• Tidak ada hasil yang ditemukan

On time L1 optimal control of linear systems

N/A
N/A
Protected

Academic year: 2023

Membagikan "On time L1 optimal control of linear systems"

Copied!
20
0
0

Teks penuh

(1)

On Time-L

1

Optimal Control of Linear Systems

RAJASREE SARKAR

DEPARTMENT OF ELECTRICAL ENGINEERING INDIAN INSTITUTE OF TECHNOLOGY DELHI

APRIL 2023

(2)

© Indian Institute of Technology Delhi (IITD), New Delhi, 2023

(3)

On Time-L

1

Optimal Control of Linear Systems

by

RAJASREE SARKAR

Department of Electrical Engineering

Submitted

in fulfillment of the requirement of the degree of DOCTOR OF PHILOSOPHY

to the

INDIAN INSTITUTE OF TECHNOLOGY DELHI

APRIL 2023

(4)

CERTIFICATE

This is to certify that the thesis entitled “On Time-L1 Optimal Control of Linear Sys- tems”, submitted by Rajasree Sarkar to the Indian Institute of Technology Delhi, for the award of the degree of Doctor of Philosophy in Electrical Engineering, is a record of the original, bona fide research work carried out by her under my supervision and guidance. The thesis has reached the standards fulfilling the requirements of the regulations related to the award of the degree.

The results contained in this thesis have not been submitted either in part or in full to any other University or Institute for the award of any degree or diploma to the best of my knowledge.

Prof. Indra Narayan Kar (Supervisor) Prof. Deepak Patil (Supervisor) Department of Electrical Engineering, Department of Electrical Engineering, Indian Institute of Technology Delhi. Indian Institute of Technology Delhi.

i

(5)

ACKNOWLEDGEMENTS

I would like to convey my deepest respect, regard and gratitude towards my supervisors, Prof.

Deepak Patil and Prof. Indra Narayan Kar. It is through their constant encouragement and crucial guidance during my tenure as a Research Scholar, that I was able to complete my thesis work. They have inculcated the basics of research in me and enhanced my technical understanding by sharing their experience and knowledge. They have also helped me to com- plete my thesis by giving their valuable suggestions and I would also like to thank them for refining my writing skills. I would like thank my SRC committee: Prof. Subhendu Bhasin, Prof. Sudipto Mukherjee, and Prof. S. Janardhanan for their comments during my SRC presentations. Their reviews and support have gone a long way in improving my work. I would also like to convey my sincere gratitude towardsLate Prof. Mashuq un Nabi,Prof.

Shaunak Sen and Prof. Subashish Datta for enriching my technical knowledge. A sincere thanks to Sunil Ji, Virendra Ji and Ashu Ji for all the non-academic support they have provided during my stay in the Control Lab.

I would take this opportunity to acknowledge my M.Tech supervisor, Prof. T. Raghu- nathanwho introduced me to non-linear control and whose consistent support I have received throughout my tenure as a researcher. The work on guidance and navigation done with Dr.

Joyjit Mukherjee has been a great experience overall. A special thanks goes to Dr. Syed Muhammad Amrr with whom I have worked on reusable launch vehicles and spacecraft at- titude control. I would also like to express my heartfelt thanks to both Eshwar Dhaulipala andMidhun Augustinefor our many discussion sessions related to optimal control. A special mention to all my colleagues from Control Lab for providing me with a positive environment while maintaining an extraordinary work culture, both of which are essential for a researcher to grow personally as well as professionally. I extend my gratitude towards my seniors in the lab:

iii

(6)

Dr. Satnesh Singh, Dr. Madan Mohan Rayguru, Dr. Abhilash Patel, Dr. Shefali Kalra, Dr. Neeraj Chawdhury, Dr. Nalin Kumar Sharma, Dr. Sumit Jha, Dr.

Spandan Roy,Dr. Sudipta Saha,Dr. Ananya Royand Dr. Abhishek Dharwho have always stood by me, whenever I have needed them. I would convey my appreciation towards Madhu, Bhavani, Keerthi, Kishore, Apurba, Sujeet and Atul, for being wonderful lab- mates. I would like to thank my hostel room-mate Neisetuonuo Tep and my friends from other groups of Electrical Engineering Department including Rashmi Rai, Mayukh Roy Chowdhury, Amar Yelavarti, Rahul Sharma, Aakansha Rajput and Hina Parveen with whom I have shared a special friendship and camaraderie during my tenure as a research scholar.

I would like to convey my thanks to my research colleague and spouse, Dr. Arunava Banerjee for collaborating with me across several fields and for being a consistent source of support on multiple fronts. My sincere gratitude goes to my brother Indranil Sarkar, sister-in-law Sharmistha Sarkar, and niece Ishani Sarkar for their unwavering love and moral support during this journey. I would also like to acknowledge my father-in-lawAmitava Banerjee and my mother-in-law Late Mina Banerjee for their sustained encouragement.

Finally, I would want to thank and express my profound gratitude to my mother Nandini Sarkar and father Dr. Tarun Kumar Sarkar, for their constant belief in me and for being the very foundation of my life, upon which I was able to build my dreams. Their unconditional support, inspiration, blessings, and love have been the primary reasons behind my every success.

Rajasree Sarkar

iv

(7)

ABSTRACT

With the emergence of the concept of sparsity, the old classical problem of attaining time and fuel optimality has once again gained significant popularity in control system theory. Such problem referred to as the time-L1 or time-fuel optimal control problem, has been widely explored in literature many decades ago. However, because of the inherent complexity of the problem, analytical solutions to the problem considering fuel optimality under various constraints of final time were derived only for simple class of linear time-invariant (LTI) systems like double integrators and other second order systems. Whereas, analytical characterization for general class of LTI systems is still under investigation. In this regard, this thesis considers the time-L1 optimal control problem for state transfer of controllable single input linear time- invariant (LTI) systems with bounded inputs. Using the necessary conditions of Pontryagin’s maximum principle (PMP), this thesis derives a combinatorial sequence characterization of the desired control for general LTI system such that only the knowledge of the system order is required to achieve possible sequences. The proposed characterization is then utilized to translate the original optimal problem into sets of equivalent static optimization problems or non-linear programs (NLPs). By performing such translation, a new method is devised to compute time-L1 optimal control where discontinuities in the control are easily captured. For LTI systems with rational eigenvalues, this method is seen to provide global solution when solved using Lasarre’s method based solvers like Gloptipoly, SparsePop etc. The thesis also presents an intermittent feedback scheme where system states are steered to within a user- defined safe region in finite time with reduced fuel consumption. Such intermittent schemes are useful in scenarios where system is subjected to external disturbances or when analytical feedback solution is difficult to achieve. In addition, the thesis presents a time-L1 efficient approach in the context of multi-agent system and derives a decentralized scheme for consensus tracking in finite time using reduced amount of fuel.

v

(8)

Keywords: Time-L1 Optimal Control, Bang-off-bang Control, Combinatorial Sequence Characterization, Intermittent Feedback Control, Time-L1 Optimal Pursuit-Evasion Policy, Decentralized Consensus Tracking, Sparsity, Resource-constrained System.

vi

(9)

vii

सार

विरलता की अिधारणा के उद्भि के साथ, समय और ईंधन इष्टतमता प्राप्त करने की पुरानी शास्त्रीय समस्या ने एक बार विर वनयंत्रण प्रणाली वसद्ांत में महत्वपूणण लोकवप्रयता प्राप्त की है। इस तरह की समस्या को समय-एल1 या समय-ईंधन इष्टतम वनयंत्रण समस्या के रूप में जाना जाता है, कई दशकों पहले सावहत्य में व्यापक रूप से खोजा गया है। हालााँवक, समस्या की अंतवनणवहत जविलता

के कारण, अंवतम समय की विविन्न बाधाओं के तहत ईंधन इष्टतमता पर विचार करने िाली समस्या का विश्लेषणात्मक समाधान केिल रैखखक समय-अपररितणनीय (एलिीआई) प्रणावलयों के सरल िगण जैसे डबल इंिीग्रेिसण और अन्य वितीय क्रम प्रणावलयों के वलए प्राप्त वकया गया था। जबवक, एलिीआई वसस्टम के सामान्य िगण के वलए विश्लेषणात्मक लक्षण िणणन अिी िी जांच के दायरे में है। इस संबंध में, यह थीवसस सीवमत इनपुि के साथ वनयंत्रणीय एकल इनपुि लीवनयर िाइम-इनिेररएंि (एलिीआई) वसस्टम के राज्य हस्ांतरण के

वलए समय-एल1 इष्टतम वनयंत्रण समस्या पर विचार करता है। पोंिरीवगन के अवधकतम वसद्ांत (पीएमपी) की आिश्यक शतों का उपयोग करते हुए, यह थीवसस सामान्य एलिीआई प्रणाली के वलए िांवित वनयंत्रण के संयोजन अनुक्रम लक्षण िणणन को प्राप्त करती है, जैसे वक संिावित अनुक्रमों को प्राप्त करने के वलए केिल वसस्टम ऑडणर का ज्ञान आिश्यक है। प्रस्ावित लक्षण िणणन का उपयोग मूल इष्टतम समस्या को समतुल्य स्थैवतक अनुकूलन समस्याओं या गैर-रैखखक कायणक्रमों (एनएलपी) के सेि में अनुिाद करने के वलए वकया जाता

है। इस तरह के अनुिाद को करने से, समय की गणना करने के वलए एक नई विवध तैयार की जाती है-एल1 इष्टतम वनयंत्रण जहां वनयंत्रण में असंततता आसानी से पकडी जाती है। तकणसंगत इंजन िैल्यूज के साथ एलिीई वसस्टम के वलए, इस पद्वत को िैविक समाधान प्रदान करने के वलए देखा जाता है, जब लैसेरर की विवध आधाररत सॉल्वर जैसे ग्लोप्तीपॉली, स्पासणपॉप आवद का उपयोग करके हल वकया जाता

है। थीवसस एक आंतरावयक प्रवतवक्रया योजना िी प्रस्ुत करती है, जहााँ वसस्टम स्टेि्स को एक उपयोगकताण-पररिावषत सुरवक्षत क्षेत्र के

िीतर चलाया जाता है। कम ईंधन की खपत के साथ सीवमत समय। ऐसी आंतरावयक योजनाएाँ उन पररदृश्यों में उपयोगी होती हैं जहााँ

वसस्टम बाहरी गडबडी के अधीन होता है या जब विश्लेषणात्मक प्रवतवक्रया समाधान प्राप्त करना कविन होता है। इसके अलािा, थीवसस मल्टी-एजेंि वसस्टम के संदिण में एक समय-एल1 कुशल दृवष्टकोण प्रस्ुत करती है और ईंधन की कम मात्रा का उपयोग करके सीवमत समय में आम सहमवत पर नज़र रखने के वलए एक विकेन्द्रीकृत योजना प्राप्त करती है।

(10)

viii

कीवर्ड: समय-एल1 इष्टतम वनयंत्रण, बैंग-ऑि-बैंग वनयंत्रण, संयोजन अनुक्रम विशेषता, आंतरावयक प्रवतवक्रया वनयंत्रण, समय-एल1 इष्टतम पीिा-अपिंचन नीवत, विकेंद्रीकृत आम सहमवत िरैवकंग, विरलता, संसाधन-वििश प्रणाली।

(11)

Contents

Certificate i

Acknowledgements iii

Abstract v

List of Figures xv

List of Tables xviii

Nomenclature xix

1 Introduction 1

1.1 Introduction . . . 1

1.2 Contribution . . . 7

1.3 Organization of Thesis . . . 10

2 Optimal Control Problems with Time-L1 Considerations 15 2.1 Preliminaries . . . 15

2.2 Time-L1 Optimal Control Problem . . . 19

2.2.1 Problem Statement . . . 19

2.2.2 Necessary Conditions for Optimality . . . 20

2.2.3 Equivalence with L0-Optimal Problems . . . 22

x

(12)

2.2.4 Useful Theorems on Time-L1 Optimal Control . . . 22

2.3 Summary . . . 30

3 Sequence Characterization of Time-L1 Optimal Control 31 3.1 Introduction . . . 31

3.2 Definitions and Notations . . . 31

3.3 Correspondence Between Time-L1 Optimal Input Set and Sequence Set . . . 32

3.3.1 Candidate Sequence Properties . . . 33

3.3.2 Computation of Number of Candidate Sequences . . . 37

3.3.3 Candidate Sequence Characterization . . . 39

3.3.4 Generation of Candidate Sequences . . . 41

3.4 Summary . . . 44

4 Application of Sequence Characterization 45 4.1 Computation of Time-L1 Optimal Control . . . 45

4.1.1 Transformation of Problem 2.4 into NLPs . . . 46

4.1.2 Computing Time-L1 Optimal Solution . . . 53

4.1.3 Simulation Results . . . 54

4.2 Application to State-of-the-art Methods . . . 58

4.3 State-space Partitioning . . . 59

4.4 Summary . . . 60

5 Time-L1 Efficient Intermittent Feedback Control 61 5.1 Preliminaries . . . 62

5.1.1 Polytopes, Convex set and Zonotopes . . . 62

5.1.2 Attainable and Reachable Sets . . . 64

5.2 Intermittent Control Scheme . . . 65

xi

(13)

5.2.1 Derivation of Bounds on Update Instants . . . 66

5.2.2 Intermittent Feedback Policy . . . 68

5.2.3 Stability Analysis . . . 70

5.2.4 Comparison with State-of-the-art . . . 72

5.3 Simulation Results . . . 74

5.4 Summary . . . 79

6 Finite-time Consensus Tracking of Multi-Agent Systems Using Time-L1 Op- timal Pursuit Evasion 81 6.1 Multi-agent System Description . . . 81

6.1.1 Preliminaries and Assumption . . . 82

6.1.2 Communication Protocol . . . 83

6.1.3 Problem Statement . . . 85

6.2 Min-max Time-L1 Pursuit-Evasion Problem . . . 87

6.2.1 Open Loop Solution . . . 87

6.2.2 Feedback Solution . . . 90

6.2.3 Illustrative Example . . . 94

6.3 Consensus Strategy for Multi-agent System . . . 97

6.3.1 Decentralized Strategy . . . 97

6.3.2 Simulation Result . . . 98

6.4 Summary . . . 100

7 Conclusions and Future Work 101 7.1 Conclusions . . . 101

7.2 Future Work . . . 103

Bibliography 105

xii

(14)

A Generalized Moment Problem 117

B Publications 121

xiii

(15)

List of Figures

1.1 Workflow of the thesis . . . 11

2.1 Possible u(t) Following the Function ψ(t) . . . 30

3.1 Structural Representation ofu(t)∈ U . . . 35

3.2 Time-Fuel Candidates Automata (TFCA) . . . 42

4.1 u(t) Trajectory for System (4.21) and (4.20) . . . 56

4.2 x1(t) Trajectory for System (4.21) . . . 56

4.3 x2(t) Trajectory for System (4.21) . . . 57

4.4 z1(t) Trajectory for System (4.20) . . . 57

4.5 z2(t) Trajectory for System (4.20) . . . 57

4.6 (x(t), u(t)) Trajectory for n = 6 LTI System . . . 58

4.7 State Space Partition for n = 2 LTI System . . . 59

5.1 Intermittent Feedback Strategy . . . 69

5.2 Characterized Safe Region . . . 73

5.3 System States (Case 1) . . . 75

5.4 Phase Plot (Case 1) . . . 75

5.5 Input and Disturbance (Case 1) . . . 75

5.6 System States (Case 2) . . . 76

xv

(16)

5.7 Phase Plot (Case 2) . . . 76

5.8 Input and Disturbance (Case 2) . . . 76

5.9 Input Designed using MPC with Ts= 0.1 . . . 77

5.10 State Trajectory Obtained using MPC with Ts= 0.1 sec . . . 78

5.11 Input Designed using MPC with Ts= 0.05 sec . . . 78

5.12 State Trajectory Obtained using MPC with Ts= 0.05 sec . . . 78

5.13 Input Designed using MPC with Ts= 0.01 sec . . . 79

5.14 State Trajectory Obtained using MPC with Ts= 0.01 sec . . . 79

6.1 A Rooted Directed Spanning Tree . . . 84

6.2 Minimum He (marked in black dots) for differentb−1λ2(t) and uem = 1. . . 89

6.3 Min-max Policy for b−1c1 >0 and b−1c2 >1 . . . 91

6.4 Min-max Policy for b−1c1 >0 and −1≤b−1c2 ≤1 . . . 91

6.5 Min-max Policy for b−1c1 <0 and b−1c2 >1 . . . 91

6.6 Min-max Policy for b−1c1 <0 and b−1c2 <−1 . . . 92

6.7 Min-max Policy for b−1c1 <0 and −1≤b−1c2 ≤1 . . . 92

6.8 Min-max Policy for b−1c1 >0 and b−1c2 <−1 . . . 92

6.9 Control Input (Case 1) . . . 95

6.10 Control Input (Case 2) . . . 95

6.11 Control Input (Case 3) . . . 95

6.12 Phase Plot of (6.11) (Case 1) . . . 96

6.13 Phase Plot of (6.11) (Case 2) . . . 96

6.14 Phase Plot of (6.11) (Case 3) . . . 96

6.15 Positional Trajectory for N = 6 MAS . . . 99

6.16 Velocity Trajectory for N = 6 MAS . . . 99

6.17 Phase Plot of Difference System for N = 6 MAS . . . 99

xvi

(17)

List of Tables

3.1 N(ψ−1(j)) for Certain Sub-sequences . . . 34

3.2 Solution Set to System of Equations (3.2) . . . 36

3.3 Super-sequential Set of Equivalence Classes of S+ for n= even . . . 39

3.4 Super-sequential Set of Equivalence Classes of S+ for n= odd . . . 39

4.1 Performance Measures for Different Values of k . . . 55

4.2 Value of the Cost Function for Feasible POs . . . 56

4.3 Possible Switching Sequences in Partitioned Region . . . 60

5.1 Fuel Consumption for Considered Cases . . . 74

5.2 Performance Comparison with MPC for Time-horizon of 2 sec. . . 77

6.1 Performance Measures for Considered Pursuit-Evasion Scenarios . . . 94

xviii

(18)

Nomenclature

Acronyms Description

CPT Control Parameterization Technique

DCF Diagonal Canonical Form

DST Directed Spanning Tree

GMP Generalized Moment Problem

IPOPT Interior Point Optimizer

JCF Jordon Canonical Form

LQR Linear Quadratic Regulator

LTI Linear Time-invariant

MAS Multi-agent System

MINLP Mixed-integer Non-linear Programs

MPC Model Predictive Control

NLP Non-linear Program

OP Optimization Problem (Static)

P-E Pursuer-evader

PMP Pontraygin’s Minimum Principle

PO Polynomial Optimization Problem

SDP Semi-definite Program

SNOPT Sparse Non-linear Optimizer

xx

(19)

Continued from previous page

Acronyms Description

TFCA Time-fuel Candidates Automata

List of Symbols Description

||x(t)||p Lp norm of vectorx(t) forp∈[0,∞]

|x(t)|1 L1 norm of vectorx(t)

||A||2 Induced L2 norm of matrix A i.e. ∥A∥= sup

x̸=0

∥Ax∥

∥x∥

R Set of Real numbers

Q Set of Rational numbers

C Set of Complex numbers

Z Set of Integers

sgn Signum Function

λ(A) Eigenvalues of A

diag() Diagonal matrix

H Hamiltonian

N(S) Cardinality of set S

u(t) Optimal input

S¯ Conjugate set of S

⟨·⟩ Inner Product

{a, b, c} Sequence a → b →c

∪ Union

⊆ Subset

⊈ Not subset

xxi

(20)

Continued from previous page

List of Symbols Description

∅ Null set

nCr Combination

conv() Convex hull of a set

h-representation Half-space representation g-representation Generator representation

a.e. Almost Everywhere

Ai Attainable set to i

Ri Reachable set to i

Ts Sampling time

inf Infimum

sup Supremum

max(a, b) Maximum between a and b

min(a, b) Minimum between a and b

argmin Minimum argument

xxii

Referensi

Dokumen terkait

National Institute of Technology, Tiruchirappalli