 1 1

4

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

∏ ∏ ∏ ∏

∏ ∏ ∏ ∏

= = = =

= = = =

+ σ Γ +

ρ Γ +

+ ν Γ +

+ µ Γ

+ λ Γ +

γ Γ +

+ β Γ +

+ α Γ

− Γ

− Γ

× n

u

r u

v u

w u

u u

u u

h u

k u

l u

m u

u u

u u

y x

y x y

x

y x

y x y

x y

x

1 1 1 1

1 1 1 1

2 2

( )

[ ] ( ) ( )

( )

[

a px qy 1

]

dxdy, t

z qy px a

s y x s

+ + + Γ

− +

+

× Γ (2.16)

( ) ( )

(

argz < π, argt

)

.

Proof. If we evaluate the integral as a sum of the residues by calculus of residues at the simple poles of Γ

( )

x at the points x = −i

(

iN0

)

and Γ

( )

y at the points

(

N0

)

,

= j j

y we immediately find the following series expansion:

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

∏ ∏ ∏ ∏

∏ ∏ ∏ ∏

= = = =

= = = =

λ Γ γ

Γ β Γ α

Γ

σ Γ ρ

Γ ν

Γ µ

Γ

h u

k u

l u

m u

u u

u u

n u

r u

v u

w u

u u

u u

1 1 1 1

1 1 1 1

(10)

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

∑ ∏ ∏ ∏ ∏

∏ ∏ ∏ ∏

=

= = = =

= = = =

+ σ Γ +

ρ Γ +

+ ν Γ +

+ µ Γ

+ λ Γ + γ Γ +

+ β Γ +

+ α Γ

×

0 ,

1 1 1 1

1 1 1 1

2 2

j i

n u

r u

v u

w u

u u

u u

h u

k u

l u

m u

u u

u u

j i

j i j

i

j i

j i j

i

( )

,

!

! s

j i

qj pi a j i

t z

+

× +

which is just the p,qΦhα::kβ;;l

Referensi

Dokumen terkait

Coffey, both in closed form in terms of zeta functions and digamma functions at possible rational values of the argument, and in double integral form.. The following definitions will

We give a new simple proof of the exactness of the complex of injective words and use it to prove Nakaoka’s homology stability for symmetric groups.. The methods are generalized to

In the context of ran- dom permutations, this was enough to prove the existence of a coupling of partitions with the desired fragmentation property, using the fact that the

We prove that every scalar valued positive definite function f , on a generalized interval of an ordered group, has a positive definite extension to the whole group.. We also prove

Stivastava, Certain subclasses of analytic functions asso- ciated with the generalized hypergeometric function, Integral Transform.. Owa, On the distortion

We prove that the Casimir operator acting on sections of a homogeneous vector bundle over a generalized flag manifold naturally extends to an invariant differential opera- tor

In my search to find wholesome or inspiring depictions of black children in literature and art, I came across two radically contrasting representations: Titus Kaphar’s Enough About You

I mean, it’s sad, like really, really sad, I couldn’t even begin to tell you why, or how, with the force enough to substitute a pat on your back, to mean at least, no matter how much