• Tidak ada hasil yang ditemukan

General Equilibrium Analysis: Lecture 8

N/A
N/A
Protected

Academic year: 2024

Membagikan "General Equilibrium Analysis: Lecture 8"

Copied!
16
0
0

Teks penuh

(1)

General Equilibrium Analysis: Lecture 8

Ram Singh

Course 001

October 1, 2014

(2)

Questions

Is Competitive/Walrasian equilibrium unique?

Why a unique equilibrium helpful?

If WE is not unique, how many WE can be there?

What are the conditions, for a unique WE?

Do these conditions hold in the real world?

Readings: Arrow and Hahn. (1971), Jehle and Reny (2008), MWG*(1995)

(3)

Local Uniqueness of WE I

For a 2×2 economy: Let,p= (p,1), wherep>0. Note:

Lemma

Price vectorp= (p,1)is equilibrium price vector of a2×2economy iff z1(p) =0. Why?

For anyN−1×M−1 economy, WLOG we can consider vectors in the set

P={p|p∈RM++, andpM =1}

Let

pvM= (p1, ...,pM−1)and zvM = (z1(p), ...,zM−1(p))

(4)

Local Uniqueness of WE II

Proposition

A price vectorp= (p1, ...,pM−1,1)is an equilibrium price vector iff it solves the M−1×M−1systemzvM(p) =0, i.e., iff it solves the system:

z1(p) = 0 ... = ... zM−1(p) = 0.

Define theM−1×M−1 matrix of first order derivatives:

DzvM(p) =

∂z1(p)

∂p1

∂z1(p)

∂p2 · · · ∂zp1(p)

M−1

... ... . .. ...

∂zM−1(p)

∂p1

∂zM−1(p)

∂p2 · · · ∂zM−1p (p)

M−1

(5)

Local Uniqueness of WE III

Definition

A price vectorp= (p1, ...,pM−1,1)isregularif theM−1×M−1 matrix, DzvM(.), is non-singular atp= (p1, ...,pM−1,1).

Definition

An economy is regular if everyequilibriumprice vectorp= (p1, ...,pM−1,1) is is regular.

Theorem

A regular equilibrium price vectorp= (p1, ...,pM−1,1)is locally unique. That is, there exists an >0such that: for everyp0= (p10, ...,p0M−1,1),p06=p, and kp0pk< , we have

z(p0)6=0.

(6)

Local Uniqueness of WE IV

ProofSuppose,p= (p1, ...,pM−1,1)is an equilibrium price vector, i.e., z(p) =0.

Now, consider an infinitesimal change inp, saydp6=0. Let dp= (dp1, ...,dpM−1,0), and

p0 =p+dp= (p1+dp1, ...,pM−1+dpM−1,1) Since,DzvM(p)is non-singular, we have

DzvM(p)dpvM=

∂z1(p)

∂p1

∂z1(p)

∂p2 · · · ∂p∂z1(p)

M−1

... ... . .. ...

∂zM−1(p)

∂p1

∂zM−1(p)

∂p2 · · · ∂z∂pM−1(p)

M−1

 dp1

dp2

... dpM−1

 (1)

DzvM(p)dpvM 6=0. Why?

(7)

Local Uniqueness of WE V

zvM(p0)≈zvM(p) +DzvM(p)dpvM 6=0.

Therefore,

zvM(p0) 6= 0,i.e., z(p0) 6= 0.

That is,p0 is not WE.

(8)

Number of a WE I

Let

E={p|p∈P, andz(p) =0}.

Remark

Note:E⊂⊂P⊆RM++. Also, if an economy is regular, the setEis discrete.

Theorem

If an economy is regular, there are only finitely many equilibrium prices.

Proof: Suppose,p= (p1, ...,pM−1,1)is an equilibrium price vector, i.e., z(p) =0. In view of the ‘boundary conditions’,pj cannot be arbitrarily close to zero.

For a two goods Economy: Boundary conditions onz(.)imply that z1(.)>0 for very smallp1

z1(.)<0 for very highp1

(9)

Number of a WE II

That is, if the ‘boundary conditions’ hold, then there existsr >0 such that:

For allj=1, ..,J

1

r <pj <r.

Therefore, the setEis bounded.

Exercise

Assuming thatzis continuous inp, show thatEis closed.

Hint: Consider a sequence of prices inEand use continuity ofz.

Next, use the following result:

Theorem

If a set is compact and discrete, then it has to be finite.

SinceEis bounded, closed and discrete, it is a finite set.

(10)

Number of a WE III

Theorem

If an economy is regular and the ‘boundary conditions’ onz(P)holds, then Either there will be a unique equilibrium

The number of equilibria will be odd.

(11)

Unique WE: Conditions? I

For an individual consumer. Let

u(.)is a continuous, strictly increasing and strictly quasi-concave utility function

u=v(p,I), and

x:RM+1++ 7→RM+ be the (Marshallian) demand function generated byu(.).

xH :RM+1++ 7→RM+be the associated Hicksian demand function.

∂xj(p,I)

∂pk = ∂x

H j (p,u)

∂pk −xk(p,I)∂xj∂I(p,I), i.e.,

∂xjH(p,u)

∂pk =x∂pj(p,I)

k +xk(p,I)∂xj∂I(p,I).

(12)

Unique WE: Conditions? II

We know that

∂xjH(p,u)

∂pj

=

∂xj(p,u)

∂pj

du=0

=∂xj(p,I)

∂pj

+xj(p,I)∂xj(p,I)

∂I <0.

Let,

D(xH) =

∂x1H(p,u)

∂p1 · · · ∂x1∂pH(p,u) .. M

. · · · ...

∂xMH(p,u)

∂p1 · · · ∂xM∂pH(p,u)

M

=

2E(p,u)

∂p21 · · · ∂p2E(p,u)

M∂p1

... · · · ...

2E(p,u)

∂p1 · · · 2E(p,u)

∂p2M

We can write

D(xH) =

∂x1(p,I)

∂p1 +x1(p,I)∂x1∂I(p,I) · · · ∂x∂p1(p,I)

M +xM(p,I)∂x1∂I(p,I)

... . .. ...

∂xM(p,I)

∂p1 +x1(p,I)∂xM∂I(p,I) · · · ∂x∂pM(p,I)

M +xM(p,I)∂xM∂I(p,I)

(13)

Unique WE: Conditions? III

We know that

MatrixD(xH)is negative semi-definite. Why?

Moreover, for every pair(p,I), there is unique ‘equilibrium’ for the consumer. Why

Theorem

Ifx:RM+1++ 7→RM+, is is a demand function generated by a continuous, strictly increasing and strictly quasi-concave utility function,then xsatisfies budget balancedness, symmetry and negative semi-definiteness.

Theorem

If a function,x, satisfies budget balancedness, symmetry and negative semi-definiteness, then it is a demand functionx:RM+1++ 7→RM+is generated by some continuous, strictly increasing and strictly quasi-concave utility function.

(14)

Unique WE: Conditions? IV

That is, if matrix

D{x}=

∂x1(p,I)

∂p1 +x1(p,I)∂x1∂I(p,I) · · · ∂x∂p1(p,I)

M +xM(p,I)∂x1∂I(p,I)

... . .. ...

∂xM(p,I)

∂p1 +x1(p,I)∂xM∂I(p,I) · · · ∂x∂pM(p,I)

M +xM(p,I)∂xM∂I(p,I)

is symmetric and negative semi-definite, then

There is a continuous, strictly increasing and strictly quasi-concave utility functionu(p)that induces demand functionx.

The ‘equilibrium of the consumer’ is unique.

Moreover, if goodj is normal, then ∂xjp(p)

j <0.

(15)

Unique WE: Conditions? V

Question

Does a similar result hold for the aggregate demand function? That is, does a similar result hold at the aggregate level?

Let

D{z(p)}=

∂zj(p)

∂pk

, j,k =1, ...,J−1.

At aggregate level, we have:

Theorem

WE is unique, if the matrix

D{z(.)}is negative semi-definite at allp∈E, i.e., D{−z(.)}has a positive determinant at allp∈E.

(16)

Unique WE: Conditions? VI

Note, now Slutsky equation is:

∂xji(p)

∂pk

!

dui=0

= ∂xji(p)

∂pk + xki(p)−eik ∂xji(p)

∂I

!

dp=0

We have seen that even for 2×2 economy, Remark

D{z(.)}is not necessarily negative semi-definite, even ifD(xH)is negative semi-definite.

Moreover, even if the goods are all normal, ∂z∂pj(p)

j <0 may not hold.

Referensi

Dokumen terkait