Vol. 02, Issue 11,November 2017 Available Online: www.ajeee.co.in/index.php/AJEEE
1
MOLECULAR STRUCTURE AND VIBRATIONAL CHARACTERIZATION OF 2,6- DICHLORO-4 NITROANILINEUSING BY SPECTROSCOPIC AND COMPUTATIONAL
TECHNIQUES Vishrut Chaudhary
Assistant Professor, Department of Chemistry, D. N. College, Meerut U P
Abstract - The vibrational spectra of 2,6-dichloro-4-nitroaniline were recorded in the regions 4000– 400 cm
-1and 3500–100 cm
-1, respectively. Also calculated the same vibrational spectra by theortical calculation by DFT methods. Utilizing the observed data, a complete vibrational assignment and analysis of the fundamental modes of the compounds was carried out. In this kind of systems, the position of the substituent group in the benzene ring as well as its electron donor– acceptor capabilities play a very important role on the molecular and electronic properties. The DFT calculations for the title compound were carried out by Gaussian 09 software package using B3LYP/6-311++G(d,p) basis sets . The influence of chlorine, amino and nitro group on the geometry of benzene and its normal modes of vibrations has also been discussed.
Keywords: 2,6-dichloro-4-nitroaniline, IR Spectra,Raman spectra, DFT, Gaussian 09 software.
1 INTRODUCTION
Aromatic amines are very important in biology and chemical industry.
Particularly aniline and its derivatives are used in the production of dyes, pesticides and antioxidants. Some of the para- substituted derivatives of aniline are local anaesthetics, and in these molecules amino group plays an important role in the interaction with corresponding receptor. The spectra of these molecules change to a large extent with polar and non-polar solvents. Secondly, the various substituents modify the vibrational frequencies, although the aromatic character is retained in all substituted aniline.The prototypical molecule, aniline, which is the simplest aromatic amine [1], and its derivatives were widely used to study the electronic structure [2-4], vibrational spectroscopic [5-11], and NLO properties [12-17] The enhanced interaction between the aromatic ring and the amino group induces variations in the molecular geometry of the aniline. The structural and the vibrational parameters of aniline can be modified by introduce ng substituent groups to its molecular structure[18].The normal modes of vibrations have significant role in molecular materials with large NLO activities. In some cases, the vibrational NLO property of materials is dominated over their electronic NLO responses [19].
The characteristic features of the vibrational spectra of halogen derivatives of anilines, particularly chlorine substituted anilines have been reported.
1.1 Experimental and Computational The infrared spectra of the compound 2,6- dichloro-4nitroaniline (further referred as 2,6DCl4NA) was recorded on Perkin- Elmer M-683 spectrophotometer in the region 400-4000 cm
-1using KBr pellets and nujolmull solvent. The laser Raman spectrum in the region 40-4300 cm
-1was recorded on “Spex Rama Lab”
spectrophotometer using 52 mg argon- krypton laser beam of wavelength 488 nm. Whereas All the calculations were carried out for the title compound with Gaussian 09W program package [20]using the Becke-3Lee-Yang-Parr (B3LYP) functional supplemented with the 6- 311++G (d,p) standard basis set further referred as DFT calculations. All the parameters were allowed to relax and all the calculations converged to an optimized geometry which corresponds to a true energy minimum, as revealed by the absence of imaginary values in the wave number calculations.
2 RESULTS AND DISCUSSION
Molecular Structure: The molecular
structure of the mentioned compound
2,4,6DNCAis shown in Figure 1. The
optimized bond lengths, bond angles and
dihedral angles of the compound is
calculated by B3LYP method using 6-
311++G (d,p) basis sets are listed in Table
1 is accordance with atom numbering
scheme as shown in Fig. 1. Since the
exact crystal structure of the compound
2,6DCl4NA is not available till now, the
Vol. 02, Issue 11,November 2017 Available Online: www.ajeee.co.in/index.php/AJEEE
2 optimized structure can only be compared
with other similar system for which the crystal structures have been solved.
Figure 1: Optimized Geometry of.2, 6 DCl4NA
Table 1 Calculated Optimized Geometrical Parameters of 2,6DCl4NA: bond length (Å), bond angle(
o), dihedral angles(
o)
S.
No Atoms of
molecule Bond (Å)
length Angle between
atoms (o) Bond angle
(o) Dihedral angle between
atoms (o) Dihedral angle (o)
1. R(1,2) 1.4168 A(2,1,6) 116.0458 D(6,1,2,3) 0.3657
2. R(1,6) 1.4102 A(2,1,9) 121.8215 D(6,1,2,12) -179.5206
3. R(1,9) 1.3636 A(6,1,9) 122.1125 D(9,1,2,3) -178.0346
4. R(2,3) 1.3789 A(1,2,3) 122.7086 D(9,1,2,12) 2.0791
5. R(2,12) 1.7596 A(1,2,12) 118.1734 D(2,1,6,5) -0.3705
6. R(3,4) 1.3958 A(3,2,12) 119.1179 D(2,1,6,13) 179.533
7. R(3,7) 1.0808 A(2,3,4) 118.8417 D(9,1,6,5) 178.0247
8. R(4,5) 1.3906 A(2,3,7) 120.6716 D(9,1,6,13) -2.0718
9. R(4,14) 1.437 A(4,3,7) 120.4866 D(2,1,9,10) -168.5562
10. R(5,6) 1.3845 A(3,4,5) 120.8371 D(2,1,9,11) -13.2151
11. R(5,8) 1.082 A(3,4,14) 124.2379 D(6,1,9,10) 13.1406
12. R(6,13) 1.7584 A(5,4,14) 94.1826 D(6,1,9,11) 168.4817
13. R(9,10) 1.0066 A(4,5,6) 114.9249 D(1,2,3,4) -0.1229
14. R(9,11) 1.0066 A(4,5,8) 141.0334 D(1,2,3,7) 179.9659
15. R(14,15) 1.4376 A(6,5,8) 119.2798 D(12,2,3,4) 179.7624
16. R(14,16) 1.4377 A(1,6,5) 119.9271 D(12,2,3,7) -0.1448
17. A(1,6,13) 120.793 D(2,3,4,5) -0.1363
18. A(5,6,13) 122.2858 D(2,3,4,14) 179.9924
19. A(1,9,10) 118.5222 D(7,3,4,5) 179.775
20. A(1,9,11) 119.192 D(7,3,4,14) -0.0962
21. A(10,9,11) 117.7113 D(3,4,5,6) 0.1307
22. A(4,14,15) 111.2103 D(3,4,5,8) -179.7872
23. A(4,14,16) 117.8026 D(14,4,5,6) -179.9867
24. A(15,14,16) 60.9521 D(14,4,5,8) 0.0954
25. D(3,4,14,15) 32.8086
26. D(3,4,14,16) -0.0693
Vol. 02, Issue 11,November 2017 Available Online: www.ajeee.co.in/index.php/AJEEE
2
27. D(5,4,14,15) -147.0695
28. D(5,4,14,16) -179.9177
29. D(4,5,6,1) 0.1352
30. D(4,5,6,13) -179.7677
31. D(8,5,6,1) -179.9477
32. D(8,5,6,13) 0.1494
Vibrational spectra; A detailed study of vibrational spectra has been carried out of the reported compound2,6DCl4NA and the vibrational frequencies have been calculated using DFT-B3LYP level with 6-311++G(d,p), there is a good agreement between the observed frequencies and those calculated by the DFT comparative chart is shown in Table 2 in which experimental values of IR (KBr and nuzol), and laser Raman are displayed and simultaneously compared with the calculated values.
Table 2
S.No. ExperimentalCalculated Assignments
Raman IR
1 3685.5 3705 3740.5 α (N-H)
2 3370 3597.5 β (N-H)
3 3035 3085 γ (C-H)
4 3040 γ (C-H)
5 1615 1650 NH2 scissoring
6 1568 1609.5 γ (C-C)
7 1545 γ (C-C)
8 1535 α (NO2)
9 1510 1500.5 γ (C-C)
10 1440 1485 1450 γ (C-C)
11 1350 1350 1350.5 β (NO2)
12 1330 1332 γ (C-C)
13 1310 γ (C-C)
14 1290 1270 1250.5 γ (C-NH2)
15 1215 µ (C-H)
16 1140 1151 µ (C-H)
17 1065 1050 1083.5 NH2 twisting
18 1000 (C-C-C) bending
trigonal
19 950 935 ε (C-H)
20 890 ε(C-H)
21 855 NO2 scissoring
22 820 830.5 (C-C) ring
breathing
23 785 789.5 α (NH2)
24 750 750 750.5 γ (C-Cl)
25 725 725 NO2 wagging
26 715 711.5 γ (C-Cl)
27 605 591.5 µ (C-C)
28 570 590 NH2 wagging
29 540 540 539.5 NO2 rocking
30 365 360 355.5 µ (C-NH2)
31 235 229 α (CNH2)
Vol. 02, Issue 11,November 2017 Available Online: www.ajeee.co.in/index.php/AJEEE
3
32 120 129.5 ε (C-Cl)
33 70 lattice vibration
34 50 59 lattice vibration
Where α = assymetric stretching, β = symmetric stretching, γ = stretching, µ = in-plane bending and ε is out of plane bending.
NH2. Group Vibrations; The aniline molecule is a non-planar molecule with NH
2group inclined at 30° to the plane of benzene ring.The stretching, scissoring and the rocking modes of the aminogroup are expected in the regions 3700–3300 cm_1, 1700–1600 cm_1, and 1150–900 cm_1, respectively [21]In our present study the bands at 3685 cm
-1for Raman and the IR bands at 3705.5cm
-1and 3370 cm
-1represents stretching which very well correlate with the calculated values 3740.5 cm
-1and 3597.5 cm
-1, In case of scissoring the bands at IR 1615 cm
-1corresponding to calculated value 1650 cm
-1represents NH
2scissoring similarly the IR band at 1140 cm
-1corresponding to calculated value of 1151 cm
-1shows the rocking mode.
NO
2Group Vibrations ;This group absorb strongly at 1530-1500 cm
-1which is known as asymmetric nitro group and weakly at 1370-1330 cm
-1known as symmetric nitro group. [22-24] In this light the IR band at 1510 cm
-1
corresponding to the calculated value 1500.5 cm
-1and the Raman and IR bands at 1350 cm
-1corresponding to the calculated value 1350.5 cm
-1represents the above mentioned modes. In addition to these the nitro group usually have strong aromatic ring absorption at 760- 705 cm
-1which is visible at 725 cm
-1and its calculated counterpart at 750.5 cm
-1. 3 BENZENE RING VIBRATIONS
C-C vibrations: The 1,3,5-tri substituted benzene derivatives show the peaks due to the in-plane C-C stretching vibrations in the wave number region 1630–1550 cm
-1[21] the IR band at 1568 cm
-1corresponding to calculated value of 1600 cm
-1represents this mode. The vibrational pair of CC stretching in 1,3,5- trisubstituted benzene is found to be in the region 1480–1400 cm_1 [21]. The strong peaks observed in the Raman at
1440 cm
-1and IR 1485 cm
-1and the calculated value 1450 cm
-1exhibits this mode. The wavenumber of the CC stretching vibration (Kekulemode) of 1,3,5 tri-substituted benzene is expected in the region 1300–1200 cm
-1[21] which is shown in Raman band at 1290 cm
-1and IR band at 1270 cm
-1corresponding to the calculated value of 1250.5 cm
-1C-H vibrations; The heteroaromatic system shows the C-H stretching absorption bands in the region 3100–
3000 cm
-1[25]. The bond stretching modes of the unperturbed C-H bonds of 2,4,6DNCA are identified from the sharp peaks at 3035 cm
-1and 3085 cm
-1in the Raman and IR spectrum respectively C-Cl vibrations the C-Cl stretching vibrations usually give strong peaks in the spectral region 710–505 cm
-1in our study the IR band at 715 cm
-1corresponding to the calculated value of 711.5 cm
-1shows this mode.
Figure 2: Calculated IR Spectrum of 2, 6-Dichloro-4-Nitroaniline using by
Gaussain 09W program package,
B3LYP.
Vol. 02, Issue 11,November 2017 Available Online: www.ajeee.co.in/index.php/AJEEE
2 Figure 3 Calculated Raman Spectrum of
2, 6-Dichloro-4-Nitroaniline using by Gaussian 09W program package,
B3LYP.
REFERENCES
1. Y. Wang, S. Saebø, C.U. Pittman Jr., The structure of aniline by ab initio studies, J.
Mol. Struct. (Theochem) 28 (1) (1993) 91–
98.
2. D. Schemmel, M. Schütz, Molecular aniline clusters. I. The electronic ground state, J.
Chem. Phys. 132 (2010) 174303–174308.
3. A. Soltani, F. Ghari, A. DehnoKhalaji, E.
TazikehLemeski, K. Fejfarova, M. Dusek, M.
Shikh, Crystal structure, spectroscopic and theoretical studies on two Schiff base compounds of 2,6dichlorobenzylidene-2,4-
dichloroaniline and 2,4-
dichlorobenzylidene-2,4-dichloroaniline, Spectrochim. Acta Part A Mol. Biomol.
Spectrosc. 139 (2015) 271–278.
4. M. George, N.L. John, M. Saravana Kumar, A. Subashini, D. Sajan, Physicochemical studies of the experimental and theoretical properties of organinonlinear optical
material 4-chloro40methoxy
benzylideneaniline, J. Mol. Struct. 1128 (2017) 754–768.
5. J.C. Evans, The vibrational assignments and configuration of aniline, aniline- NHD and aniline-ND2, Spectrochim. Acta 16 (1960) 428–442.
6. M. Honda, A. Fujii, E. Fujimaki, T. Ebata, N. Mikami, NH stretching vibrations of jet- cooled aniline and its derivatives in the neutral and cationic ground states, J. Phys.
Chem. A 107 (19) (2003) 3678–3686.
7. P.M. Wojciechowski, W. Zierkiewicz, D.
Michalska, P. Hobza, Electronic structures, vibrational spectra, and revised assignment of aniline and its radical cation: theoretical study, J. Chem. Phys. 118 (24) (2003) 10900–10911.
8. P.J. Krueger, Intramolecular hydrogen bonding and the anharmonicity of the NH2 stretching vibrations in substituted anilines, Can. J. Chem. 41 (2) (1963) 363–
377.
9. A.R. Shukla, C.M. Pathak, N.G. Dongre, B.P. Asthana, Jacob Shamir, Infrared and Raman spectra of 2,3-dimethylaniline, J.
Raman Spectrosc. 17 (1986) 299–311.
10. S. Pathak, A. Kumar, P. Tandon, Molecular structure and vibrational spectroscopic investigation of 4-chloro-40dimethylamino- benzylidene aniline using density functional theory, J. Mol. Struct. 981 (2010) 1–9.
11. Y. Hu, E.R. Bernstein, Photoionization and vibrational spectroscopy of the aniline- methanol clusters, J. Phys. Chem. A 113 (2009) 639–643.
12. S.P. Karna, P.N. Prasad, M. Dupuis, Nonlinear optical properties of pnitroaniline: an ab initio time-dependent coupled perturbed Hartree-Fock study, J.
Chem. Phys. 94 (1991) 1171–1181.
13. A. Karakas_, H. Ünver, A. Elmali, Synthesis, structure, linear and third-order nonlinear optical behavior of N-(3- hydroxybenzalidene)4-bromoaniline, J. Mol.
Struct. 877 (2008) 152–157.
14. A. Kurian, S. Thomas Lee, K.P.
Unnikrishnan, D. Sajan George, V.P.N.
Nampoori, C.P.G. Vallabhan, Studies on two-photon absorption of aniline using thermal lens effect, J. Nonlinear Opt. Phys.
Mater. 12 (1) (2003) 75–80.
15. C.A. van Walree, O. Franssen, A.W.
Marsman, M.C. Flipse, L.W. Jenneskens, Second-order nonlinear optical properties of stilbene, benzylideneaniline and azobenzene derivatives. The effect of p- bridge nitrogen insertion on the first hyperpolarizability, J. Chem. Soc. Perkin Trans. 2 (1997) 799–807.
16. T. Tsunekawa, T. Gotoh, M. Iwamoto, New organic non-linear optical crystals of benzylideneaniline derivative, Chem. Phys.
Lett. 166 (4) (1990) 353–357.
17. A. Subashini, S. Leela, K. Ramamurthi, A.
Arakcheeva, H. Stoeckli-Evans, V.
Petrˇícˇek, G. Chapuis, P. Pattison, P. Reji, Synthesis, growth and characterization of 4-bromo-40nitrobenzylidene aniline (BNBA): a novel nonlinear optical material
with a (3+1)-dimensional
incommensurately modulated structure, CrystEngComm 15 (2013) 2474–2481.
18. M.E. Vaschetto, B.A. Retamal, A.P.
Monkman, Density functional studies of aniline and substituted anilines, J. Mol.
Struct. (Theochem) 468 (1999) 209–221.
19. B. Kirtman, M. Hasan, Linear and nonlinear polarizabilities of trans- polysilane from ab initio oligomer calculations, J. Chem. Phys. 96 (1992) 470–479.
20. Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E.
Scuseria, M. A. Robb, J. R.Cheeseman, G.
Scalmani, V. Barone, B. Mennucci, G. A.
Petersson, H. Nakatsuji,
M. Caricato, X. Li, H. P. Hratchian, A. F.
Izmaylov, J. Bloino, G. Zheng, J. L.
Sonnenberg, M. Hada, M. Ehara, K. Toyota,
Vol. 02, Issue 11,November 2017 Available Online: www.ajeee.co.in/index.php/AJEEE
3
R. Fukuda, J. Hasegawa, M. Ishida, T.
Nakajima, Y. Honda, O. Kitao, H. Nakai, T.
Vreven, J. A. Montgomery, Jr., J. E.
Peralta, F. Ogliaro, M. Bearpark, J. J.
Heyd, E. Brothers, K. N. Kudin, V. N.
Staroverov, T. Keith, R. Kobayashi, J.
Normand, K. Raghavachari, A. Rendell, J.
C. Burant, S. S. Iyengar, J. Tomasi, M.
Cossi, N. Rega, J. M. Millam, M. Klene, J.
E. Knox, J. B. Cross, V. Bakken, C.
Adamo, J. Jaramillo, R. Gomperts, R. E.
Stratmann, O. Yazyev, A. J. Austin, R.
Cammi, C. Pomelli, J. W. Ochterski, R. L.
Martin, K. Morokuma, V. G. Zakrzewski, G.
A. Voth, P. Salvador, J. J. Dannenberg, S.
Dapprich, A. D. Daniels, O. Farkas, J. B.
Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013.
21. G. Varsányi, S. Szoke, Vibrational Spectra of Benzene Derivatives, AkadémiaiKiadó, Academic Press, Budapest, New York and London, 1969.
22. J.F. Brown , Jr. J. Amer Chem. Society, 1955, 77, 6341
23. R.R.Randle and D.H.Whiffen ,J.Chem.
Society, London, 1952, 4153
24. R.D.Kross and V.A.Fassel , J. Amer Chem.
Society, 1956, 78, 4225
25. G. Varsányi, Assignment for Vibrational Spectra of Seven Hundred Benzene Derivatives, vol. 1–2, Akadémiai Kiadó, Budapest, 1973.
26. V. Balachandran, G. Santhi , V. Karpagam, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 106 (2013) 262–
274.