• Tidak ada hasil yang ditemukan

Ordinary Differential Equation, Partial Differential Equation, Lap Lace Transforms And Vector Analysis. Section – A UNIT – I

N/A
N/A
Protected

Academic year: 2025

Membagikan "Ordinary Differential Equation, Partial Differential Equation, Lap Lace Transforms And Vector Analysis. Section – A UNIT – I"

Copied!
6
0
0

Teks penuh

(1)

Ordinary Differential Equation, Partial Differential Equation, Lap Lace Transforms And Vector Analysis.

Section – A UNIT – I

1. x p2 2+3xyp+2y2 =0

2. Find the particular integrands of

(

D2+16

)

y=cos 4x

3. Define : Linear differential equation.

4. Eliminate the arbitrary function. z f xy z

 

=   

5. Find the particular integrals of o+

(

D2+16

)

y=e3x

6. Define Clairaut’s equation.

7. Find the PDE by eliminating the ordinary constant form z px by a

= + + b. 8. Solve xp+yq=x.

Section – B

1. Solve. xyp=ap2

2. Solve.

(

D3D2− +D 1

)

y= +1 x2

3. Solve.

(

D38D+9

)

y=8sin 5x

4. Solve.

(

D2+3D24

)

y=ex+cos 3x

5. Solve. y=xp+x

(

1+p2

)

1/ 2

6. Solve x=P2 +y

7. Solve tan 1( ) 2

1

x P P

P

= +

+ 8. (D2 −6D+5) y=e2x

9. Form the P.D.E by eliminating arbitrary constant of equt

2 2

z=ax+by+a b 10. Solve P+ +

(

1 q

)

=qz.

11. Solve P2 +q2 = +x y

(2)

Section – C

1. Solve.

(

D22D+4

)

y=excosx

2. Solve.

(

D32D+4

)

y=excosx

3. Solve.

(

D2+1

)

y=x e2 2x+xcos

4. Solve P2 +2yp Cotx= y2.

5. Solve the equation

(

D2 +5D+4

)

y=x2+7x+9.

UNIT –II Section – A

1. Eliminate the arbitrary function from z= f x

(

2 +y2

)

and find the partial differential equation.

2. Solve. q= y q2 2

3. Solve.

(

d33d2+4

)

y=0

4. Write down claimant’s form.

5. Solve. z= px qy+ +pq

6. Define Lagrange’s linear equation.

7. P(1+q)=qz

Section – B

1. Solve.

(

3z4y p

)

+

(

4x2z q

)

=2y3x

2. Solve. q p

(

sinx

)

=cosy

3. Solve. p

(

1q2

)

=q z

(

1

)

4. Solve. z= px+qy+ 1+p2+q2 5. Solve. pxy+pq+qy= y2

6. p + q =1

7. Solve z= px+qy+2

( )

pq .
(3)

Section – C

1. Solve. (i) z= p2 +q2 (ii) z= px qy+ −2 pq

2. Determine the surface which satisfies the differential equation

(

x2a p2

) (

+ xy aztan

)

q=xz ay− cot and passes through the curve x2+y2 =a2, z=0

3. Obtain the complete solution of xp2ypq+y q3y z2 =0 4. Solve z= px+qy+ 1+p2+q2 .

UNIT – III Section – A

1. Find 1 et

L t

 − 

 

 

2. Find

( )

1 1

L s s a

 

 

 + 

 

3. Find L t

(

2+ +2t 3

)

4. State final value theorem in Laplace transform.

5. Find L

(

coshat

)

Section – B

1. Find

( )

1 2 2

2

4 5

L s

s s

 + 

 + + 

 

2. Find L1 2 2s 2 s a b

 

 + 

 

3. Find

sin2t

L t

 

 

 

4. Evaluate 3

0

tcos te tdt

5. Find L te tsint

(4)

Section – C

1. Using Leplace transform solve

( ) ( )

2

2 2 3 sin , y 0 0 and y' 0 0 d y dy

y t

dt + dt − = = =

2. Evaluate the following integrads

3

0

( )

t bt

e e

a dt

t

2

0

( ) sin

t t

b e dt

t

3. Using Leplace transform solve y'' 2 ' y + = +y

(

t 1 2, y 0

) ( )

=4

( )

and y' 0 = −2

UNIT-IV Section – A

1. Prove that div =3

2. If f and g are irrotational, show that fg is solenoidal.

3. Find

( )

1

2

1

2 16

L s

 

 

 + + 

 

4. Find

( )

1

2 2

L s s

 

 

 + 

 

5. Find   if =xy2+yz3

Section – B

1. Find the directional derivative of  =xy+yz+zxat (1, 2, 0) in the direction of the vector i+2j+2k

2. Prove that div u v

( )

 =v cur u u cur v. /. / 3. Find

( ) ( )

1

2

1

1 2 2

L s s s

 

 

+ + +

 

 

4. Find

( )

( )

1 2 2

2 1

2 2

L s

s s

 + 

 + + 

 

5. Prove that div r

( )

+a =o where a is a constant vector.
(5)

Section – C

1. Prove that

( )

i div grad r =n n+1n

( )

rn2

( )

ii curl grad r =0n

2. Solve the differential equation

2

2 10 24 24

d y dy

y x

dxdx+ = given that dy 0

y= dx =

when x = 0

3. Prove that div r r

( )

n =

(

n+3

)

rn. Deduce that r rn is solenoidal if and only if n = -3

UNIT – V

Section – A

1. State stoke’s Theorem.

2. Define line Integral.

3. Find the unit normal to the surface x3+xyz+z3 =1 at (1,-1,1) 4. If =x z2 +ey x/ and  =2z y2xy2 find  +

(

 

)

5. Evaluate

 

01 01

(

x2+y2

)

dxdy

Section – B

1. f =

(

3x2+6y i

)

14yzj+20xz k2 , Evaluate along the path from (0, 0, 0) to (1, 1, 1) .

c f d r

along the path x=t, y=t , z=t2 3 2. Evaluate .

c f n

where F =18zi12j+3ykand S is the surface of the plane. 2x+3y+6z=12 in the first octant.

3. Find div f and Curl f for f =

(

y2z2+3yz2x i

)

+

(

3xz+2xy j

)

(

3xy 2xz 2z k

)

+ − +

4. If  =log ,r where r= +xi yi+zk, Prove that 2

( )

2

logr 1

 = r

5. (i) Define surface integral.

(ii) If f =x i2xy j and C is the straight line joining the points (0, 0) and (1, 1) find .

c f d r

(6)

Section-C

1. Verify Gauss divergence theorem for F =4xi−2y j2 +z k2 taken over the region bounded by x2+y2 =4, z=0 and z=3.

2. Prove that

( )

a

( )

r rn =

(

n+3

)

rn

( )

b Curl r r

( )

n =0

3. Verify stake’s theorem for f = y zi2 +z x y2 +x yk2 where S is the open surface of the cube forward by the planes x= a, y=a and z=a,in which the plane Z=-a is cut.

Referensi

Dokumen terkait