Dynamics of fluctuation correlation in periodically driven classical system
Atanu Rajak
Presidency University, Kolkata
8th Indian Statistical Physics Community Meeting ICTS, Bangalore
Aritra Kundu, Atanu Rajak, and Tanay Nag, PRB 104, 075161 (2021)
Periodically Driven systems
β’ Periodic drive in isolated many-body systems: Novel dynamic phases
β’ Problem: A generic many-body system (chaotic) heats up
β’ Exponentially suppressed heating rate: βPrethermalizationβ
(DβAlessio, Polkovnokov, Ann. Phys. 333, 19-33 (2013); DβAlessio, Rigol, PRX 4, 041048 (2014);
Lazarides et al, PRE 90, 012110 (2014); Rusomanno et al, JSTAT P08030 (2015))
(Choudhury & Mueller PRA 2014 - Bukov etal PRL 2015 - Abaninetal PRL 2015 β
Goldman etalPRA 2015 - Chandra & Sondhi PRB 2016-Mori etal PRL 2016- MallayyaetalPRL 2019)
Exponential suppressed heating
Prethermal time-scale, ππ
β~ππ
π΄π΄Ξ©π½π½For quantum spin systems with a local norm bound
Using perturbative argument and Floquet Magnus expansion
π΄π΄ is unitless parameter, π½π½ is the energy bound
Abanin , et al. PRL 115, 256803(2015), Mori, et al. PRL 116, 120401 (2016)
Experimental realization: Rubio-Abadal etal PRX 2020-Peng etal Nat. Phys. 2021
Limitation of above studies:
1. Finite-size effects 2. Finite bandwidth
Can we overcome these issues?
Coupled kicked rotors
Always diffusive
Kaneko & Konishi (1989) Chirikov & Vecheslavov (1997)
πΈπΈππππππ π‘π‘ = ππ1 βππ=1ππ β¨ππππ22π‘π‘ β©
πΎπΎ = π π ππ
ππβ = π π
1.066ππ = 0.9831πΎπΎ ππ2
βStatistical Floquet Prethermalizationβ
Lifetime ,
π‘π‘
β~ππ
1/ππβBeyond average?
Rajak, Citro, Dalla Torre, JPA (2018) Rajak, Dana, Dalla Torre, PRB (R) (2019)
Sadia, Dalla Torre, Rajak, PRB (2022)
Spatiotemporal Fluctuation Correlation
πΆπΆ ππ,ππ,π‘π‘, π‘π‘π€π€ = 1
4 ππππ2 π‘π‘ ππππ2 π‘π‘π€π€ β β¨ππππ2 π‘π‘ β©β¨ππππ2 π‘π‘π€π€ β©
πΆπΆ π₯π₯, π‘π‘ = π΄π΄πππ‘π‘β12ππ(π₯π₯π‘π‘β12) ππ π¦π¦ = (1/ 2ππππ)ππβπ¦π¦2/2π·π· Prethermal Regime: πΎπΎ = 0.14,π‘π‘ > π‘π‘π€π€
π΄π΄πΎπΎ = οΏ½
π₯π₯
πΆπΆ π₯π₯,π‘π‘ β 0.4402πΎπΎ2 ππ4
For isolated static systems,
πΆπΆ ~
π‘π‘1πΎπΎππ(
π‘π‘π₯π₯πΎπΎ)
Spohn, J. Stat. Phys. (2014), Das et al., PRE (2014)Bastianello et al., SciPost Phys. (2018) Nardis, Bernard, and Doyon, PRL (2018) Spohn, J. Phys. A (2020)
Hydrodynamic picture
ππ
π‘π‘π’π’ π₯π₯, π‘π‘ β ππ
2 ππ
π₯π₯2π’π’ π₯π₯, π‘π‘ + π΅π΅ππ
π₯π₯ππ (π₯π₯, π‘π‘)
Local energy fluctuation: π’π’ π₯π₯, π‘π‘ = 12(ππ2 π₯π₯,π‘π‘ β β¨ππ2 π₯π₯,π‘π‘ β©) Noise: ππ π₯π₯,π‘π‘ ππ π₯π₯β²,π‘π‘β² = πΏπΏπ₯π₯,π₯π₯β²πΏπΏ(π‘π‘ β π‘π‘π‘)
πΆπΆ π₯π₯,π‘π‘ β π‘π‘π€π€ = π’π’ π‘π‘π€π€ 2
2ππππ(π‘π‘ β π‘π‘π€π€)ππβ π₯π₯
2
2π·π· π‘π‘βπ‘π‘π€π€
Hydrodynamic equation similar to the un-driven case
Fluctuation dissipation relation: πππΆπΆ~π΅π΅2 πΆπΆ~πΎπΎ2,π΅π΅~πΎπΎ οΏ½ ππ~πΎπΎ0
Spatiotemporal Fluctuation Correlation
Heating Regime: πΎπΎ = 3 and π‘π‘π€π€ = 142
Independent rotors model:
sin ππππ ππ sin ππππ ππ = 1
2πΏπΏππ,πππΏπΏππ,ππ
sin ππππ ππ sin ππππ ππβ² sin ππππ ππ sin ππππ ππβ²
= 1
4 πΏπΏππ,ππβ²πΏπΏππ,ππβ²πΏπΏππ,πππΏπΏππ,ππ + πΏπΏππ,πππΏπΏππβ²,ππβ²πΏπΏππ,πππΏπΏππ,ππ +πΏπΏππ,ππβ²πΏπΏππβ²,πππΏπΏππ,πππΏπΏππ,ππ +3
8πΏπΏππ,ππβ²πΏπΏππ,ππβ²πΏπΏππ,πππΏπΏππ,πππΏπΏππ,πππΏπΏππ,ππ
πΆπΆ ππ,ππ,π‘π‘,π‘π‘π€π€ = πΎπΎ4 π‘π‘π€π€2
2 πΏπΏππ,ππ + π‘π‘π€π€2
8 πΏπΏππ,ππ+1 + π‘π‘π€π€2
8 πΏπΏππ,ππβ1 + ππ(π‘π‘π€π€) Correlations are frozen both in space and time
Spatiotemporal Fluctuation Correlation
Crossover Regime: a πΎπΎ = 0.14,π‘π‘π€π€ = 142; ππ πΎπΎ = 0.7,π‘π‘π€π€ = 64
Stretched Exponential, πΆπΆ π₯π₯,π‘π‘ ~ππβπΌπΌ π₯π₯ π½π½ π½π½~0.63 0.65 , almost independent of πΎπΎ
Correlations are frozen in time but not space
Dynamical Phases: Schematic diagram
ππ =
ββπ₯π₯π₯π₯π₯π₯πΆπΆ(π₯π₯,π‘π‘2πΆπΆ(π₯π₯,π‘π‘))Conclusions
β’ Quasi-static nature of prethermal phases is supported by fluctuation correlations
β’ Fluctuation correlations show distinct behavior in different dynamic regimes
β’ Hydrodynamic picture of prethermal phases
Thank You
High-frequency limit
For Ξ© =
2ππππβ« 1, the average Hamiltonian
π»π»β = 1 ππ οΏ½0
πππ»π» π‘π‘ πππ‘π‘ = οΏ½
ππ=1 ππ ππππ2
2 β π π
ππ cos(ππππ β ππππ+1)
ππ = 1 ππ οΏ½ππ=1
ππ
ππππ
The angular momentum of the center of mass
ππ is an exact constant of the motion
π»π» and π»π»β are invariant under ππππ β ππππ + ππ
Generalized Gibbs ensemble
The prethermal state is described by
ππβ ππππ,ππππ = 1
ππ πππ₯π₯ππ β
π»π»β ππππ,ππππ
ππβ + πΎπΎππ({ππππ}) Μ ππ = πΎπΎππβ ππ π»π»β
contains terms of ππ
ππand ππ
ππseparately
ππβ ππππ = ππβ1οΏ½
ππ=1 ππ
πππ₯π₯ππ β ππππ β Μ ππ 2 2ππβ
M. Rigol, V. Dunjko, V. Yurovsky, and M. Olshanii, PRL 98, 050405 (2007).
A. Lazarides, A. Das, and R. Moessner, PRL 112, 150401 (2014).
Average energy
πΈπΈβ = οΏ½
ππ=1
ππ ππππ2 β
2 β π π ππ οΏ½ππ=1
ππ
cos ππππ β ππππ+1 β
Here
ππ β = β« βππ=1ππ ππ ππππ, ππππ ππβ ππππ, ππππ πππππππππππππΈπΈβ = πΈπΈπΎπΎ + πΈπΈπΌπΌ = ππ
2 (ππβ + Μ ππ2) β πππ π ππ
πΌπΌ1 ππ πΌπΌ0 ππ
Where
πΌπΌ
ππππ
is the modified Bessel function of orderππ ππ = π π /ππππ
βInitial conditions:
ππππ = Μ ππand
ππππ are homogenously distributed from 0 to 2πππΈπΈ0 = ππ Μ ππ2 2
Temperature of prethermal state
The energy of the initial state (πΈπΈ
0) =
The average energy of the prethermal state (πΈπΈ
β)
2πππΌπΌ
1ππ = πΌπΌ
0(ππ)
Numerical solution of the equation:
ππ = 1.066
ππβ = π π
1.066ππ = 0.9831πΎπΎ ππ2
For Μ ππ = 0,πΈπΈππππππ = T2β πΈπΈππππππβ ππ2 = ππ2ππβ
2 = 0.469πΎπΎ
Many-body resonance
Consider the system close to the integrable one, i.e., π π β 0
The condition for a primary resonance with unperturbed frequencies
οΏ½
ππ=1 ππ
ππππππππ β ππΞ© β² π π /ππ
For our system, ππ
Μππ = ππ
ππ= ππ
ππππ
ππβ ππ
ππ+1β ππΞ© β² π π /ππ
ππππβ² ππππβ²=1 are integer vectors, with ππππ = 1 and ππππ+1 = β1 for some ππ
B. Chirikov and V. Vecheslavov, J. Stat. Phys. 71, 243 (1993), J. Exp. Theor. Phys. 85, 616 (1997).
Probability of escape
ππ(ππ) = οΏ½
β π π /ππ π π /ππ
πππ₯π₯ππβ(ππππ β ππππ+1 β ππΞ© = x)
β 2 π π
ππ ππβ(ππππ β ππππ+1 = ππΞ©)
= π π ππππβππ
12
exp βππ2Ξ©2 4ππβ
ππβ ππππ = ππβ1 οΏ½
ππ=1 ππ
πππ₯π₯ππ β ππππ β Μ ππ 2 2ππβ
Using ππ
β= 0.9381
πππΎπΎ2 andΞ© =
2ππππππ(ππ) = 1
0.9381ππ
1/2
exp β ππ2ππ2 0.9381πΎπΎ
Time to escape from prethermal state ~1/ππ
(ππ)Possible Experimental realization of the model
π»π»οΏ½ = οΏ½
ππ=1 ππ
ππππππ2 + π½π½(π‘π‘)(ππππΟ―ππππ + H.ππ. )
In the limit, ππ = β¨ππ
ππβ© β« 1
π»π»οΏ½ = οΏ½
ππ=1 ππ
ππππππ2 + 2π½π½ π‘π‘ ππ cos(ππππ β ππππ+1)
ππππ = ππππππππππ
A kicking potential,
π½π½ π‘π‘ = π½π½0Ξ(π‘π‘)Rubio Abadal et al (Bloch group), PRX (2020) Rajak, Dana, Dalla Torre, PRB Rapid (2019)