Contents lists available atScienceDirect
Journal of Symbolic Computation
www.elsevier.com/locate/jsc
On Gröbner bases and Krull dimension of residue class rings of polynomial rings over integral domains
Maria Francis, Ambedkar Dukkipati
Dept.ofComputerScience&Automation,IndianInstituteofScience,Bangalore560012,India
a r t i c l e i n f o a b s t r a c t
Articlehistory:
Received20July2016 Accepted3March2017 Availableonline24March2017
Keywords:
Gröbnerbasesovercommutativerings Krulldimensionofresidueclassringsof polynomialringsoverrings
Independentsetsmoduloanideal
GivenanidealainA[x1,. . . ,xn]where AisaNoetherianintegral domain,weproposeanapproachtocomputetheKrulldimension ofA[x1,. . . ,xn]/a,whentheresidueclassringisafree A-module.
WhenAisafield,theKrulldimensionofA[x1,. . . ,xn]/ahassev- eralequivalent algorithmic definitions by whichit can be com- puted.ButthisisnottrueinthecaseofarbitraryNoetherianrings.
Fora Noetherian integral domain A weintroduce the notion of combinatorialdimensionofA[x1,. . . ,xn]/aandgiveaGröbnerba- sismethodtocomputeitforresidue classringsthat haveafree A-modulerepresentationw.r.t. alexicographicordering. Forsuch A-algebras,wederivearelationbetweenKrulldimensionandcom- binatorialdimensionof A[x1,. . . ,xn]/a.Animmediateapplication ofthisrelationis thatit givesauniformmethod,the firstofits kind,to computethe dimension of A[x1,. . . ,xn]/a withouthav- ingtoconsider individualproperties ofthe ideal.For A-algebras thathaveafree A-modulerepresentationw.r.t.degreecompatible monomialorderings,weintroducetheconceptsofHilbertfunction, HilbertseriesandHilbertpolynomialsandshowthatGröbnerbasis methodscan beusedtocomputethesequantities.We thenpro- ceedtoshowthatthecombinatorialdimensionofsuchA-algebras isequaltothedegree oftheHilbertpolynomial.Thisenablesus toextendtherelationbetweenKrulldimensionandcombinatorial dimensiontoA-algebraswithafreeA-modulerepresentationw.r.t.
adegreecompatibleorderingaswell.
©2017ElsevierLtd.Allrightsreserved.
E-mailaddresses:[email protected](M. Francis),[email protected](A. Dukkipati).
http://dx.doi.org/10.1016/j.jsc.2017.03.003 0747-7171/©2017ElsevierLtd.Allrightsreserved.
1. Introduction
One of the fundamental problems in computational ideal theory is determining the dimension of an ideal, i.e. the Krull dimension of the k-algebra, k[x1
, . . . ,
xn] /a
. The dimension of an affine variety associated with an ideal a⊆
k[x1, . . . ,
xn]
is the Krull dimension of the affine k-algebra k[x1, . . . ,
xn] /a
foran algebraically closedfield k. Since the definition ofKrull dimension does not leadtoan algorithmicmethodtocomputeit,variousalternateequivalent definitionshavebeenpro- posed. The Krull dimension ofan affine k-algebra isequal to its transcendencedegree, the degree oftheHilbertpolynomialofaandthelargestnumberofelements amongthemaximalsetofinde- terminatesindependentmod a(calledthecombinatorialdimensionofk[x1, . . . ,
xn]/a
)(Kreuzerand Robbiano, 2005).Gröbner basisbasedalgorithms havebeenproposed tocompute thedegreeofthe Hilbertpolynomialofaandthecombinatorialdimensionofk[x1, . . . ,
xn] /a
(MoraandMöller,1983;KredelandWeispfenning,1988),thusprovidingan algorithmicframeworkfordeterminingtheKrull dimension ofthe affine variety associated witha. This paperstudies the question ofwhether one can give Gröbner basis methods to compute the Krull dimension of A
[
x1, . . . ,
xn] /a
, where A is a Noetherianintegral domain,giventhat ithasa free A-modulerepresentationw.r.t.some monomial order.ForanyNoetheriancommutativering A,anecessaryandsufficientconditionforafinitelygener- ated A-module A
[
x1, . . . ,
xn]/a
to haveafree A-module representationw.r.t.a monomialorder has been studied inFrancis andDukkipati (2014). Here, we show that thischaracterization can be ex- tendedto A[
x1, . . . ,
xn]/a
thatneednotbefinitelygeneratedasan A-module.Given an integral domain A andan A-algebra witha free A-module representationw.r.t. some monomial order,we studyalternate algorithmicdefinitions forKrull dimension.Wefirstextendthe conceptofcombinatorialdimensiontoA-algebras.Foran A-algebrawithafreeA-modulerepresenta- tionw.r.t. alexicographicordering,wegiveaGröbnerbasisalgorithmforcomputingitscombinatorial dimension.Inaffinek-algebras,thecombinatorialdimensionisequaltotheKrulldimension.Wede- rivearelationbetweenKrulldimensionandcombinatorialdimensionfor A-algebrasthathaveafree A-modulerepresentationw.r.t.alexicographicorder.WealsoshowthattheconceptsofHilbertfunc- tions,HilbertseriesandHilbertpolynomialcanbeextendedto A-algebrasthathaveafree A-module representation w.r.t.a degreecompatibleordering. Wealso givea Gröbner basis algorithmto com- putethesequantities.Fordegreecompatibleorderings,weshowthatthecombinatorialdimensionof A
[
x1, . . . ,
xn]/a
isequalto thedegreeoftheHilbertpolynomial ofaandthereforewehaveaGröb- ner basis algorithmto compute the combinatorial dimension.We also show how thiscan be used to derive a relation between the Krull dimension of A[
x1, . . . ,
xn]/a
andthe degree of the Hilbert polynomial ofa.TheconceptsofcombinatorialdimensionandHilbertpolynomialareimportantbe- causetheygiveusauniformmethod,independentoftheideal,todeterminetheKrulldimensionof A[
x1, . . . ,
xn] /a
thathasafree A-modulerepresentationw.r.t.eitheralexicographicoradegreecom- patible monomialordering.Moreimportantly,theseconcepts allowforan algorithmicinterpretation ofthealgebraicconceptofKrulldimensionforcertain A-algebras.The rest of the paper is organized as follows. In Section 2, we discuss the notations used in the paper. In Section 3, we extend the necessary and sufficient condition for the quotient ring A
[
x1, . . . ,
xn]/a
,where A isaNoetheriancommutativering,tohavea free A-modulerepresentation w.r.t.amonomialordertotheinfinitecase.Afterthissection,thepaperrestrictsitsstudytoresidue class ringsofpolynomial ringsover Noetherianintegral domains.In Section 4,we define combina- torial dimension for A-algebras, where A is a Noetherianintegral domain. In Section 4.2, we give a Gröbner basis methodtocompute the combinatorialdimension of A[
x1, . . . ,
xn] /a
that hasa free A-modulerepresentationw.r.t.alexicographicordering.Forsuch A-algebras,wederivearelationbe- tween combinatorialdimension andKrulldimension inSection 5.In Section 5.2,we illustrate with examples how thisrelationgivesan algorithmic methodtodetermine theKrull dimension.We de- fineHilbertfunction,HilbertseriesandHilbertpolynomialforA-algebrasthathaveafree A-module representationw.r.t.adegreecompatiblemonomialorderinSection6.Wealsogive aGröbnerbasis algorithmtocomputethesequantities.WethenshowinSection6.2thatthecombinatorialdimension of A-algebraswithafreeA-modulerepresentationw.r.t.adegreecompatiblemonomialorderisequaltothedegreeoftheHilbertpolynomial.Thisenablesustogivearelationbetweenthedegreeofthe HilbertpolynomialandtheKrulldimensionofthecorrespondingresidueclassringinSection6.3.
2. Preliminaries
Throughoutthispaper,k denotesafield, ZtheringofintegersandNthesetofpositiveintegers includingzero.We use A to denotea Noetheriancommutative ring.From Section 4onwards, A is restrictedto Noetherianintegral domains. Apolynomial ring in indeterminatesx1
, . . . ,
xn over A is denotedas A[
x1, . . . ,
xn]
.At times,we representtheindeterminatescollectively asa set X andthe correspondingpolynomialringasA[
X]
.Werepresentamonomialinx1, . . . ,
xn asxα whereα ∈
Zn≥0. The monoid isomorphism between the set of all monomials in indeterminates x1, . . . ,
xn and Zn≥0 allows us to denote the set of all monomials as Zn≥0.A nonzero polynomial, f in x1, . . . ,
xn with coefficientsfromA isgivenbyf
=
α∈f aαxα
,
where
f Zn≥0 is a finiteset andaα
∈
A\ {
0}
.We denote all the monomialsof a polynomial f asMon(
f)
.We assumethat there isa monomialorder≺
on themonomialsinthe indeterminates x1, . . . ,
xn.Withrespecttothismonomialorder,wehavetheleadingmonomial(lm≺),leadingcoeffi- cient(lc≺),leading term(lt≺) andmultidegree(multideg≺)ofapolynomial f∈
A[
x1, . . . ,
xn]
,where multideg≺(
f) =
max≺{ α ∈
f}
andlt≺(
f) =
lc≺(
f)
lm≺(
f)
in A[
x1, . . . ,
xn]
.Incertain scenarios,we alsoconsider another concept ofdegree ofa polynomial which we will denoteasdeg(
f)
.The de- greeof amonomial xα, deg(
xα)
isthe sumof itsexponents. The degree ofa polynomial, f is the maximumdegreeofthemonomialsin f,i.e.deg
(
f) =
max{
deg(
xα) :
xα∈
Mon(
f) } .
Adegree compatible monomial ordering
≺
is amonomial ordering on A[
x1, . . . ,
xn]
such that two monomialsxα, xα withxα≺
xα satisfy deg(
xα) ≤
deg(
xα)
.Fora degree compatiblemonomial or- dering,theleadingmonomialwillbeamonomialwithmaximumdegree.Theleadingtermideal(or initial ideal) ofa set S⊆
A[
x1, . . . ,
xn]
, is lt≺(
S) = {
lt≺(
f) |
f∈
S}
.When there is no confusion regardingwhichmonomialordertoconsiderweomitthemonomialordersubscript≺
fromtheno- tations.Forafree A-moduleM,theminimumcardinalityofabasisof Aiscalleditsfreerankandis denotedbyFreeRankA(
M)
.3. CharacterizationofafreeresidueclassringofA[x1,. . . ,xn]
ConsideranidealainA
[
x1, . . . ,
xn]
andletG= {
gi:
i=
1, . . . ,
t}
beitsGröbnerbasisw.r.t.amono- mialorder≺
.Foreachmonomialxα,let Jxα= {
i:
lm(
gi) |
xα,
gi∈
G}
andIJxα= {
lc(
gi) :
i∈
Jxα}
.We refertoIJxα astheleadingcoefficientidealw.r.t. G.LetCJxα representasetofcosetrepresentatives oftheequivalenceclassesin A/
IJxα.WeusethesamedefinitionsasgiveninAdamsandLoustaunau (1994).Givenapolynomial f∈
A[
x1, . . . ,
xn]
,let f=
mi=1
aixαi mod
G ,whereai∈
A,
i=
1, . . . ,
m.If A[
x1, . . . ,
xn]/
G isan A-modulefinitelygeneratedbym elements,thencorresponding tothecoset representatives,CJxα1, . . . ,
CJxαm,thereexistsan A-moduleisomorphism,φ :
A[
x1, . . . ,
xn]/
G−→
A/
IJxα1× · · · ×
A/
IJxαm m i=1aixαi
+
G−→ (
c1+
IJxα1, · · · ,
cm+
IJxαm),
(1)whereci
=
aimod IJxαi andci∈
CJxαi.Wereferto A
/
IJxα1× · · · ×
A/
IJxαm asthe A-modulerepresentationof A[
x1, . . . ,
xn] /a
w.r.t.G (or w.r.t.≺
).If IJxαi= {
0}
,wehaveCJxαi=
A,for alli=
1, . . . ,
m.Thisimplies A[
x1, . . . ,
xn]/a ∼ =
Am,i.e.A
[
x1, . . . ,
xn] /a
hasan A-modulebasisanditisfree.Wesaythat A[
x1, . . . ,
xn] /a
hasafree A-module representation w.r.t. G (or w.r.t.≺
). If the A-module is infinitely generated, we say that it has a free A-modulerepresentationw.r.t. G (orequivalently w.r.t.≺
)if IJxα= {
0}
forall xα∈ /
lm(a)
and IJxα=
Aforall xα∈
lm(a)
.The necessaryandsufficientcondition foran A-module A
[
x1, . . . ,
xn]/a
tohaveafree A-module representationw.r.t.G (orw.r.t.≺
) makesuseofthe conceptof‘shortreducedGröbnerbasis’intro- ducedinFrancisandDukkipati (2014)whichwebrieflydescribebelow.Definition3.1.Leta
⊆
A[
x1, . . . ,
xn]
beanideal.Considertheisomorphismin(1).AreducedGröbner basis(asdefinedinPauer,2007),GofaiscalledashortreducedGröbnerbasisifforeachxα∈
lm(
G)
, the number of elements in the generating set of the leading coefficient idealof xα, IJxα in (1)is minimal.One candefinereducedGröbnerbasesoverringsexactlyasthat offieldsbutitmaynotexistin all thecases.ThedefinitionofreducedGröbnerbasisgivenby Pauer (2007)ensurestheexistence of suchabasisforeveryidealinthepolynomialring.
A necessaryandsufficient condition forafinitely generated A-module A
[
x1, . . . ,
xn]/a
to havea free A-modulerepresentationw.r.t.G (orw.r.t.≺
)isgiveninFrancisandDukkipati (2014).Onecan easilyextendthistoresidueclassringsthatarenotfinitelygeneratedasshownbelow.Lemma3.2.Leta
⊆
A[
x1, . . . ,
xn]
beanon-zeroidealandletG beashortreducedGröbnerbasisfora.Allthe leadingcoefficientidealsassociatedwithG areeithertrivialortheentireringA ifandonlyifG ismonic.Proof. TheproofisalongthelinesofFrancisandDukkipati (2014,Lemma3.10). 2 Wenowprovethenecessarycondition.
Theorem3.3.Leta
⊆
A[
x1, . . . ,
xn]
beanon-zeroidealandletG beashortreducedGröbnerbasisofa.If A[
x1, . . . ,
xn] /a
hasafreeA-modulerepresentationw.r.t.G (orw.r.t.≺
)thenG ismonic.Proof. Bydefinition,ifA
[
x1, . . . ,
xn]/a
hasafree A-modulerepresentationw.r.t.GthenIJxα= {
0}
for all xα∈ /
lm(a)
andIJxα= {
1}
forallxα∈
lm(a)
.Thatis,alltheleadingcoefficientidealsassociated withGareeithertrivialortheentirering, A.ThereforebyLemma 3.2,G ismonic. 2The sufficientconditionissubsumedby FrancisandDukkipati (2014,Theorem3.8).Westatethe characterizationresultasfollows.
Proposition3.4.Leta
⊆
A[
x1, . . . ,
xn]
beanonzeroideal.LetG beashortreducedGröbnerbasisforaw.r.t.somemonomialordering
≺
.Then,A[
x1, . . . ,
xn] /a
hasafreeA-modulerepresentationw.r.t.G (or≺
)ifand onlyifG ismonic.Example3.5. Let G
= {
3x,
5x}
be the Gröbner basis of an ideal a in Z[x,
y]
w.r.t. a lexicographic ordering≺
suchthatx≺
y.WehaveIJx=
3,
5=
1.Therefore,Z[x,
y] /
3x,
5x hasafreeA-module representationw.r.t.≺
.TheshortreducedGröbnerbasisofaisgivenby Gred= {
x}
.Itismonicanda Z-modulebasisofZ[x,
y]/a
isgivenby{
1+
a,yn+
a,n∈
N\ {
0}}
.Note that ifa Gröbner basis or reducedGröbner basis of an idealw.r.t. a monomial order
≺
is monic its shortreduced Gröbner basis w.r.t.≺
will also be monic, but not vice versa. Throughout thispaper,wewillassumethat A[
x1, . . . ,
xn] /a
hasafree A-modulerepresentationw.r.t.amonomial orderorequivalently,w.r.t.anyGröbnerbasis correspondingtothatmonomialorder.4. CombinatorialdimensionofA[x1,. . . ,xn]/a
Intherestofthepaperweassume that A isaNoetherianintegraldomain.TheKrulldimension ofaring isdefinedasthesupremumofthelengthsofall thechainsofprimeidealsinit.Thereare manyalternate algorithmicdefinitions forthedimension ofan affine k-algebra.All ofthemcan be showntobeequivalent.Ontheotherhand,for A-algebrasthesedefinitionsareeithernotequivalent ornotvalid.
WedefinecombinatorialdimensionofA
[
x1, . . . ,
xn] /a
,denotedbycdim(
A[
x1, . . . ,
xn] /a)
,inaman- neranalogoustothedefinitionofcombinatorialdimensionofk[x1, . . . ,
xn] /a
(KreuzerandRobbiano, 2005).Definition4.1. Given a Noetherian integral domain A, let a
⊆
A[
x1, . . . ,
xn]
be an ideal. Let X⊆ {
x1, . . . ,
xn}
be a set of indeterminates. The set X is said tobe independent modulo a oran inde- pendentsetofindeterminatesmoduloaifa∩
A[
X] = {
0}
.ThesetX iscalledamaximalindependent setmodulo aif X is independentmodulo aandthereis noset Y⊆ {
x1, . . . ,
xn}
independent mod- uloawith XY.Thelargestnumberofelements ofamaximal independentsetofindeterminates moduloaiscalledthecombinatorialdimensionof A[
x1, . . . ,
xn] /a
,denotedascdim(
A[
x1, . . . ,
xn] /a)
. 4.1. SomepropertiesofcombinatorialdimensionThe Krull dimension of A
[
x1, . . . ,
xn] /a
, for an ideal a⊆
A[
x1, . . . ,
xn]
, is the maximal Krull di- mension of an isolated prime ideal associated with a. Below we show that this result holds for combinatorialdimensionaswell.Lemma 4.2. Let A be a Noetherian integral domain and a be an ideal in A
[
x1, . . . ,
xn]
. Then cdim(
A[
x1, . . . ,
xn] /a)
isthemaximumofcdim(
A[
x1, . . . ,
xn] /p)
,wherepisanisolatedprimeidealasso- ciatedwitha.Proof. Wewill denotecdim
(
A[
x1, . . . ,
xn] /a)
asd.Let pbe an isolated primeideal associatedwith a and S⊆
X denotethe maximal set of indeterminatesthat are independent modulo p. Theyare independent modulo a and therefore, d≥ |
S|
. Conversely, let S⊆
X be a maximal independent set of indeterminates modulo a such that|
S| =
d. Then M=
A[
S] \ {
0}
is multiplicatively closed and disjoint from a. There exists a prime ideal P, that contains a and does not meet M. Let p⊆
P be the isolated prime ideal associated with a. S is independent modulo p. This implies cdim(
A[
x1, . . . ,
xn]/p
) ≥
d. 2Fora subsetofindeterminatesS,theset S representsthesetofresidueclassesof S modulo the ideala.
Proposition4.3.GivenaNoetherianintegraldomain A,leta
⊆
A[
x1, . . . ,
xn]
beaprimeideal.Then,all maximalsetsofindeterminatesindependentmoduloahavethesamecardinality.Proof. Sinceaisaprimeideal, A
[
x1, . . . ,
xn] /a
isan integraldomain.LetQuot(
A[
x1, . . . ,
xn] /a)
rep- resentthequotientfieldof A[
x1, . . . ,
xn] /a
.LetX= {
x1, . . . ,
xn}
andS⊆
X beasetofindeterminates.S is independent modulo a if and only if S is algebraically independent in Quot
(
A[
x1, . . . ,
xn]/a)
over A.Assumethattherearemaximalindependentsetsmodulo aofdifferentcardinalities.Letthe twosetsthataremaximalindependentmoduloabe S∪ {
a}
andS∪ {
b1,
b2}
.Thisimplies S∪ {
a,
b1}
andS∪{
a,
b2}
aredependentsetsofindeterminatesmoduloa.Therefore,wehaveb1isalgebraicover Quot(
A[
S] )(
a)
andaisalgebraicoverQuot(
A[
S] )(
b2)
.Therefore,b1 isalgebraic overQuot(
A[
S] )(
b2)
, whichisacontradictiontotheindependenceof S∪ {
b1,
b2}
moduloa. 24.2. Gröbnerbasismethodforcomputingcombinatorialdimensionforlexicographicorderings
WeextendtheconceptofstronglyindependentindeterminatesmoduloaintroducedinKredeland Weispfenning (1988)foridealsink[x1
, . . . ,
xn]
,topolynomialringsover A.Definition4.4.Let S
⊆
X be asetofindeterminatesand≺
a monomialorderin A[
x1, . . . ,
xn]
.Then, A[
S/(
X\
S) ]
denotesthefollowingset,A
[
S/(
X\
S) ] = {
f∈
A[
x1, . . . ,
xn] :
0=
fand lt(
f) ∈
A[
S]} .
Wesaythat S isstronglyindependentmoduloaifA
[
S/(
X\
S) ] ∩
a= ∅
.Clearly,if Sisstronglyindependentmoduloa,thenitisindependentmoduloa.Buttheconverse isnottrue.
Lemma4.5.Leta
⊆
A[
x1, . . . ,
xn]
beaproperidealand≺
beamonomialorderin A[
x1, . . . ,
xn]
.LetS⊆
X beasetofindeterminates.(i) IfS isstronglyindependentmoduloaw.r.t.
≺
,thenthereexistsanisolatedprimeidealpassociatedwith asuchthatS isalsostronglyindependentmodulopw.r.t.≺
.(ii) LetU
= {
S⊆
X:
S is strongly independent moduloaw.r.t.≺}
andU= {
S⊆
X:
there exists an isolated prime idealpassociated withasuch that S is strongly independent modulopw.r.t.≺}
,thenU=
U. Proof.(i) Let S bestronglyindependentmoduloa.LetM
=
A[
S/(
X\
S) ] \ {
0}
beamultiplicativelyclosed subset of A[
x1, . . . ,
xn]
disjoint to a. Then there exists a prime ideal P such that a⊆
P and disjoint from M. Letp⊆
P be an isolated prime ideal associated witha. Then S is strongly independentmodulo p.Also, ifS ismaximalstronglyindependentmodulo a,then forany S⊆
S⊆
X,where S is stronglyindependent modulo p, S is strongly independent modulo a, so S=
S.(ii) Clearly,U
⊆
U andby(i),U⊆
U. 2We recalltheconcept ofinessentialsetofindeterminatesfromKredelandWeispfenning (1988).
Let S
⊆
X beasetofindeterminates, f∈
A[
x1, . . . ,
xn]
beapolynomialand≺
beamonomialorder in A[
x1, . . . ,
xn]
.Wedenote fS asthepolynomial resultingfrom f by substituting1 forallindeter- minatesfromS in f.Wesaythat Sisinessentialfor f ifforalltermst occurringin f,tSlt(
f)
S.Theorem4.6.Let S
⊆
X , abeaprimeideal in A[
x1, . . . ,
xn]
andlet≺
bea monomialordersuchthat A[
x1, . . . ,
xn] /a
hasafree A-modulerepresentationw.r.t.≺
.AssumethatS isindependentmoduloaand thatforanyx∈
X\
S,thereexistsapolynomial fx∈
A[
S∪ {
x}/
X\ (
S∪ {
x})] ∩
asuchthatS isinessential for fx.ThenS ismaximalindependentmoduloaand|
S| =
cdim(
A[
x1, . . . ,
xn] /a)
.Proof. Forx
∈
X\
S,letdx bethedegreeoflt(
fx)
inx.Thendx0,forotherwiselt(
fx)
S=
1 andso tS=
1 foralltermst occurringin fx,whichimplies fx∈
A[
S]
whichcontradictstheindependenceof S moduloa.LetT bethesetofallt∈
Mon(
A[
x1, . . . ,
xn] )
suchthatforeveryx∈
X\
S,thedegreeof xint isdx.Claim1.Foreveryt
∈
Mon(
A[
x1, . . . ,
xn] ) \
T ,thereexists0=
p,
p1, . . . ,
pm∈
A[
S]
,t1, . . . ,
tm∈
T and f∈
asuchthatpt=
p1t1+ · · · +
pmtm+
f .Proofoftheclaim. Assumethecontradiction,thattheclaimfailsforsomet
∈
Mon(
A[
x1, . . . ,
xn] ) \
T and thatt is≺
-minimal amongthe monomialswith thisproperty. Choosex∈
X\
S such that thedegree doft in x
≥
dx andlet u=
tx−d∈
Mon(
A[
x1, . . . ,
xn] )
. fx can be writtenas pxdx− (
p1t1+
· · · +
pmtm)
with0=
p,
p1, . . . ,
pm∈
A[
S]
,ti∈
Mon(
A[
X\
S] )
,ti≺
xdx,1≤
i≤
m.Bymultiplyingwith xd−dxu,wegetpt
=
xd−dxu fx− (
p1t1xd−dxu+ · · · +
pmtmxd−dxu).
Wehavexd−dxu fx
∈
aandtixd−dxu≺
xdxxd−dxu=
t for1≤
i≤
m.(Notethatherewehavetwocom- parisons, one isthe lessthan comparison,<
based onthe degreesof avariable inthe monomials andtheother isthecomparisonbasedonthemonomialorder,≺
.)Sincet is≺
-minimalamongthe monomialsthat violatetheclaim,theclaimisvalidforalltixd−dxu,
1≤
i≤
m andthereforeClaim 1 isvalidfort aswell,a contradiction.Let Quot
(
A)
representthe quotient field ofthe integral domain, A. Since A[
x1, . . . ,
xn] /a
hasa free A-module representation w.r.t.≺
we have A∩
a= {
0}
. This implies Quot(
A) ⊆
Quot(
A)(
S)
Quot(
A[
x1, . . . ,
xn] /a)
.ByClaim 1,Quot(
A) [
x1, . . . ,
xn] /a
isfinitelygeneratedasa Quot(
A)(
S)
-vector spacebyT.Eachx,x∈
X\
SisalgebraicoverQuot(
A)(
S)
.Since A∩
a= {
0}
,thisimpliesthatforeach x∈
X\
S wecandeterminea f∈
A[
S∪ {
x}] ∩
a.Therefore, S ismaximalindependentmoduloaand sinceaisaprimeideal,cdim(
A[
x1, . . . ,
xn]/a) = |
S|
. 2Definition4.7(LeftBasicSet(LBS)).Let
≺
bea monomialorderin A[
x1, . . . ,
xn]
andabean idealin A[
x1, . . . ,
xn]
.Giventhesetofindeterminates X,wedefineSk⊆
X,0≤
k≤
ninductivelyasS0
= ∅
Sk+1=
⎧ ⎪
⎨
⎪ ⎩
Sk
∪ {
xk}
ifSk∪ {
xk}
is strongly independent moduloa
w.r.t.≺
Sk otherwise
.
ThesetSn iscalledtheleftbasicsetofaw.r.t.
≺
.Sn is maximal strongly independentmodulo aw.r.t.
≺
. Forlexicographic orderings, asa conse- quenceofTheorem 4.6wehavethefollowingresultforprimeideals.Corollary 4.8. Let a be a prime ideal in A
[
x1, . . . ,
xn]
and≺
be a lexicographic ordering such that A[
x1, . . . ,
xn] /a
hasafree A-modulerepresentationw.r.t.≺
.If S istheleftbasicsetofaw.r.t.≺
,thenS ismaximalindependentmoduloaandso|
S| =
cdim(
A[
x1, . . . ,
xn] /a)
.Proof. SinceS ismaximalstronglyindependentmodulo a,foreveryx
∈
X\
S,thereexistsapolyno- mial fx∈
A[
S∪ {
x} /
X\ (
S∪ {
x} ) ] ∩
a. fx containsno y∈
X suchthatx≺
y since≺
isalexicographic order.Alsoforeverymonomialt∈
Mon(
fx)
,thedegreeoftinxislessthanorequaltothedegreeof theleadingtermof fx in x.Therefore,lt(
fx)
S≥
tS foralltermsin fx.Therefore, S isinessentialforfx andwecanapplyTheorem 4.6and
|
S| =
cdim(
A[
x1, . . . ,
xn] /a)
. 2 TheideacanbeextendedtootherproperidealsinA[
x1, . . . ,
xn]
.Theorem4.9.Letabeaproperidealin A
[
x1, . . . ,
xn]
and≺
bealexicographicmonomialordersuchthat A[
x1, . . . ,
xn]/a
hasafreeA-modulerepresentationw.r.t.≺
.Letd
=
max{|
S| :
S⊆
X,
S is maximal strongly independent moduloa
w.r.t.≺}.
Then,d
=
cdim(
A[
x1, . . . ,
xn]/a)
.Proof. Since each S that is maximal stronglyindependent modulo a isindependent modulo awe havecdim
(
A[
x1, . . . ,
xn]/a) ≥
d.Pickanisolatedprimeidealpassociatedwithasuchthatcdim
(
A[
x1, . . . ,
xn]/p) =
cdim(
A[
x1, . . . ,
xn]/a).
Let SbetheLBSofp.Then,
|
S| =
cdim(
A[
x1, . . . ,
xn]/p) =
cdim(
A[
x1, . . . ,
xn]/a)
and Sisstronglyindependentmodulopandthereforeaandsod
≥
cdim(
A[
x1, . . . ,
xn]/a)
. 2Since strongly independent modulo a dependson the leading terms ofan ideal,we explore its connectionswithGröbnerbasis.
Theorem4.10.Let
≺
beamonomialorderinginA[
x1, . . . ,
xn]
andS⊆
X beasetofindeterminates.LetG be aGröbnerbasisofanideal,a⊆
A[
x1, . . . ,
xn]
w.r.t.≺
.ThenS isstronglyindependentmoduloaw.r.t.≺
ifand onlyifA[
S] ∩
lt(
G) = ∅
.Proof. If for some g
∈
G, lt(
g) ∈
A[
S]
, then g∈
A[
S/(
X\
S) ] ∩
a and therefore S is not strongly independentmoduloa.Conversely,assumethereexists f∈
A[
S/(
X\
S) ] ∩
a,thenthereexistsatleast one g∈
G suchthatlm(
g) |
lm(
f)
.Sincelt(
f) ∈
A[
S]
,lm(
g) ∈
A[
S]
. 2We canconstructtheLBSofaw.r.t.
≺
fromG bythefollowingalgorithm whichisanalogousto KredelandWeispfenning (1988,Corollary 2.2).Corollary4.11.Let
≺
beamonomialorderin A[
x1, . . . ,
xn]
andG beaGröbnerbasisw.r.t.≺
foranideal a⊆
A[
x1, . . . ,
xn]
.Algorithm 1determinestheleftbasicsetofaw.r.t.≺
.Algorithm1FindingtheLeftBasicSetofanidealainA
[
x1, . . . ,
xn]
.InputG,Gröbnerbasisofa⊆A[x1,. . . ,xn]w.r.t.≺ OutputS,LeftBasicSetofaw.r.t.≺.
S= ∅,U= {x1,. . . ,xn} whileU= ∅do
SelectxfromU.
U=U\ {x}
ifMon(A[S]∪ {x})∩lt(G)= ∅then S=S∪ {x}
end if end while
Corollary4.12.Leta
⊆
A[
x1, . . . ,
xn]
beanidealsuchthatA[
x1, . . . ,
xn]/a
hasafreeA-modulerepresenta- tionw.r.t.somelexicographicordering,≺
andG beitsmonicshortreducedGröbnerbasisw.r.t.≺
.LetS⊆
X beasetofindeterminatessuchthatMon
(
A[
S] ) ∩
lt(
G) = ∅ ,
andS hasthelargestnumberofelementsamongallsubsetsof X thatsatisfytheaboveequation.ThenS is maximalindependentmoduloaand
|
S| =
cdim(
A[
x1, . . . ,
xn] /a)
.Proof. ThisresultisadirectconsequenceofTheorem 4.10andTheorem 4.9. 2
The above result gives us an algorithmic technique to determine the combinatorial dimension of A
[
x1, . . . ,
xn]/a
. It involves computing a Gröbner basis w.r.t. a lexicographic ordering. Given a Noetherian integral domain A, we give belowan explicit description of the algorithm to compute thecombinatorialdimensionof A-algebras A[
x1, . . . ,
xn] /a
,thathaveafree A-modulerepresentation w.r.t.alexicographicordering.ThecorrectnessofthealgorithmfollowsfromCorollary 4.12.Itconsists oftworoutines,Algorithm 2andAlgorithm 3,thelatterofwhichisrecursive.Algorithm 3alsodeter- minesthemaximalindependentsetofindeterminatesmodulo a.Thisalgorithmisalongthelinesof thealgorithmdescribedinKredelandWeispfenning (1988,Section 3).Algorithm2 Algorithmforfinding the combinatorialdimension of A
[
x1, . . . ,
xn] /a
forlexicographic orderings.InputG,shortreducedGröbnerbasisofa⊆A[x1,. . . ,xn]w.r.t.alexicographicordering≺, X= {x1,. . . ,xn}
Outputc,combinatorialdimensionofA[x1,. . . ,xn]/a S,themaximalsetofindeterminatesindependentmoduloa. ifGisnotmonicthen
Exit end if
c=0,S= ∅,U=X,M= ∅ {Callstherecursivealgorithm}
M=Algorithm 3(G,S,U,M) S=M
whileM= ∅do SelectanyMfromM M=M\ {M} ifc≤ |M|then
c= |M| end if end while
Algorithm3Recursivealgorithmforfindingthemaximalsetofindeterminatesindependentmodulo theideala
⊆
A[
x1, . . . ,
xn]
forlexicographicorderings.InputG,Gröbnerbasisofa⊆A[x1,. . . ,xn]w.r.t.alexicographicordering≺, S,setofindeterminatessuchthatMon(S)∩lt(G)= ∅,
U,asubsetoftheindeterminatessetX,
M,asetofalreadycomputedmaximalsetsSwithMon(S)∩lt(G)= ∅.
OutputM,theupdatedsetofmaximalsetofindeterminatesSwithMon(S)∩lt(G)= ∅. {Findingthemaximalindependentsetsofindeterminates}
M=M whileU= ∅do
SelectufromU U=U\ {u}
ifMon(S∪ {u})∩lt(G)= ∅then M=Algorithm 3(G,S∪ {u},U,M) end if
end while
{TestingifSisalreadycontainedinsomeelementofM} M=M,t=1
whileM= ∅andt=1do
SelectMfromM,M=M\ {M}. ifS⊆Mthen
t=0 end if end while ift=1then
M=M∪ {S} end if
Therunningtimeofthealgorithmisexactlyasthatofcomputingthecombinatorialdimensionfor fieldsexceptforthecomputationofshortreducedGröbner basis.Thecomputationofshortreduced Gröbner basisdependson thecoefficientring, A. When A
=
k orZ,the time complexityis doubly exponential(computationofa singleGröbner basis)andwhen A=
k[y1, . . . ,
ym]
,thecomplexity is stilldoublyexponentialbutinvolvestwoGröbnerbasiscomputations,firstink[y1, . . . ,
ym]
andthen in A[
x1, . . . ,
xn]
.5. RelationbetweenKrulldimensionandcombinatorialdimensionofA[x1,. . . ,xn]/a
Theresultswe derivein thissection willalsohelp usderivea relationbetweenthedegreeofa HilbertpolynomialandKrulldimension(Section6.3).
Lemma5.1.Leta
⊆
A[
x1, . . . ,
xn]
beanidealandM bean A-algebra.Thenthereexistsahomomorphism fromA[
x1, . . . ,
xn]
toM[
x1, . . . ,
xn]
.LetaerepresenttheextensionoftheidealainM[
x1, . . . ,
xn]
underthe homomorphism.WehaveM
⊗
AA[
x1, . . . ,
xn]/a ∼ =
M[
x1, . . . ,
xn]/a
e.
Proof. Clearly, M
[
x1, . . . ,
xn] /a
e is an A-module.Consider thefollowing operation: for any f+
a∈
A[
x1, . . . ,
xn]/a
andg+
ae∈
M[
x1, . . . ,
xn]/a
e,let(
f+
a)(g+
ae) =
f g+
ae.Itiswelldefinedbecause a⊆
ae. Thisimplies M[
x1, . . . ,
xn]/a
e isan A[
x1, . . . ,
xn]/a
-module aswell. We define thefollowing homomorphism,φ :
A(A[x1,...,xn]/a×M)→
M[
x1, . . . ,
xn]/a
eφ (
i∈
(
aixαi+ a,
mi)) =
i∈
(
aimixαi+ a
e).
Notethat
φ
is A-multilinear.Therefore,thereexistthefollowinghomomorphisms,ψ :
A[
x1, . . . ,
xn]/a ⊗
AM→
M[
x1, . . . ,
xn]/a
eand
π :
A(A[x1,...,xn]/a×M)→
A[
x1, . . . ,
xn] /a ⊗
AMsuchthat
φ = ψ ◦ π
.Sinceφ
issurjective,ψ
issurjectivetoo.Considerψ (
i∈
(
aixαi+ a ⊗
Ami)) =
0.
Wehave
i∈
(
aixαi+ a ⊗
Am