• Tidak ada hasil yang ditemukan

Exercises for Module-III (Transform Calculus) - Nptel

N/A
N/A
Protected

Academic year: 2023

Membagikan "Exercises for Module-III (Transform Calculus) - Nptel"

Copied!
6
0
0

Teks penuh

(1)

Exercises for Module-III (Transform Calculus)

1) Discuss the piecewise continuity of the following functions:

a)

( ) 1 , 2

f t 2 t

=t

− b)

2

2 , 1

1 , 1

( )

t t

t t

f t

+ >

= 



c)

1 , 0

0, 0

( )

e t t t

t

f t

=

= 

 d)

sin 1, 0 0, 0

( ) t t t

t

f t

  

 

=

= 



2) Show that the function f t( )=t et2sin

( )

et2 possesses a Laplace transform.

3) Find Laplace transform of the following functions:

a)

cos , 2 0 et t t >

b)

0, 0 t<2 , 2

( )

eat t

f t

= 



c)

( ) sin , 0

f t = t t > d) f t( )=t H t( −a), t>0

4) Find the inverse Laplace transform of the following functions:

a) F s( )=

(

s2+s6+s3+13

)

2 b) F s( )=

(

s14

) (

s2+s5+2

)

c)

2

( ) 2

e s

F s s

π

= − d)

( ) ( )

2 2 2 2

2 3

( )

1 1

F s s

s s

= +

+ +

5) Solve the following initial value problems for 𝑡𝑡> 0 using Laplace transform method:

a) d y22 1; (0) '(0) 0

y y y

dt + = = =

b) d y22 dy

(

1 ( 1) ; (0)

)

1, '(0) 1

H t y y

dt + dt = − − = = −

c) 22

cos , 0 0,

( ); (0) '(0) 0; where ( )

t t

t

d y y f t y y f t

dt

π π

≤ ≤

>

+ = = = = 



(2)

6) Solve the following boundary value problems using Laplace transform methods:

a) 22 sin , (0) 1, ,

2

d y y t y y

dt

π π

+ = =    =

b) 22 9 , (0) 1, ' 1

3

d y t y y

dt

λ  π

+ = =  = −

 

7) Solve the following differential equations using Laplace transform method:

a) d y22 dy 1; (0) 0

t y

dtdt = − =

b) d y22 ( 1)dy 2 t; (0) 0

t t y e y

dt dt

+ + + = =

8) Solve the following integral equations using Laplace transform method:

a)

0

( ) sin 2 ( ) cos( ) d

t

y t = t+

y u tu u

b)

( )

0

( ) 3 ( ) 2 ( ) d ; 0 1 dy t t

y t y u u t y

dt + +

= =

9) With the application of Laplace transform, solve the Heat equation 2u2 u; 0, 0

x t

x t

∂ =∂ > >

∂ ∂ subject to the conditions ( , 0 ) 0, 0

u x + = x>

(0, ) ( ), 0 u t = f t t>

lim ( , ) 0

x u x t

→∞ =

10) Using Laplace transform solve the wave equation 22y 2y2 ; 0 1, 0

x t

t x

∂ = ∂ < < >

∂ ∂

with the initial and boundary conditions ( , 0 ) sin , 0 1

y x + = πx < <x , y xt( , 0 )+ =0, 0< <x 1 (0, ) 0, 0,

y t = t> y(1, )t =0, t>0

(3)

11) Expand f x( )=ex, 0< <x 2π in a Fourier series.

12) Find the half range sine series of the function f x( )=x2, 0< <x π 13) Determine the Fourier integral representation of the function

sin ,

0, and

( ) .

x x

x x

f x

π π

π π

− < <

<− >

= 



14) Let the function f x( ) is given as

1 , 0 1

0, 1

( ) .

x x

x

f x

< <

< <∞

= 



Determine the Fourier sine integral of f x( ) and find the value of

( )

2

0

( sin ) sin

2 d .

α α α

α α

15) Find the Fourier sine transform of f t( )=tet, t≥0.

16) Determine the Fourier cosine transform for f t( )=etcos , t t≥0and show that

2 4 0

2 ( 2) cos

cos d , 0

4

t t

e t α α α t

π α

+

= ≥

+ .

17) Find Fourier transform of 𝑓𝑓(𝑡𝑡) =𝑡𝑡exp(−𝑎𝑎|𝑡𝑡|).

18) Find 𝑓𝑓(𝑡𝑡) if 2 2

( ) 1 .

Fs α π

α α +

 

=  

19) Solve the heat equation u 2u2, 0

k x

t x

∂ ∂

= < < ∞

∂ ∂ subject to the conditions ( , 0) x;

u x =e ux(0, )t =0, t>0, uand uxboth tend to zero asx→ ∞. 20) Solve the following Laplace equation 2u2 2u2 0; 0

x y y

∂ +∂ = >

∂ ∂ subject to the

conditions uxand u →0as x2+y2 → ∞ and

1, 1 0, 1

( , 0)

x x

u x

>

= 

 .

(4)

Answers/Hints:

1)

a) Function is not piecewise continuous since

lim2 ( )

t f t

→ ± do not exists.

b) Function is continuous everywhere.

c) Function has a jump discontinuity at t=0 and hence the function is piecewise continuous.

d) Function is continuous everywhere.

2)

Definition of Laplace transform and integration by parts give

{ }

2

( )

2

{ ( )

2

}

0

( ) sin d 1 cos(1) cos

2

st t t t

L f t e te e t sL e

 

=

=  − 

Note that L

{

cos

( )

et2

}

exists because cos

( )

et2 is continuous and is of exponential order.

Hence L f t

{ }

( ) exists.

3)

a)

{ } ( )

( ) ( { ) } ( ) ( )

2 2

2

2 2

1 2 2 3

cos 1 1 4 1 2 5

t s s s

L e t

s s s

s s

= + + = + +

+ + +

+ + +

b) f t( ) e H tat

(

2

)

ea t( )2e H t2a

(

2

)

e 2(s a) 1

s a

= − = − =

− c)

{

( )

}

1 1 0 sin d

(

1 1

)(

2 1

)

s st

s s

L f t e t t e

e e s

π π

π π

= = +

− +

d)

{ }

2 2

[ ]

( ) 1 1

as as

as e e

L f t e a as

s s s

= + = +

4)

a) L1

(

s2 s6s313

)

2 L1

(

s s3

)

23 4 2 e3tL1

(

s2 s4

)

2 14te3tsin 2t

 

 +  +  

 =  =  =

     

 

+ + +

   + +   

      

b) 1 3 1 2

3 3

t t t

e + tee

c) 1 ( ) sinh

{

2

( ) }

2 H t−π t−π

d) 3 5 3 1 1

cos sin sin

2 4 2 4 4

t t

e + tet+ tt t

(5)

5)

a) y t( )= −1 cost

b) y= − +t 1 2etH t

(

1

) (

t− +2 e− +t 1

)

c) 1 sin

( )( ) (

sin

)

y= 2t t+H t−π t−π t−π 

6)

a) 1

cos cos sin

y= − 2t t+ tt

 

b) cos 3 4sin 3

9 9

y= +t t+ t

7)

a) y= +t ct2 b) y=tet

8)

a) y t( )=tet

b) ( ) 1 2 5 2

2 2

t t

y t = − e + e

9)

2 3

0

( , ) exp ( ) d

4( )

2 ( )

t x x

u x t f u u

t u t u

π

 

=

− − − 

10)

( , ) sin cos y x t = πx πt

11)

1 2 1 1 1 1 2

( ) cos cos 2 ... sin sin 2 ...

2 2 5 2 5

f x e x x x x

π

π

 + + +    + + + 

(6)

12)

4 2 4

( ) 2 sin sin 2 sin 3 sin 4 ...

3 9 2

f x π x π x π x π x

π π

 −  − +  −  − −

   

   

 ]

13)

2 0

2 sin sin 1 d

απ αx α

π α

14)

2 0

2 sin

( ) sin d

f x α α αx α

π α

 and the value is

4 π .

15)

2 2

2 2

(1 )

α π +α 16)

2 4

2 2

(4 )

α

π α

+ + 17)

2 2 2

2 2

( )

ia a

α

π +α

18)

f(t) = exp (−t) 19)

2

2

2 1

( , ) cos d

1

k t

u x t e α αx α

π α

−∞

=

+

20)

1 1 1 1

( , ) y tan x tan x

u x y

x y y

  −   + 

=   +  

   

 

Referensi

Dokumen terkait

By using Lyapunov-Krasovskii functional in [6], in the present paper we investigate the problem of H ∞ performance analysis for continuous–time systems with

CONCLUSION Based on the research on the attractiveness of MADIPA Digital Science Magazine based on contextual learning on the theme my river is polluted that has been carried out, it