• Tidak ada hasil yang ditemukan

• Microarray data analysis • Discussion on microarray ... - Nptel

N/A
N/A
Protected

Academic year: 2024

Membagikan "• Microarray data analysis • Discussion on microarray ... - Nptel"

Copied!
5
0
0

Teks penuh

(1)

Dr. Sanjeeva Srivastava  IIT Bombay 

•  Microarray data analysis

•  Discussion on microarray data analysis

•  Normalization

•  Supervised or unsupervised

(2)

IIT Bombay Proteomics Course NPTEL

chips

•  To compare multiple microarray measurements, data need to be normalized

•  Normalization is performed so that:

•  Data from a single experiment are as accurate as possible (correcting unbalanced PMTs)

•  Data from different experiments can be compared to each other

IIT Bombay Proteomics Course NPTEL

•  PCA works by finding “supergenes” that: explain the most variance in the sample are orthogonal to each other

(3)

IIT Bombay Proteomics Course NPTEL

•  Hierarchical: genes are placed in a hierarchical

relationship to each other, as in taxonomy

•  Non-Hierarchical: genes are placed in clusters that do not necessarily have any

relationship to each other

•  Replicate Dye-Swap microarrays can be quickly inspected for quality using a self-organizing map.

(4)

IIT Bombay Proteomics Course NPTEL

•  Microarray data analysis

•  Discussion and demonstration

•  Data analysis requires good software, programming and statistical analysis

•  Experimental design is important

IIT Bombay Proteomics Course NPTEL

•  Anders Bengtsson* and Henrik Bengtsson. Microarray image analysis: background estimation using quantile and morphological filters. BMC Bioinformatics 2006, 7:96 doi:10.1186/1471-2105-7-96

•  Latha Ramdas, Wei Zhang. Microarray Image Scanning. Cell Imaging Techniques. Methods in Molecular Biology. Volume 319, 2006, pp 261-273.

(5)

IIT Bombay Proteomics Course NPTEL

•  Mr. Pankaj Khanna, Spinco Biotech Private Limited for discussion on microarray scanning and data analysis.

Referensi

Dokumen terkait

Tahap terakhir dari penelitian ini adalah mengklasifikasi data kanker yang telah diolah menggunakan prepro- cessing dan reduksi dimensi, dimana akan diketahui data microarray

Microarray memiliki dimensi data yang sangat besar oleh karena itu, untuk meningkatkan akurasi diagnosis kanker tersebut maka dibandingkan dengan teknik

Given the importance of hospitals in providing health services, using data envelopment analysis DEA to compare and model can be an essential step for the continuous improvement of