• Tidak ada hasil yang ditemukan

PDF Dynamics of fluctuation correlation in periodically driven ... - ICTS

N/A
N/A
Protected

Academic year: 2024

Membagikan "PDF Dynamics of fluctuation correlation in periodically driven ... - ICTS"

Copied!
18
0
0

Teks penuh

(1)

Dynamics of fluctuation correlation in periodically driven classical system

Atanu Rajak

Presidency University, Kolkata

8th Indian Statistical Physics Community Meeting ICTS, Bangalore

Aritra Kundu, Atanu Rajak, and Tanay Nag, PRB 104, 075161 (2021)

(2)

Periodically Driven systems

β€’ Periodic drive in isolated many-body systems: Novel dynamic phases

β€’ Problem: A generic many-body system (chaotic) heats up

β€’ Exponentially suppressed heating rate: β€œPrethermalization”

(D’Alessio, Polkovnokov, Ann. Phys. 333, 19-33 (2013); D’Alessio, Rigol, PRX 4, 041048 (2014);

Lazarides et al, PRE 90, 012110 (2014); Rusomanno et al, JSTAT P08030 (2015))

(Choudhury & Mueller PRA 2014 - Bukov etal PRL 2015 - Abaninetal PRL 2015 –

Goldman etalPRA 2015 - Chandra & Sondhi PRB 2016-Mori etal PRL 2016- MallayyaetalPRL 2019)

(3)

Exponential suppressed heating

Prethermal time-scale, 𝜏𝜏

βˆ—

~𝑒𝑒

𝐴𝐴Ω𝐽𝐽

For quantum spin systems with a local norm bound

Using perturbative argument and Floquet Magnus expansion

𝐴𝐴 is unitless parameter, 𝐽𝐽 is the energy bound

Abanin , et al. PRL 115, 256803(2015), Mori, et al. PRL 116, 120401 (2016)

Experimental realization: Rubio-Abadal etal PRX 2020-Peng etal Nat. Phys. 2021

Limitation of above studies:

1. Finite-size effects 2. Finite bandwidth

Can we overcome these issues?

(4)

Coupled kicked rotors

Always diffusive

Kaneko & Konishi (1989) Chirikov & Vecheslavov (1997)

πΈπΈπ‘˜π‘˜π‘˜π‘˜π‘˜π‘˜ 𝑑𝑑 = 𝑁𝑁1 βˆ‘π‘—π‘—=1𝑁𝑁 βŸ¨π‘π‘π‘—π‘—22𝑑𝑑 ⟩

𝐾𝐾 = πœ…πœ…πœπœ

π‘‡π‘‡βˆ— = πœ…πœ…

1.066𝜏𝜏 = 0.9831𝐾𝐾 𝜏𝜏2

β€œStatistical Floquet Prethermalization”

Lifetime ,

𝑑𝑑

βˆ—

~𝑒𝑒

1/π‘‡π‘‡βˆ—

Beyond average?

Rajak, Citro, Dalla Torre, JPA (2018) Rajak, Dana, Dalla Torre, PRB (R) (2019)

Sadia, Dalla Torre, Rajak, PRB (2022)

(5)

Spatiotemporal Fluctuation Correlation

𝐢𝐢 𝑖𝑖,𝑗𝑗,𝑑𝑑, 𝑑𝑑𝑀𝑀 = 1

4 π‘π‘π‘˜π‘˜2 𝑑𝑑 𝑝𝑝𝑗𝑗2 𝑑𝑑𝑀𝑀 βˆ’ βŸ¨π‘π‘π‘˜π‘˜2 𝑑𝑑 βŸ©βŸ¨π‘π‘π‘—π‘—2 𝑑𝑑𝑀𝑀 ⟩

𝐢𝐢 π‘₯π‘₯, 𝑑𝑑 = π΄π΄π‘˜π‘˜π‘‘π‘‘βˆ’12𝑓𝑓(π‘₯π‘₯π‘‘π‘‘βˆ’12) 𝑓𝑓 𝑦𝑦 = (1/ 2πœ‹πœ‹πœ‹πœ‹)π‘’π‘’βˆ’π‘¦π‘¦2/2𝐷𝐷 Prethermal Regime: 𝐾𝐾 = 0.14,𝑑𝑑 > 𝑑𝑑𝑀𝑀

𝐴𝐴𝐾𝐾 = �

π‘₯π‘₯

𝐢𝐢 π‘₯π‘₯,𝑑𝑑 β‰ˆ 0.4402𝐾𝐾2 𝜏𝜏4

For isolated static systems,

𝐢𝐢 ~

𝑑𝑑1𝛾𝛾

𝑓𝑓(

𝑑𝑑π‘₯π‘₯𝛾𝛾

)

Spohn, J. Stat. Phys. (2014), Das et al., PRE (2014)

Bastianello et al., SciPost Phys. (2018) Nardis, Bernard, and Doyon, PRL (2018) Spohn, J. Phys. A (2020)

(6)

Hydrodynamic picture

πœ•πœ•

𝑑𝑑

𝑒𝑒 π‘₯π‘₯, 𝑑𝑑 β‰… πœ‹πœ‹

2 πœ•πœ•

π‘₯π‘₯2

𝑒𝑒 π‘₯π‘₯, 𝑑𝑑 + π΅π΅πœ•πœ•

π‘₯π‘₯

πœ‰πœ‰ (π‘₯π‘₯, 𝑑𝑑)

Local energy fluctuation: 𝑒𝑒 π‘₯π‘₯, 𝑑𝑑 = 12(𝑝𝑝2 π‘₯π‘₯,𝑑𝑑 βˆ’ βŸ¨π‘π‘2 π‘₯π‘₯,𝑑𝑑 ⟩) Noise: πœ‰πœ‰ π‘₯π‘₯,𝑑𝑑 πœ‰πœ‰ π‘₯π‘₯β€²,𝑑𝑑′ = 𝛿𝛿π‘₯π‘₯,π‘₯π‘₯′𝛿𝛿(𝑑𝑑 βˆ’ 𝑑𝑑𝑑)

𝐢𝐢 π‘₯π‘₯,𝑑𝑑 βˆ’ 𝑑𝑑𝑀𝑀 = 𝑒𝑒 𝑑𝑑𝑀𝑀 2

2πœ‹πœ‹πœ‹πœ‹(𝑑𝑑 βˆ’ 𝑑𝑑𝑀𝑀)π‘’π‘’βˆ’ π‘₯π‘₯

2

2𝐷𝐷 π‘‘π‘‘βˆ’π‘‘π‘‘π‘€π‘€

Hydrodynamic equation similar to the un-driven case

Fluctuation dissipation relation: πœ‹πœ‹πΆπΆ~𝐡𝐡2 𝐢𝐢~𝐾𝐾2,𝐡𝐡~𝐾𝐾 οΏ½ πœ‹πœ‹~𝐾𝐾0

(7)

Spatiotemporal Fluctuation Correlation

Heating Regime: 𝐾𝐾 = 3 and 𝑑𝑑𝑀𝑀 = 142

Independent rotors model:

sin π‘Ÿπ‘Ÿπ‘˜π‘˜ 𝑛𝑛 sin π‘Ÿπ‘Ÿπ‘—π‘— π‘šπ‘š = 1

2π›Ώπ›Ώπ‘˜π‘˜,π‘šπ‘šπ›Ώπ›Ώπ‘˜π‘˜,𝑗𝑗

sin π‘Ÿπ‘Ÿπ‘˜π‘˜ 𝑛𝑛 sin π‘Ÿπ‘Ÿπ‘—π‘— 𝑛𝑛′ sin π‘Ÿπ‘Ÿπ‘˜π‘˜ π‘šπ‘š sin π‘Ÿπ‘Ÿπ‘™π‘™ π‘šπ‘šβ€²

= 1

4 π›Ώπ›Ώπ‘˜π‘˜,π‘˜π‘˜β€²π›Ώπ›Ώπ‘šπ‘š,π‘šπ‘šβ€²π›Ώπ›Ώπ‘˜π‘˜,π‘—π‘—π›Ώπ›Ώπ‘˜π‘˜,𝑙𝑙 + π›Ώπ›Ώπ‘˜π‘˜,π‘šπ‘šπ›Ώπ›Ώπ‘˜π‘˜β€²,π‘šπ‘šβ€²π›Ώπ›Ώπ‘˜π‘˜,π‘˜π‘˜π›Ώπ›Ώπ‘—π‘—,𝑙𝑙 +π›Ώπ›Ώπ‘˜π‘˜,π‘šπ‘šβ€²π›Ώπ›Ώπ‘˜π‘˜β€²,π‘šπ‘šπ›Ώπ›Ώπ‘˜π‘˜,𝑙𝑙𝛿𝛿𝑗𝑗,π‘˜π‘˜ +3

8π›Ώπ›Ώπ‘˜π‘˜,π‘˜π‘˜β€²π›Ώπ›Ώπ‘šπ‘š,π‘šπ‘šβ€²π›Ώπ›Ώπ‘šπ‘š,π‘˜π‘˜π›Ώπ›Ώπ‘˜π‘˜,π‘—π‘—π›Ώπ›Ώπ‘˜π‘˜,π‘™π‘™π›Ώπ›Ώπ‘˜π‘˜,π‘˜π‘˜

𝐢𝐢 𝑖𝑖,𝑗𝑗,𝑑𝑑,𝑑𝑑𝑀𝑀 = 𝐾𝐾4 𝑑𝑑𝑀𝑀2

2 π›Ώπ›Ώπ‘˜π‘˜,𝑗𝑗 + 𝑑𝑑𝑀𝑀2

8 π›Ώπ›Ώπ‘˜π‘˜,𝑗𝑗+1 + 𝑑𝑑𝑀𝑀2

8 π›Ώπ›Ώπ‘˜π‘˜,π‘—π‘—βˆ’1 + 𝑂𝑂(𝑑𝑑𝑀𝑀) Correlations are frozen both in space and time

(8)

Spatiotemporal Fluctuation Correlation

Crossover Regime: a 𝐾𝐾 = 0.14,𝑑𝑑𝑀𝑀 = 142; 𝑏𝑏 𝐾𝐾 = 0.7,𝑑𝑑𝑀𝑀 = 64

Stretched Exponential, 𝐢𝐢 π‘₯π‘₯,𝑑𝑑 ~π‘’π‘’βˆ’π›Όπ›Ό π‘₯π‘₯ 𝛽𝛽 𝛽𝛽~0.63 0.65 , almost independent of 𝐾𝐾

Correlations are frozen in time but not space

(9)

Dynamical Phases: Schematic diagram

π‘Šπ‘Š =

βˆ‘βˆ‘π‘₯π‘₯π‘₯π‘₯π‘₯π‘₯𝐢𝐢(π‘₯π‘₯,𝑑𝑑2𝐢𝐢(π‘₯π‘₯,𝑑𝑑))
(10)

Conclusions

β€’ Quasi-static nature of prethermal phases is supported by fluctuation correlations

β€’ Fluctuation correlations show distinct behavior in different dynamic regimes

β€’ Hydrodynamic picture of prethermal phases

Thank You

(11)

High-frequency limit

For Ξ© =

2πœ‹πœ‹πœπœ

≫ 1, the average Hamiltonian

π»π»βˆ— = 1 𝜏𝜏 οΏ½0

𝜏𝜏𝐻𝐻 𝑑𝑑 𝑑𝑑𝑑𝑑 = οΏ½

𝑗𝑗=1 𝑁𝑁 𝑝𝑝𝑗𝑗2

2 βˆ’ πœ…πœ…

𝜏𝜏 cos(πœ™πœ™π‘—π‘— βˆ’ πœ™πœ™π‘—π‘—+1)

𝑃𝑃 = 1 𝑁𝑁 �𝑗𝑗=1

𝑁𝑁

𝑝𝑝𝑗𝑗

The angular momentum of the center of mass

𝑃𝑃 is an exact constant of the motion

𝐻𝐻 and π»π»βˆ— are invariant under πœ™πœ™π‘—π‘— β†’ πœ™πœ™π‘—π‘— + πœ’πœ’

(12)

Generalized Gibbs ensemble

The prethermal state is described by

π‘ƒπ‘ƒβˆ— 𝑝𝑝𝑗𝑗,πœ™πœ™π‘—π‘— = 1

𝑍𝑍 𝑒𝑒π‘₯π‘₯𝑝𝑝 βˆ’

π»π»βˆ— 𝑝𝑝𝑗𝑗,πœ™πœ™π‘—π‘—

π‘‡π‘‡βˆ— + 𝛾𝛾𝑃𝑃({𝑝𝑝𝑗𝑗}) ̅𝑝𝑝 = π›Ύπ›Ύπ‘‡π‘‡βˆ— 𝑁𝑁 π»π»βˆ—

contains terms of 𝑝𝑝

𝑗𝑗

and πœ™πœ™

𝑗𝑗

separately

π‘ƒπ‘ƒβˆ— 𝑝𝑝𝑗𝑗 = π‘π‘βˆ’1οΏ½

𝑗𝑗=1 𝑁𝑁

𝑒𝑒π‘₯π‘₯𝑝𝑝 βˆ’ 𝑝𝑝𝑗𝑗 βˆ’ ̅𝑝𝑝 2 2π‘‡π‘‡βˆ—

M. Rigol, V. Dunjko, V. Yurovsky, and M. Olshanii, PRL 98, 050405 (2007).

A. Lazarides, A. Das, and R. Moessner, PRL 112, 150401 (2014).

(13)

Average energy

πΈπΈβˆ— = οΏ½

𝑗𝑗=1

𝑁𝑁 𝑝𝑝𝑗𝑗2 βˆ—

2 βˆ’ πœ…πœ… 𝜏𝜏 �𝑗𝑗=1

𝑁𝑁

cos πœ™πœ™π‘—π‘— βˆ’ πœ™πœ™π‘—π‘—+1 βˆ—

Here

𝑂𝑂 βˆ— = ∫ βˆπ‘—π‘—=1𝑁𝑁 𝑂𝑂 𝑝𝑝𝑗𝑗, πœ™πœ™π‘—π‘— π‘ƒπ‘ƒβˆ— 𝑝𝑝𝑗𝑗, πœ™πœ™π‘—π‘— π‘‘π‘‘π‘π‘π‘—π‘—π‘‘π‘‘πœ™πœ™π‘—π‘—

πΈπΈβˆ— = 𝐸𝐸𝐾𝐾 + 𝐸𝐸𝐼𝐼 = 𝑁𝑁

2 (π‘‡π‘‡βˆ— + ̅𝑝𝑝2) βˆ’ π‘π‘πœ…πœ… 𝜏𝜏

𝐼𝐼1 πœ–πœ– 𝐼𝐼0 πœ–πœ–

Where

𝐼𝐼

π‘˜π‘˜

πœ–πœ–

is the modified Bessel function of order

𝑛𝑛 πœ–πœ– = πœ…πœ… /πœπœπ‘‡π‘‡

βˆ—

Initial conditions:

𝑝𝑝𝑗𝑗 = ̅𝑝𝑝

and

πœ™πœ™π‘—π‘— are homogenously distributed from 0 to 2πœ‹πœ‹

𝐸𝐸0 = 𝑁𝑁 ̅𝑝𝑝2 2

(14)

Temperature of prethermal state

The energy of the initial state (𝐸𝐸

0

) =

The average energy of the prethermal state (𝐸𝐸

βˆ—

)

2πœ–πœ–πΌπΌ

1

πœ–πœ– = 𝐼𝐼

0

(πœ–πœ–)

Numerical solution of the equation:

πœ–πœ– = 1.066

π‘‡π‘‡βˆ— = πœ…πœ…

1.066𝜏𝜏 = 0.9831𝐾𝐾 𝜏𝜏2

For ̅𝑝𝑝 = 0,πΈπΈπ‘˜π‘˜π‘˜π‘˜π‘˜π‘˜ = T2βˆ— πΈπΈπ‘˜π‘˜π‘˜π‘˜π‘˜π‘˜βˆ— 𝜏𝜏2 = 𝜏𝜏2π‘‡π‘‡βˆ—

2 = 0.469𝐾𝐾

(15)

Many-body resonance

Consider the system close to the integrable one, i.e., πœ…πœ… β†’ 0

The condition for a primary resonance with unperturbed frequencies

οΏ½

𝑗𝑗=1 𝑁𝑁

π‘šπ‘šπ‘—π‘—πœ”πœ”π‘—π‘— βˆ’ 𝑀𝑀Ω ≲ πœ…πœ…/𝜏𝜏

For our system, 𝑗𝑗

Μ‡πœ™πœ™ = πœ”πœ”

𝑗𝑗

= 𝑝𝑝

𝑗𝑗

𝑝𝑝

𝑗𝑗

βˆ’ 𝑝𝑝

𝑗𝑗+1

βˆ’ 𝑀𝑀Ω ≲ πœ…πœ…/𝜏𝜏

π‘šπ‘šπ‘—π‘—β€² 𝑗𝑗𝑁𝑁′=1 are integer vectors, with π‘šπ‘šπ‘—π‘— = 1 and π‘šπ‘šπ‘—π‘—+1 = βˆ’1 for some 𝑗𝑗

B. Chirikov and V. Vecheslavov, J. Stat. Phys. 71, 243 (1993), J. Exp. Theor. Phys. 85, 616 (1997).

(16)

Probability of escape

𝑃𝑃(𝑀𝑀) = οΏ½

βˆ’ πœ…πœ…/𝜏𝜏 πœ…πœ…/𝜏𝜏

𝑑𝑑π‘₯π‘₯π‘ƒπ‘ƒβˆ—(𝑝𝑝𝑗𝑗 βˆ’ 𝑝𝑝𝑗𝑗+1 βˆ’ 𝑀𝑀Ω = x)

β‰ˆ 2 πœ…πœ…

𝜏𝜏 π‘ƒπ‘ƒβˆ—(𝑝𝑝𝑗𝑗 βˆ’ 𝑝𝑝𝑗𝑗+1 = 𝑀𝑀Ω)

= πœ…πœ… πœ‹πœ‹π‘‡π‘‡βˆ—πœπœ

12

exp βˆ’π‘€π‘€2Ξ©2 4π‘‡π‘‡βˆ—

π‘ƒπ‘ƒβˆ— 𝑝𝑝𝑗𝑗 = π‘π‘βˆ’1 οΏ½

𝑗𝑗=1 𝑁𝑁

𝑒𝑒π‘₯π‘₯𝑝𝑝 βˆ’ 𝑝𝑝𝑗𝑗 βˆ’ ̅𝑝𝑝 2 2π‘‡π‘‡βˆ—

Using 𝑇𝑇

βˆ—

= 0.9381

𝜏𝜏𝐾𝐾2 and

Ξ© =

2πœ‹πœ‹πœπœ

𝑃𝑃(𝑀𝑀) = 1

0.9381πœ‹πœ‹

1/2

exp βˆ’ 𝑀𝑀2πœ‹πœ‹2 0.9381𝐾𝐾

Time to escape from prethermal state ~1/𝑃𝑃

(𝑀𝑀)
(17)

Possible Experimental realization of the model

𝐻𝐻� = �

𝑗𝑗=1 𝑁𝑁

π‘ˆπ‘ˆπ‘›π‘›π‘—π‘—2 + 𝐽𝐽(𝑑𝑑)(πœ“πœ“π‘—π‘—Ο―πœ“πœ“π‘—π‘— + H.𝑐𝑐. )

In the limit, 𝑛𝑛 = βŸ¨π‘›π‘›

𝑗𝑗

⟩ ≫ 1

𝐻𝐻� = �

𝑗𝑗=1 𝑁𝑁

π‘ˆπ‘ˆπ‘›π‘›π‘—π‘—2 + 2𝐽𝐽 𝑑𝑑 𝑛𝑛 cos(πœ™πœ™π‘—π‘— βˆ’ πœ™πœ™π‘—π‘—+1)

πœ“πœ“π‘—π‘— = π‘›π‘›π‘’π‘’π‘˜π‘˜πœ™πœ™π‘—π‘—

A kicking potential,

𝐽𝐽 𝑑𝑑 = 𝐽𝐽0Ξ”(𝑑𝑑)

Rubio Abadal et al (Bloch group), PRX (2020) Rajak, Dana, Dalla Torre, PRB Rapid (2019)

Exponentially suppressed heating rate!

(18)

Prethermalization (longer times)

Referensi

Dokumen terkait