International Winter School 2021
Metavalent Bonding in GeSe Leads to High Thermoelectric Performance
Debattam Sarkar, Prof. Kanishka Biswas’ lab, New Chemistry Unit, JNCASR
Covalent
Metallic Metavalent
Conventional chemical bonds in solids
Ionic bond Weak forces
❖ Bonding in Solid: Mixtures of multiple bonding types
❖ Spectroscopic techniques to identify bonds: Rotational, vibration, NMR, Raman etc.
❖ Quantum Mechanics: VB/MO
Van Arkel–Ketelaar triangle, 1947
Ionicity (r’) Degree of covalency(r-1 )
Pauling electronegativity
Pauling electronegativity difference
D. Lencer et al. Nat. Mater. 2008, 7, 972
Shared electrons
International Winter School 2021 GeTe, GeSb2Te5, PbSe, AgBiTe2, AgBiSe2
❖High effective coordination number → Covalent
❖High optical dielectric constant + moderate electrical conductivity → Metallic
❖Electron transfer to form a bond is very less → Ionic Contradictions!!!
Characteristics mechanism
Something between covalency and
metallicity
but distinctly different from
both
Covalent bonding Metallic bonding
Ionic bonding Resonance bonding Metavalent bonding
‘Incipient Metals’
M. Wuttig, V. L. Deringer, X. Gonze, C. Bichara, J. –Y. Raty, Adv. Mater. 2018, 30, 1803777.
International Winter School 2021
Metavalent Bonding
➢Moderate electrical conductivity (102–104 S/cm)
➢High optical dielectric constant
➢High effective
coordination number (ECON )
➢High Born effective charges
➢High bonding anharmonicity
➢Electron shared vs.
electron transferred
AgBiTe2 GeSe
M. Wuttig, C.-F. Schön, M. Schumacher, J. Robertson, P. Golub, E. Bousquet, C.
Gatti, J. –Y. Raty. Adv. Funct. Mater. 2021, 2110166.
Characteristics of metavalent bonding
International Winter School 2021
AgBiTe2 Alloying Induces Metavalent Bonding Characteristics in GeSe
Heat flow TH
TC RL
(a)
(b)
0.0 0.3 0.6 0.9 1.2 1.5
GeSe 0.55Te 0.45 (GeSe) 0.9(AgBiTe 2) 0.1
This work
GeAg 0.2Bi 0.2Se 1.4 GeSeAg 0.2Sb 0.2Te 0.4
zT max (GeSe) 0.92(Sb 2Te 3) 0.08
300 400 500 600 700 0.0
0.3 0.6 0.9 1.2 1.5
x = 0 x = 0.08 x = 0.10 x = 0.12 (GeSe)1-x(AgBiTe2)x
zT
T (K)
ZTdev Abundance (ppm)
0.0 0.4 0.8 1.2 1.6 2.0
PbTe SnTe
GeTe
PbSe SnSe
GeSe
This work
Te(0.001)
Se (0.05)
(c)
Non-toxic
zT =
𝑆2
𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑖𝑐+
𝑙𝑎𝑡𝑡𝑖𝑐𝑒𝑇
Advantages of metavalent bonding in thermoelectrics (TE)
➢ Moderate electrical conductivity (σ ↑)
➢ High Seebeck coeffcieint (S ↓)
➢ High Born effective charges
➢ High bonding anharmonicity (
𝑙𝑎𝑡𝑡𝑖𝑐𝑒 ↓) Efficiency❖ GeSe → structurally similar to SnSe
❖ High theoretical prediction of zT 2.5
❑ Low carrier density (1014-1016 cm-3) and high band gap (1.1 eV)
D. Sarkar, S. Roychowdhury, R. Arora, T. Ghosh, A. Vasdev, B. Joseph, G. Sheet, U. V. Waghmare, K. Biswas, Angew. Chem. Int. Ed. 2021, 60, 10350.
International Winter School 2021
Conformation of Metavalent Bonding in GeSe-AgBiTe2
(400)
(011) (111)
(201)
(222)
(002) (022)(110)
(104)
Fm-3m
Pnma R3m
Fm-3m R3m Pnma (GeSe)
1-x(AgBiTe
2)
x
(012)
* * * *
* Ag2Te
20 30 40 50 60 70 x = 0 x = 0.10 x = 0.30
Intensity (a.u.)
2(O) (b)
(c) (d)
8 10 12 14 16 18 20 (GeSe)0.9(AgBiTe2)0.1
Ambient Pressure R3m
Intensity (a.u.)
Fm-3m
2.21 GPa 3.14 GPa 4.64 GPa 6.70 GPa (a)
Ge/Ag/Bi Se/Te
12 15 18 21 24 27 30 33 R3m
473 K 563 K
300 K 423 K
Intensity (a.u.) Fm-3m
(GeSe)
0.9(AgBiTe
2)
0.1
2(O) 2(O)
12 15 18 21 24 27 30 33 R3m
473 K 563 K
300 K 423 K
Inyensity (a.u.)
2 (o)
Fm-3m (GeSe)
0.9(AgBiTe
2)
0.1
8 10 12 14 16 18 20 (GeSe)
0.9(AgBiTe
2)
0.1
Ambient Pressure
R3m
Intensity (a.u.)
2 (o) Fm-3m
2.21 GPa 3.14 GPa 4.64 GPa 6.70 GPa
GeSe (orthorhombic covalent )
❖ ECON 2
❖ Orthorhombic → Cubic 920 K or more than 82 GPa GeSe-AgBiTe2(Metavalent)
✓ High ECON 6
✓ Rhombohedral → cubic (563 K or 6.7 GPa)
Rhombohedral (R3m)
Crystal structure of metavalent GeSe-10 mol% AgBiTe2
0.00 0.05 0.10 0.15 0.20 0.2
0.4 0.6 0.8 1.0 1.2
Band gap E g (eV)
x (GeSe)
1-x(AgBiTe
2)
x
300 400 500 600 700 0.0
0.4 0.8 100 200 300 400
(GeSe)
1-x(AgBiTe
2)
x
x = 0.12 x = 0.10 x = 0.08
x = 0
Electrical conductivity (S/cm)
T (K)
❑ Band gap reduction
❑ Narrow band gap semiconductor
❑ Carrier density improved to
~1019 cm-3
❑ Improved σ Ag+ Ge2+
Advantages of AgBiTe2 alloying
International Winter School 2021
Thermal Transport in GeSe-AgBiTe2
❖ Low optical phonon modes (50 cm-1)
❖ Coupled with acoustic phonon modes
❖ Scatters the acoustic phonons
Low energy optical phonons in rhombohedral GeSe
Anomalous Born effective charges, Bi: 7.96, Ag: 2.51, Ge: 7.63, Se: −5.60 and Te: 4.04
In collaboration with Prof. U. V. Waghmare, JNCASR, India
Low energy modes in rhombohedral GeSe-10%
AgBiTe2
Heat carriers
0 200 400 600 800 1000 0.0
0.1 0.2 0.3
0.4 Experimental Debye + 2E
C p (J/mol.K2 )
T2 (K2) 𝐶𝑝
= 𝛾 + 𝛽𝑇𝑇 2
+
𝑛
𝐴𝑛 Θ𝐸𝑛 2. 𝑇2 −23. 𝑒
Θ𝐸𝑛 𝑇
𝑒
Θ𝐸𝑛 𝑇 − 1
2
Experimental verification of low energy optical phonons
ӨE1 ~ 29 cm-1 ӨE2 ~ 68 cm-1
Debye – Einstein Model
300 400 500 600 700 0.3
0.6 0.9 1.2 1.5 1.8 2.1
2.4 (GeSe)1-x(AgBiTe2)x x = 0 x = 0.08 x = 0.10 x = 0.12
lattice (W/mK)
T (K)
glass
diff
Ferroelectric Instability !!!
International Winter School 2021
Thermoelectric Performance of Metavalent GeSe-AgBiTe2
Piezoresponse force microscopy (PFM)
Ferroelectric hysteresis Butterfly loop shape Local ferroelectric domains
-15 -10 -5 0 5 10 15
0 50 100 150 200 250
Phase (°)
Bias (V)
-15 -10 -5 0 5 10 15
0 30 60 90 120
Amplitude(pm)
Bias (V)
In collaboration with Prof. G. Sheet, IISER Mohali, India
Experimental verification of ferroelectric
instability
Light and dark contrast
Oppositely polarized domains
Metavalent bonding
300 400 500 600 700 0.0
0.3 0.6 0.9 1.2
(GeSe)
1-x(AgBiTe
2)
x
x = 0 x = 0.08 x = 0.10 x = 0.12
T (K)
zT
Highest reported TE figure of merit among the GeSe based thermoelectrics
Ferroelectric instability induced ultra-low
lattice
D. Sarkar, S. Roychowdhury, R. Arora, T. Ghosh, A. Vasdev, B. Joseph, G.
Sheet, U. V. Waghmare, K. Biswas, Angew. Chem. Int. Ed. 2021,60, 10350.
D.S acknowledges CSIR for fellowship