Ordinary Differential Equation, Partial Differential Equation, Lap Lace Transforms And Vector Analysis.
Section – A UNIT – I
1. x p2 2+3xyp+2y2 =0
2. Find the particular integrands of
(
D2+16)
y=cos 4x3. Define : Linear differential equation.
4. Eliminate the arbitrary function. z f xy z
=
5. Find the particular integrals of o+
(
D2+16)
y=e−3x6. Define Clairaut’s equation.
7. Find the PDE by eliminating the ordinary constant form z px by a
= + + b. 8. Solve xp+yq=x.
Section – B
1. Solve. x−yp=ap2
2. Solve.
(
D3−D2− +D 1)
y= +1 x23. Solve.
(
D3−8D+9)
y=8sin 5x4. Solve.
(
D2+3D2−4)
y=ex+cos 3x5. Solve. y=xp+x
(
1+p2)
1/ 26. Solve x=P2 +y
7. Solve tan 1( ) 2
1
x P P
P
= − +
+ 8. (D2 −6D+5) y=e2x
9. Form the P.D.E by eliminating arbitrary constant of equt
2 2
z=ax+by+a b 10. Solve P+ +
(
1 q)
=qz.11. Solve P2 +q2 = +x y
Section – C
1. Solve.
(
D2−2D+4)
y=excosx2. Solve.
(
D3−2D+4)
y=excosx3. Solve.
(
D2+1)
y=x e2 2x+xcos4. Solve P2 +2yp Cotx= y2.
5. Solve the equation
(
D2 +5D+4)
y=x2+7x+9.UNIT –II Section – A
1. Eliminate the arbitrary function from z= f x
(
2 +y2)
and find the partial differential equation.2. Solve. q= y q2 2
3. Solve.
(
d3−3d2+4)
y=04. Write down claimant’s form.
5. Solve. z= px qy+ +pq
6. Define Lagrange’s linear equation.
7. P(1+q)=qz
Section – B
1. Solve.
(
3z−4y p)
+(
4x−2z q)
=2y−3x2. Solve. q p
(
−sinx)
=cosy3. Solve. p
(
1−q2)
=q z(
−1)
4. Solve. z= px+qy+ 1+p2+q2 5. Solve. pxy+pq+qy= y2
6. p + q =1
7. Solve z= px+qy+2
( )
pq .Section – C
1. Solve. (i) z= p2 +q2 (ii) z= px qy+ −2 pq
2. Determine the surface which satisfies the differential equation
(
x2−a p2) (
+ xy az− tan)
q=xz ay− cot and passes through the curve x2+y2 =a2, z=03. Obtain the complete solution of xp2−ypq+y q3 −y z2 =0 4. Solve z= px+qy+ 1+p2+q2 .
UNIT – III Section – A
1. Find 1 et
L t
−
2. Find
( )
1 1
L s s a
−
+
3. Find L t
(
2+ +2t 3)
4. State final value theorem in Laplace transform.
5. Find L
(
coshat)
Section – B
1. Find
( )
1 2 2
2
4 5
L s
s s
− +
+ +
2. Find L1 2 2s 2 s a b
−
+
3. Find
sin2t
L t
4. Evaluate 3
0
tcos te tdt
−5. Find L te −tsint
Section – C
1. Using Leplace transform solve
( ) ( )
2
2 2 3 sin , y 0 0 and y' 0 0 d y dy
y t
dt + dt − = = =
2. Evaluate the following integrads
3
0
( )
t bt
e e
a dt
t
− −
20
( ) sin
t t
b e dt
t
−
3. Using Leplace transform solve y'' 2 '− y + = +y
(
t 1 2, y 0) ( )
=4( )
and y' 0 = −2
UNIT-IV Section – A
1. Prove that div =3
2. If f and g are irrotational, show that f g is solenoidal.
3. Find
( )
1
2
1
2 16
L s
−
+ +
4. Find
( )
1
2 2
L s s
−
+
5. Find if =xy2+yz3
Section – B
1. Find the directional derivative of =xy+yz+zxat (1, 2, 0) in the direction of the vector i+2j+2k
2. Prove that div u v
( )
=v cur u u cur v. / − . / 3. Find( ) ( )
1
2
1
1 2 2
L s s s
−
+ + +
4. Find
( )
( )
1 2 2
2 1
2 2
L s
s s
− +
+ +
5. Prove that div r
( )
+a =o where a is a constant vector.Section – C
1. Prove that
( )
i div grad r =n n+1n( )
rn−2( )
ii curl grad r =0n2. Solve the differential equation
2
2 10 24 24
d y dy
y x
dx − dx+ = given that dy 0
y= dx =
when x = 0
3. Prove that div r r
( )
n =(
n+3)
rn. Deduce that r rn is solenoidal if and only if n = -3UNIT – V
Section – A
1. State stoke’s Theorem.
2. Define line Integral.
3. Find the unit normal to the surface x3+xyz+z3 =1 at (1,-1,1) 4. If =x z2 +ey x/ and =2z y2 −xy2 find +
(
)
5. Evaluate
01 01(
x2+y2)
dxdySection – B
1. f =
(
3x2+6y i)
−14yzj+20xz k2 , Evaluate along the path from (0, 0, 0) to (1, 1, 1) .c f d r
along the path x=t, y=t , z=t2 3 2. Evaluate .c f n
where F =18zi−12j+3ykand S is the surface of the plane. 2x+3y+6z=12 in the first octant.3. Find div f and Curl f for f =
(
y2−z2+3yz−2x i)
+(
3xz+2xy j)
(
3xy 2xz 2z k)
+ − +
4. If =log ,r where r= +xi yi+zk, Prove that 2
( )
2logr 1
= r
5. (i) Define surface integral.
(ii) If f =x i2 −xy j and C is the straight line joining the points (0, 0) and (1, 1) find .
c f d r
Section-C
1. Verify Gauss divergence theorem for F =4xi−2y j2 +z k2 taken over the region bounded by x2+y2 =4, z=0 and z=3.
2. Prove that
( )
a( )
r rn =(
n+3)
rn( )
b Curl r r( )
n =03. Verify stake’s theorem for f = y zi2 +z x y2 +x yk2 where S is the open surface of the cube forward by the planes x= a, y=a and z=a,in which the plane Z=-a is cut.