S1
Optimization of Absorption/Desorption Parameters of Brownmillerite SrCoO
2.5for Oxygen Storage
Aswathy M. Narayanan, Arun M. Umarji
Materials Research Centre, Indian Institute of Science, Bengaluru, India
Supplementary Material
10 30 50 70 90
(e) Abs@723 (d) Abs@693 (c) Abs@673 (b) Abs@648 (a) Abs@623
Intensity (arb. units)
SrCoO3-
Space group P4/mmm SrCoO3-
Space group P4/mmm SrCoO3-
Space group P4/mmm SrCoO3-
Space group P4/mmm BM-SrCoO2.5 Space group Ima2
2 (/Cu K)
y_obs y_calc y_bkg Difference Phase
Figure S 1 Refined XRD patterns of the samples after absorption at different temperatures (a) 623 K (b) 648 K (c) 673 K (d) 693 K and (e) 723 K.
S2
30 35 40 45 50 55 60
Offset Intensity (arb. units)
2 (/Cu K)
(a) As synthesized BM SrCoO2.5 (b) Desorbed-abs@623
(c) Desorbed-abs@648 (d) Desorbed-abs@673 (e) Desorbed-abs@693 (f) Desorbed-abs@723
(411), (020)
(510),
(022) (420) (611) (321), (312)
(800
) (022), (521)
(031), (811), (330), (422)
(820), (431), (530), (802) (413
)
Figure S 2 Comparison of XRD patterns of (a) as synthesized BM SrCoO2.5 and (b-f) samples after desorption.
0 1000 2000
0.0 0.2 0.4 0.6 0.8 1.0
Des @ 673 K Fit
Extent of conversion ()
Time (s)
0 500 1000
0.0 0.2 0.4 0.6 0.8 1.0
Des @ 693 K Fit
Extent of conversion ()
Time (s) 0.00 500 1000
0.2 0.4 0.6 0.8 1.0
Des @ 723 K Fit
Extent of conversion ()
Time (s)
0.0 0.5 1.0
0.00 0.05 0.10
Contracting Sphere model
d/dt
Extent of conversion ()
Nucleation and growth model
0 500 1000
0.0 0.5 1.0
Nucleation and growth model
Contracting Sphere model
Extent of Conversion ()
Time (Seconds)
(c) (d)
(e) (f) (g)
Oxidized form Oxidized form Reduced form
(a) (b)
Figure S 3 Schematic representation of reduction through (a) contracting sphere model (b) nucleation and growth model (adapted from ref 1). Comparison of (c) extent of conversion () vs time (d) d/dt vs for contracting sphere and nucleation and growth models (adapted from ref 1). (e-g) Desorption curves fitted with the equation given in table S3.
S3
0.001 0.002 0.003
833 455 313
2 4 6 8 10
Adj.R2 = 0.995 Ea=0.19 0.05 eV
Temperature (K)
ln (T)
1/T (K-1)
Adj.R2 = 0.997 Ea=0.67 0.05 eV
0.0015 0.0020 0.0025 0.0030
667 500 400 333
10 11 12
Adj.R2 = 0.996 Ea=0.06 0.05 eV
Temperature (K)
ln (T)
1/T (K-1)
(a) (b)
Figure S 5 Plots of ln (T) vs inverse of temperature (From DC conductivity measurements) of (a) BM SrCoO2.5 sample and (b) the sample absorbed at 673 K
0 200 400 600 800
Normalized Intensity
Binding Energy (eV)
BM SrCoO2.5
Sr 3d Abs @ 673 K
Co 2p O 1s
Sr 3s C 1s Sr 3p
0 20 40 60 80
Normalized Intensity
Binding Energy (eV)
BM SrCoO2.5 Sr loss
Co 3d Sr 4p Abs @ 673 K
Co 3p
O 2sSr 4s
275 280 285 290 295 0.0
0.5
1.0 C 1s adventitious C 1s carbonate
Normalized Intensity
Binding Energy (eV)
BM SrCoO2.5 Abs @ 673 K Sr 3p
(c)
(b) (a)
Figure S 4 (a) XPS wide spectra of BM SrCoO2.5 and the sample absorbed at 673 K, (b) zoomed version of the spectra in (a) up to 80 eV and (c) C 1s region of BM and absorbed sample showing an increased contribution of carbonate carbon in absorbed sample.
Abs@673 Abs@673
S4 10-2 10-1 100 101 102
0.0 0.2 0.4 0.6 0.8
1.0 373 K 413 K
433 K 443 K 446 K 448 K 453 K 458 K 463 K 468 K 473 K
Z"/Z" max
f/fmax 0 102 103 104 105 106 200
400
600 373 K 413 K
433 K 443 K 446 K 448 K 453 K 458 K 463 K 468 K 473 K
Z' ()
Frequency (Hz)
(a) (b)
102 103 104 105 106 0
1x10-4 2x10-4
373 K 413 K 433 K 443 K 446 K 448 K 453 K 458 K 463 K 468 K 473 K
M"
Frequency (Hz)
(c)
104 105 106 0
1x10-4
2x10-4 373 K
413 K 433 K 443 K 446 K 448 K 453 K 458 K 463 K 468 K 473 K
M'
Frequency (Hz)
(d)
(e)
2.1x10-3 2.2x10-3
476 455
13.0 13.5 14.0
Temperature (K)
ln (f max)
1/T (K-1)
WH = 0.44 0.05 eV
(f)
0.0021 0.0024 0.0027
476 417 370
-2 0 2
Temperature (K)
ln (T)
1/T (K-1)
Ea=0.25 0.05 eV Ea=0.56 0.05 eV
Figure S 6 BM SrCoO2.5 (a) normalized impedance plots (b) variation of real part of impedance with frequency at different temperatures (c) Imaginary part of modulus versus frequency (d) variation of real part of modulus with frequency, Arrhenius plots of (e) conductivity and (f) frequency maximum
S5 Table S1: Lattice parameter values obtained from Rietveld refinement for different absorbed samples
Table S2: Oxygen stored and delta value from desorption experiments and Iodometric titration
Absorption temperature
(K)
From desorption experiment From Iodometric titration
Pressure change (m bar)
O2
evolved cm3/g of SrCoO3-
Delta
Composition after absorption
Composition after desorption
Delta
723 41.1 13.24 0.22 SrCoO2.650.02 SrCoO2.410.02 0.24 693 43.9 14.16 0.23 SrCoO2.650.01 SrCoO2.380.01 0.27 673 47.1 15.28 0.26 SrCoO2.670.02 SrCoO2.400.01 0.27 648 36.5 11.76 0.19 SrCoO2.680.01 SrCoO2.430.01 0.25
623 1 0.14 0 SrCoO2.430.01 SrCoO2.430.01 0
Table S3: Fitting results for desorption kinetics study Temperature
(K)
Equation used for
fitting A1 1 (s) A2 2 (s) Adj. R
square
673 = 1-exp(-t/) - 444.2(3) - 0.9989
693 = A1*exp(-t/1) + A2*exp(-t/2) + 1
-0.93(3) 53.8(3) -0.06(3) 287(12) 0.9979
723 -0.85(3) 13.8(1) -0.15(2) 165(2) 0.9936
References
1. N. W. Hurst, S. J. Gentry, A. Jones, B. D. McNicol, Temperature programmed reduction, Catalysis Reviews Science and Engineering 24 (2) (1982) 233-309
Absorption Temperature
(K)
Space group
Lattice Parameters (Å) Cell Volume (Å3)
Cell formul a units
Normalized Cell Volume
(Å3)
a b c
623 Ima2 15.707(8) 5.557(8) 5.456(9) 476.405 8 59.550 648 P4/mmm 3.385(5) 3.385(5) 7.696(9) 113.230 2 56.615 673 P4/mmm 3.830(8) 3.830(8) 7.691(6) 112.868 2 56.434 693 P4/mmm 3.833(1) 3.833(1) 7.693(8) 113.045 2 56.522 723 P4/mmm 3.833(3) 3.833(3) 7.692(2) 113.033 2 56.517