Y-64
Marks: 70
Time:
2.00 hrs.ENTRANCE EXAMINATIONS - 2O2O
(Ph.D. Admissions
-January 2021 Session)
Ph.D. (PHYSTCS)
Hall Ticket
No.:I.
II.
Please enter
your Hall Ticket Number on page
1of this question paper and on the OMR sheel rilhour
fdil.Read carefully the following instructions:
1. This
Question paper has twoparts: PART
_A
andpAHl
_B.
2. PART-A
consists of 20 objective fype questions relatedto
Research Methods.3. PART-B
consists of 20 objectivetype
questio4s relatedto
physics.4. All
qrestionscarry
l.Zb marks each.There is no negative marking
5.
Answers areto
be marked onthe OMR
answer sheetfollowing the
instructions provided there upon_An
exarnple is shown below100 @ @@o
6.
Only Scientific Calculators arepermitted.
Mobile phone basedcalculato$
are notpermitted. Logadthmic
tables arenot
allowe{1.7.
Hand overthe OMR
sheetat
the end of the examination.This
book contains 18 pagesIII.
Values of physical constants:c:3 x
103m/s; h:6.63 x 10
3ae:1.6x 10 reC;p"=4rxI0
7J.s; A6
:
t 33 ;1 16-rr:176
Henry/m;
€.=
8 85x 10-1, Farad/m
This page intentionally teft blark.
Blank sheets are provided for rough work at the end of this booklet
Page 2
Y-64
Part-A
1.
Consider sevenindividuals, identified
asL, M, N. O,
P.Q,
andR sitting
equispar:ed onthe
circumference of a circle, facing the centre.If
O issitting
betweenL
andR,
Q is secondto the right
ofR, P
is secondto the right of Q,
andN
isnot all
immediate neighborof R,
which ofthe
following ;sNOT
collect:A. R
is secondto the right
ofL B. M
is secondto the left
of NC.
P sitsto the
opposite of ND. L
sits between O and P2. The
valrreof /{rr - t-
^ 1- ""
.,r t - l
isB.r
C.
cos(1)D.
sin(1)3.
Out of a tota,l ofN
students in a class,1/4"
of thetotal
want to specialize in CondensedMatier
Physics(CMP)
and 1/3"dofthe
remaining want to study Optical Physics (OP).Half of the
remainingwant to study
Biophysics(BP)
andthe
remaining 20want to
pursue Theoretical Physics
(TP).
The numberdistribution
of students amongthe
four rper ralizar ions(cMP.OP.BP.] P) i.
{.
40, 10, 10, 20B. 20,20,
20, 20' c. 30,30,30,
20D. r0,20,
40. 204-
Area of a regular hexagon is2416. Its
perimeter isA.. 24rt
B.
24c. tbv4
D.8
5.
The operations Q,f, &
are defined as oQD: la b)lla+b),a#b: la+b)/\a_b), a&.b:
o6. The
valuesof the
expressions(i) (54#36)&(54036) and (ii)
(108#22)&(108072) respectively areA. l,
IB. -1, +1 C. +1, -1 u. -r, I
6.
Considera hypothetical situation
wherein 10%ol the inhabitants of a village
havedied of Corona virus infection.
Panic setsin, during which
20%of the
remaimnginhabitants
leavethe village. The population is now
reducedto 3600. The iotal
number ofinhabitants in the
village,at
the beginning, isA.4000 8.4500 c.5000 D.
s5007.
Puneet was 3 times as old as his son 6 years ago.After
6 years, puneetwill
be twice asold
a^s his son. The present ages of Puneet and his son respectively aireA. 18,6 B.
42,t8
c.
42. 12D.
36,i2
!.
Area.ofthegeomet
cshape (in squaxe units) formed by conneciing points (1,1),( 1,5),(7,9)
and (9, 5),with straight
lines,in
(2,y)
plane, isA.40 B.80
c.
12D.20
9. Ifthe
slopeofthe
tangentat
everypoint ofacuNein (x,y)
pl2'lre is_2x/g, t;e
culve lsA.
astraight
lineB.
a parabolaC.
a circleD.
an ellipsePage 4
y-64
10.
For realz, the
upper boundof
cosu+ sinc
isA. 1l\/2
B.i
c.2 Drt
11.
Given thefunction
.f(x): Df +m
whereD >
0,r.'>
0, the minimum value attainedby f,
asc
takes reai values, isA. u2lQD) B.
u2l@D)c. -u')lQD)
D. -L,l@D)
12.
A die wilh
faces numberedby
integersfrom
1to 6 is thrown
twice ra.ndomly. Theprobability, lhat
the sum ofthe
answers obtainedin the
two throws is lessthan
5, isA_
1/38.215
c.
116D.
5/ 3613.
If
angle d:
45o+
3o, then the value of cosI
isA. + +
0.037B. + +
0.05c k-
0.a74D. $ +
0.3714. If
theword "CAB"
is mapped to the number 14, theword ',BACK,'
should be mappedto
numberA.31 B.
135c.86 D.
1715. Given/(r) =x3l\ e-""),/(e) for small rl
is appro:dmately equalto A.
rr3B-
x2C.
coD.
.r16.
A
box contains red, green and white balls. The probabiJity ofpdling out
a redball at
randomfrom this
box is 1/.1 and theprobability
ofpulling out
ageen
ba,llat
random is3/8. If
there a-re 12white
ballsin
the box,the total
numberoiballs in the
box isA.32 B.40
c.
48D.24
17.
A
towerin a town
doesnot
cast any shadowat
exact noonof
an equinoxday. If, at
3pm, the tower castsa
15m long shadow, considering the equinox is an exact 12 hour.
dav. rhpactual
hpighroi
r he ,owpr isA. 10m
B. 15m
C.25m D.30m
Page 6
18.
Four
circles, eachof
diarneter 2units,
are inscribed inside a squarebox
as shownin
igure. The probabiliiy of picking a point randomly from the
shaded regionof
the figrue, when oneis
allowedto
pick anypoint within
the squaxe, isY-64
A. rl4
B. r
116C. 114 n/16 D. 1, rl4
lnrhp"ongrupncprelarion.ri5: L16 0. 7:- 3,
then.lJ:- A,O
B.
1c.
2D.3
The
denominatorof
afraction is
1 more tha.n twicethe numerator. If the
sum of thefraction
andits
reciprocal is2f,
the fraction is19.
20.
B,
c.
D.
I
71
3
I
3!
Part-B
21. If
z:
(q+
zp) I y'2,z : (q tp)l\D
whereq.p
arecaronically
conjugate position and momentum,then
the Harnilton's equations of motion can be stated as,\.. # o( It+= -ll oz
o d, ar ;q!7
02-^
r- ' tlt 4+;Q4:n "d.
D + ie!-tl at
02For
the
LagrangianL :
d.,/ 412+
ai22 where or is a constant and 91, q2 are generalisedcoordinate.. {hp.orre"ponding Hamiltoni6n
is22.
23.
C. H:A
D- H:O
The transformation
(,q,1,),+ (Q,P) from
one setof
phase spa.e variablesto
anotherset of phase space lariables given by Q
:
rrrQet
cosp,p =
B."f2qe-t sinp is a canonicalrratufolmarion
rI and onlSrI
B. "-0-vri
C.
aA: ,/2
D. aA--'f2
The electric
field
associateclwith
an elecbromagnetic $dve propagatingin
a conducting mediumis
EoeKIrei(KR."t)j, .h"." KR
andKt a."
r"^-l aadiiagiiary parts of
the wavenumber respectively-The
corresponding magnetic 6eld is24.
A E: *(KR
iK )cK
t ' ei(KR"-'t) t B. E -.EnrKp',K11aK'"' xa'
Lu
c E : !1No + ix1)eKI'eitKRx 't)i) D. E - -
Ea.;lt K R-
tht )P^,,,tKF, ,'i
n = a(p1+ pl)
Page 8
t
Y-64
25.
Consider a coaxial cable madefrom
two coaxialcylindical
shells. The inner cylinder is of radiusrt,
charge perunit length )
and ca,rries acurrent
1along z
direction.The outer cylinder is of radius 12
(>
r1), charge perunit
length)
a'rld caxries a current1
aloog+r direction. The rate at
which energy flowsthrough
a cross section of the Lable ls., /_ \
A =rlln t^ 0 \,t,/ |
1-? |- " r,,6 ,rr /rz\
\11 /
c llh{4 zr.0\r2/
'|- rr /r,\ ,4""\"ri
26.
The current density in a region is given by-l(c,g) :
J6 [iexp( -az'?)+jexp(
bg'?)]. Therate
of changeof
charge densityat
apojnt
(1,1,0) in that
region dueto the cunent
density is given by^ 2klh+51
e znl* - *l
^
t^,u 7la
o)rJ. a{o +
b).27. Let N be the
averagerumber of
particlesin a
g€scontaired in a
volumey vith
a pressureP at
temperature?. The relative fluctuation in
number densityin
grand canonicai ensemble,in ihe themodynanic limit. is
nonzero andfihitely
large, then the isothermal compressibility (de6ned asxr: (llu)(Au IAP)|1v,
whereo
is molarvolum"),
isproporrional
loA. ly'r
B. No r '
c..lf1
D, A,
28.
Considera three level
systemwhich
hasa ground state energy A, and the
two excited stateswith
same energyA. lf this
system isin equilibdlrm with
a reseNoirat
temperatureA/,t6,
theprobability
of findingthe
systemin
ground state isA.
1/3B."t/2
C.
e2l(2+
e2)D "?(t.t)
29. The Hamiltonian for
aparticle
is 11:
fi/,, (aI a4
aI o.l aa), where a,ci
satisfy [a,ol] :
1The
energy eigenvaluet',
are(with ?u:
0, 1, ..):A. hu(n +
n2)B. h.L1r,
tt'1C. hu( n+n'z) D.
hun230. Con.idpr d $a\efuncrion L,("r.r 0' ../r(rJ o u ,r1,rt.
whereo is a
con.stant and ur, t2
a,re nondegenerateorthonormal
eigenfunctionsof a
Hamiltonian.The
expectationvalue (z) for this
stateis X at time t : 0, with the property that
I dr uiQ)au2(r) 10. If
we desire(r) to
remain equalto X at
any othertime
r, thena
should be equalto
A.
1B.0
C. Ior all
chorce. D. for
no choiceit
is possiblePage 10
Y-64
31. The
groundstate
eigenfunctionfor
aparticle in
apotential is
as shownin the
figure which has a derivativediscontinuity at ro.
The potential must then have:A. finite discontinuity at
roB. linite
cliscontinuity anywhcre alongt
C. infinite discontinuity at
roD. infinite discontinuity
anywhere a.long u32. The matrix
representationof
a linear operatorT
on lR3 has theproperty
'[j] lil 'lil lil "", 'lil lil
. rh." / fll i"
L1l
^l;l
"lil
.lil
33. The
value ofthe integral
1_ f ,3,,,,2
,t.J( lz - 4)t ' -9.|
rvhere C is a circle given
by
lz+
1l:4
and takenin the
anticlockwise direction, isA. 2ri B. -21ti C.6ri D.0
34. Which
one ofthe
following isthe
real paxt of a"nanalytic
function?A.r'-a"-\tx+y+2 B.r' q' r-ll-2
C. -x2-y2+5x-y+2
D.
.t2 +1)2- 5r +5y +2
35.
Theoutput (y)
ofthe circuit
given below isB
B
I
c
A. AC B. BC C, AB D. AE
Page 12
Y-64
36. In the circrdt
shown below the base current is&=3rn
37
r.. (^i-^i\"' u (w)",
" (d#-)c
38.
A.
10p,4B.9.3p,A C.
3 3pAD.0.7p.A
The
measured\,rlues of quantities x, g
al].d,z
respectively a.re1, 2 and 3. If
the measured e.rrors are respectively 0.01, 0.02 and 0.01, the fractional error in thefunction
2r2y! Szfy
is approximatelyA,. 2%
B.
4%c.
1%D.
3%Consider
the
process ?+ p
-+ p+
?rowith the proton initially at rest.
The threshold energy ofthe
photontr for this
processto
occur, in terms of the particle rest masses, is39. The 2P + 15 transition in the
hydrogenatom
conespondsto an
angula"r frequencyu:1.5x1016H2. Ifthe
lifetimeofthe
2P state for spontaneous emission is 1.6 x10
es, assumingreftactive
indexn:1,
the Einstein 421coelicient
isA.
6.25x
103/sB.
2.40x
107/sC.
0.94x
10251 sD.
1.01x 10 ,5/s
40.
Considerthe
phonon spectraof
a two-dimensionallattice with three
atomsper unit cell.
The numberof
acoustic andoptical
phonon branches respectively a.reA.2and3 B.2and4
C.
4 a,nd 2D.3and2
Paee 14
PART
A PART B
Q# KEY
Q# KEY
21.
A
7.
C
A
22.n
23.
c
B
A
4.
B
5.
D A
6.
c
.A
1. n
L)
27.
C
24.
C
8.
A
29.
D
9.
D
30.
f)
10.
)
c
31.
11.
D
32.
A
72.
C
33.
A
1i. A
34.
A
14.
v3
35.
c
15.
D
B
76.
A
37.
A
t1. B
38.
c
18-
C
39.
A
19.
B
PHD PHYSICS
_JANUARY
2021ANSWER KEY -Y 64
i