• Tidak ada hasil yang ditemukan

PDF Thermalization, Entanglement, Many-body systems, and all that jazz - ICTS

N/A
N/A
Protected

Academic year: 2024

Membagikan "PDF Thermalization, Entanglement, Many-body systems, and all that jazz - ICTS"

Copied!
18
0
0

Teks penuh

(1)

Thermalization, Entanglement, Many-body systems, and all that jazz

1. Entanglement within many-body quantum states drives subsystems to thermalization although the full state remain pure and of zero entropy.

2. Closed many-body systems maybe integrable or not, and it is believed that non-integrable systems with very few conserved laws rapidly thermalize, and the mechanism is the “ETH”.

3. Information diffusion within many-body systems could be exponentially fast and lead to “scrambling”, “butterfly effect” and ...

(2)

Entanglement in two coupled kicked rotors

q01 = q1 + p10 p01 = p1 + K1

2π sin(2πq1) + b

2π sin(2π(q1+q2)) q02 = q2 + p20

p02 = p2 + K2

2π sin(2πq2) + b

2π sin(2π(q1+q2)).

Quantize this to get a Unitary operatorU = (U1⊗U2)Uint(b).

What are the entanglement properties of the eigenstates ofU?

What connection does it have to classical chaos?

(3)

Use K1 = 0.1,K2 = 0.15. N = 1/h.

Left: N = 15,20,25: spectral avg. entanglement vs coupling

Right: N = 40,b= 2.0: Entanglement across a spectrum.

(Entangling power of quantum chaos, AL: Phys. Rev. E, 2001)

(4)

Two Coupled Quantum Chaotic Tops

QC time evolution leads to near maximum entanglement

(5)

Two Coupled Quantum Chaotic Tops

Quantum chaos leads to universal bipartite pure state

entanglement: Marcenko-Pastur distribution of eigenvalues of RDM

The entanglement is nearly maximal and S = ln(γN). For N =M, S = ln(N)−1/2. AsM → ∞, γ →1.

(J. Bandyopadhyay, AL Phys. Rev. Lett., 2002)

(6)

Ising Model in a tilted magnetic field

H(J,B, θ) =J

L−1

X

n=1

σznσzn+1+B

L

X

n=1

(sin(θ)σnx+ cos(θ)σzn)

Symmetry reduce.

L

Y

i=1

⊗σiy

!

H(J,B, θ)

L

Y

i=1

⊗σiy

!

= −H(−J,B, θ).

B|s1s2. . .sNi=|sN. . .s2s1i, [H, B] = 0

(7)

Quantum Chaos: tilted field . J = B = 1

0 1 2 3 4 5

0 0.2 0.4 0.6 0.8 1 1.2 1.4

Energy

Angle of tilt

0 0.2 0.4 0.6 0.8 1

0 0.5 1 1.5 2 2.5 3

P(s)

Spacing s θ=99π/200

θ=15π/32 θ=7π/16 θ=π/6 Poisson Wigner

0 0.5 1 1.5 2 2.5 3

0 0.2 0.4 0.6 0.8 1 1.2 1.4

Tilt angle 10 <τ >

SL/2

0 0.05 0.1 0.15 0.2

1.2 1.3 1.4 1.5 KS statistic

10 <τ >

SL/2

0.5 1 1.5 2 2.5 3 3.5 4

1 2 3 4 5 6

Sl

l θ=99π/200

θ=15π/32 θ=5π/8 θ= π/6

(J. Karthik, A. Sharma, AL Phys. Rev. A. (2007))

(8)

Spin chains: Many-body localization

(a)

(b)

Ising Spins with next nearest neighbor interactions

H =−

L−1

X

i=1

Jiσizσi+1z +J2

L−2

X

i=1

σizσi+2z +h

L

X

i=1

σix

(Kjall, Bardarsson, Pollmann, PRL, 2014).

(9)

Experiments: 1. Bose Hubbard

(10)

Experiments: 2. Three globally coupled spins

(11)

Kicked tops to many-body spins

H = ~p

τ

Jy + ~κ

2j

Jz2

X

n=−∞

δ(t −nτ)

(Kus, Scharf, Haake, 1987; Haake’s book.)

Jx,y,z =P2j

l=1σx,y,z/2, the unitary or Floquet operator:

U = exp −i κ 8j

2j

X

l6=l0=1

σzlσzl0

!

exp −iπ 4

2j

X

l=1

σyl

! ,

(Wang, Ghose, Sanders, and Hu, 2004)

Thermodynamic limit is also classical limtj → ∞.

(12)

Classical Map: X

n2

+ Y

n2

+ Z

n2

= 1

Xn+1 =Zncos(κXn) +Ynsin(κXn) Yn+1 =−Znsin(κXn) +Yncos(κXn) Zn+1 =−Xn.

(13)

Results from the 3-Qubit experiment

(14)

Results from the 3-Qubit experiment

(15)

Results from the 3-Qubit experiment

(16)

Eigenstate Thermalization Hypothesis

|ψ(t)i=e−iHt|ψ(0)i=X

α

e−iHt|EαihEα|ψ(0)i

=X

α

e−iEαtCα|Eαi, Cα=hEα|ψ(0)i.

ρ(t) =|ψ(t)ihψ(t)|=X

α,β

e−i(Eα−Eβ)tCαCβ|EαihEβ|

ρ(t) =X

α

|Cα|2|EαihEα| ≡ρdiag

A(t) = Tr(ρdiagA)? =?Amicro = 1 N∆E

X

|E−Eα|<∆E

hEα|A|Eαi.

(17)

ETH: Deutsch, Srednicki, Rigol ...

hEα|A|Eαi=hAimicro,Eα + ∆α. h∆αi= 0,h∆2αi ∼ hA2imicroe−S(E).

(From Rigol et. al., Nature 2008)

(18)

ETH: Deutsch, Srednicki, Rigol ...

hEα|A|Eαi=hAimicro,Eα + ∆α. h∆αi= 0,h∆2αi ∼ hA2imicroe−S(E).

(From J. Deutsch, arXiv:1805.01616)

Referensi

Dokumen terkait