Contents lists available atScienceDirect
Physics Letters B
www.elsevier.com/locate/physletb
Scrutinizing right-handed neutrino portal dark matter with Yukawa effect
Priyotosh Bandyopadhyay
a, Eung Jin Chun
b, Rusa Mandal
c,d,∗, Farinaldo S. Queiroz
eaIndianInstituteofTechnologyHyderabad,Kandi,Sangareddy-502287,Telengana,India bKoreaInstituteforAdvancedStudy,Seoul130-722,RepublicofKorea
cTheInstituteofMathematicalSciences,HBNI,Taramani,Chennai600113,India dIFIC,UniversitatdeValència-CSIC,Apt.Correus22085,E-46071València,Spain
eInternationalInstituteofPhysics,UniversidadeFederaldoRioGrandedoNorte,CampusUniversitário,LagoaNova,Natal,RN59078-970,Brazil
a r t i c l e i n f o a b s t ra c t
Articlehistory:
Received24July2018
Receivedinrevisedform6November2018 Accepted2December2018
Availableonline4December2018 Editor:G.F.Giudice
Keywords:
Right-handedneutrino Darkmatter
Directandindirectdetection
AnalyzingtheneutrinoYukawaeffectinthefreeze-outprocessofagenericdarkmattercandidatewith right-handedneutrinoportal,weidentifytheparameterregionssatisfyingtheobserveddarkmatterrelic density aswell as the currentFermi-LATand H.E.S.S.limits and the future CTA reachongamma-ray signals.InthisscenariothedarkmattercouplestotheHiggsbosonatone-looplevelandthuscouldbe detectedbyspin-independentnucleonicscatteringforareasonablerangeoftherelevantparameters.
©2018TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.
1. Introduction
The smallness of neutrino masses may be explained by the presence of right-handed neutrinos (RHNs) with large Majorana mass realizing the seesaw mechanism [1]. It is conceivable that adarkmatter(DM)candidatecouplestoaRHNandthusitspair- annihilation to a RHN pair is responsible for the DM freeze-out.
SuchasituationcanberealizedspecificallywhenRHNs areintro- ducedinassociationwithanextended(B−L)gaugesymmetry[2, 3].Inthisscenario,an interesting featurearisesintheprocess of DM thermalfreeze-out. Due to a tiny neutrino Yukawa coupling of a RHN with lepton and Higgs doublet, the RHN may not be fullythermalizedandthus the observedDM relicdensitycan be achievedbythe DMannihilationratedifferentfromthestandard freeze-outvalue[2,3].Suchafeaturehasbeenrealizedalsoinvar- iousscenarios[4–6].
TheRHNasaportaltoDMwassuggestedinasimplesetupas- sumingthecouplingN
χ
φwhereafermionχ
orascalarφcanbe aDMcandidate [7],andstudiedextensivelyinRefs. [8–14].Inthis*
Correspondingauthor.E-mailaddresses:[email protected](P. Bandyopadhyay),[email protected] (E.J. Chun),Rusa.Mandal@ific.uv.es(R. Mandal),[email protected] (F.S. Queiroz).
paper,weexploretheenlargedparameterspaceincludingtheRHN Yukawaeffecttoinvestigatehowitis constrainedby thethermal DM relic density, direct andindirect detections. We will assume that DMisthefermionfield
χ
,andthusthenucleon-DMscatter- ingarisesatone-loopthroughtheφ–φ-Higgscoupling.The restof the paper is organized as follows.In Sec. 2, after describing the RHN portal structure with a fermionic DM can- didate, we discuss the impact of neutrino Yukawa couplings to the thermalfreeze-outcondition oftheDMpair-annihilationtoa RHN pair. This allows usto identify parameter regions satisfying the observed DMrelicdensity, whichare constrainedby indirect detection experiments.Applying thelatest Fermi-LATandH.E.S.S.
data ongamma-ray signals, produced by RHNdecays inour sce- nario,weputcombinedconstraintsonthemodelparameterspace in Sec. 3. In Sec. 4, we consider a direct detection process aris- ingfromone-loopinducedDM–DM-Higgscouplingandlimitsfrom therecentdataandfuturesensitivityonspin-independent(SI)DM scatterings.FinallyweconcludeinSec.5.
2. DMfreeze-outincludingneutrinoYukawaeffect
Let us consider the simplistic scenario for a RHN-portal DM basedontheType-Iseesaw.TheLagrangianofsuchconstructwill containthefollowingnewterms
https://doi.org/10.1016/j.physletb.2018.12.003
0370-2693/©2018TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.
Fig. 1.TheFeynmandiagramsfortheDMparticleχannihilationtoRHNNpair(a) andthedecayofNtoSMparticles(b),(c)areshown.
−
L⊂
12m20
φ
2+ κ φ
2|
H|
2+
12mχ
χ χ +
1 2mNN N+
yNL H N+ λ
Nχ φ +
h.c..
(1)Here L and H are theSM SU(2)L doublets and N is aMajorana fermion(RHN).Therearetwonewfieldsinthedarksector:areal scalarφ andaMajorana fermion
χ
whicharesinglets underthe SMgaugegroup.ForthestabilityofaDMcandidate,weassigned, e.g.,a Z2 parityunderwhichthe darksector fieldsare odd.After theelectroweaksymmetry breaking, H=(v+h)/√2,we getthe scalarmassm2φ=m20+
κ
v2 andtheh–φ–φcouplingκ
v.Therearetwocouplingsλand
κ
whichconnectthedarksector (φ andχ
) tothe visiblesector. When φ is a thermalDMcandi- date,theHiggsportalcouplingκ
plays an importantrole.Inthis case,theparameterspaceishighlyconstrainedbyvariousconsid- erationsincludingthelatestXENON1Tresult [15].TheRHN-portal process,φφ→N N throughthet-channel exchangeofχ
,canalso beoperativetoproducetherightthermalrelicdensity.Noticethat a similar situation was studied in Ref. [2] where φ corresponds toaright-handedsneutrinoDM.Inthispaper,weconcentrateon thefermionχ
asa DMcandidate.Ourresultson theRHN-portal propertycanalsobe appliedto thecaseofthescalarφ asaDM candidate.When
χ
is lighter thanφ,it becomes a viableDM candidate.FormN<mχ,the DMparticle
χ
canannihilate to the RHNpair viaat-channelexchangeofφ(Fig.1(a)).Thethermalaveragean- nihilationcrosssectionisgivenby,σ
vχ χ→N N= λ
4mχ
+
mN 216
π
m2χ
+
m2φ−
m2N21
−
m2N m2χ1/2
.
(2)There are other relevant annihilation processes like φφ →
χ χ
(N,N),φφ→SMparticlesandco-annihilationchannelχ
φ→ N→SM particles which can contribute inthe evaluationofDM numberdensity. We quote these expressions in Appendix A. We noticethattheco-annihilation channelis suppressedbytwo rea- sons;firstlythe tinyYukawa coupling yN, secondlythe choiceof parameterspaceaway fromtheresonant N production,andthus hasinsignificanteffectinthefreezeoutmechanism.Westartwith thecoupledBoltzmannequationswrittenintermsofthevariable Yi≡ni/s,describingtheactualnumberofparticlei percomoving volume,wherenibeingthenumberdensity,sistheentropyden- sity ofthe Universe, and the variable x≡mχ/T. The Boltzmann equationsrelevantforourstudyaredYχ dx
= −
1x2 s
(
mχ)
H
(
mχ) σ
vχ χ→N N⎛
⎝
Yχ2−
YχeqYNeq
2
YN2
⎞
⎠
+
1 x2s
(
mχ)
H
(
mχ) σ
vφφ→χ χ⎛
⎝
Yφ2−
YφeqYχeq
2
Yχ2
⎞
⎠ ,
(3)dYφ dx
= −
1x2 s
(
mχ)
H
(
mχ) σ
vφφ→χ χ⎛
⎝
Yφ2−
YφeqYχeq
2
Yχ2
⎞
⎠
−
1 x2s
(
mχ)
H
(
mχ) σ
vφφ→N N⎛
⎝
Yφ2−
YφeqYNeq
2
YN2
⎞
⎠
−
1 x2s
(
mχ)
H
(
mχ) σ
vφφ→SMYφ2
−
Yφeq2,
(4)dYN dx
=
1x2 s
(
mχ)
H
(
mχ) σ
vχ χ→N N⎛
⎝
Yχ2−
YχeqYNeq
2
YN2
⎞
⎠
+
1 x2s
(
mχ)
H
(
mχ) σ
vφφ→N N⎛
⎝
Yφ2−
YφeqYNeq
2
YN2
⎞
⎠
−
H(
mχ)
x YN−
YeqN.
(5)TheentropydensitysandHubbleparameterHattheDMmassis s
(
mχ) =
2π
245 g∗m3χ
,
H(
mχ) = π
√
90√
g∗ Mrplm2χ,
whereMrpl=2.44×1018GeV isthereducedPlanckmassandYNeq istheequilibriumnumberdensityofi-thparticlegivenby Yieq
≡
neq i
s
=
45 2π
4π
8
gig∗ mi
T
3/2e−miT
0
.
145 gi
100 mi mχ
3/2x3/2e−
mi mχx
.
(6)HereinthelastlineofEq. (6) weusetheeffectivenumberofrel- ativisticdegreesoffreedom g∗ 100 andtheinternal degreesof freedom gχ,N=2 forthetwoMajoranaparticles
χ
,N andgφ=1 forφbeingtherealscalar.Thefirsttermsontheright-handsideof Eqs. (3) and(5) denotetheforwardandbackwardreactionsofχ χ
to N N throught-channel φexchangeshowninFig.1(a).Itcanbe seenfromEq. (1) thattheYukawainteractionoftheright-handed neutrinoallowsittodecaytoSMparticlesviathemixingwiththe SM neutrinos proportional tothe coupling yN.The third termof Eq. (5) describes thedecay andthe inversedecayof N shownin Fig.1(b)and(c)wherebeingthetotaldecaywidthofN.Below wequotetheexpressionsofthepartialdecaywidthsofN tothree possiblechannelsh
ν
,±W∓ andZν
,respectively.(
N→
hν ) = (
N→
hν ¯ )
=
y2NmN 64π
1−
m2hm2N
2
,
(7)(
N→
−W+) =(
N→
+W−)
=
y2NmN 32π
1−
m2Wm2N
2
1
+
2m2Wm2N
,
(8)(
N→
Zν ) = (
N→
Zν ¯ )
=
y2NmN 64π
1−
m2Zm2N
2
1+
2m2Zm2N
.
(9) TherelicabundanceoftheDMcandidateχ
canbeevaluatedby,h2
=
mχs0Yχ(∞)
ρ
c/
h2,
(10)Fig. 2.Theactualnumberofχ, φandNpercomovingvolumeareshowninbluedashed,greendot-dashedandreddottedcurves,respectively.Thepanelsfrom(a)to(d) areobtainedbysolvingthecoupledBoltzmannequations(Eqs. (3)–(5))withthetotaldecaywidthofNas10−10GeV,10−15GeV,10−20GeV and0 GeV,respectively.The effectofdecaytermisprominentfromtheplots.Themassesofχ,N,φareassumedtofollowmχ=nmN=1/nmφwithn=1.2,mN=300 GeVandthecouplingsλ=0.4, κ=1.Theobservedrelicdensityissatisfiedinpanel(b)with=10−15GeV.
wheres0=2890 cm−3 isthecurrententropydensityoftheUni- verse and
ρ
c/h2=1.05×10−5 GeV/cm3 is the critical density.Yχ(∞)istheasymptoticvalue oftheactualnumberof
χ
perco- moving volume obtained from numerical solutions of the above Boltzmannequations.Weillustratetheeffectofdecayandinverse decayof RHN in the evaluationof DM density,for a benchmark case,inFig.2.Itcanbeseenthat,inthiscase,thecontributionof scalarDM φ to relicdensityis negligiblecompared to theMajo- ranafermionχ
.Dependingontheflavor structureoftheYukawacoupling yN, theRHN decays differentlytoeach lepton flavor, which willlead toadifferentpredictionforindirectdetection.Forouranalysisof indirectdetection,wewillassumeN decayingequallytothreelep- tonflavors.
3. Indirectdetection
Here we would like to mention that the RHN-portal models canbeprobedbyindirectdetectionexperiments.Theannihilation ofDMpairtoRHNs, whichthendecaythrough weakinteractions inducedbyactive-sterileneutrinomixing,leadstogamma-raysig- nals that can be probed by experiments such as Fermi-LAT and H.E.S.S. telescopes [12,13]. In our work we employed the receipt describedin [12] tofindthe H.E.S.S.boundsandtheresultsfrom [16] fortheFermi-LATboundonthedarkmatterannihilationcross section for the
χ χ
→N N process which is depicted in Fig. 3.We emphasize that H.E.S.S. and CTA limits rely on the current
(projected)sensitivitytogamma-ray emissionstemmingfromthe GalacticCenter.Sincenoexcesshasbeenobserved,stringentcon- straints have been placed on the dark matter annihilation cross section.ItisclearfromthefigurethattheCTAlimit ismorecon- straining and this is a direct result of the CTA array containing Large, Medium andSmall-Sized Telescopes that will significantly strengthen CTA sensitivity to darkmatter models [17]. We focus our discussion on the benchmark scenario where mχ=nmN = 1/nmφ.
The left panel of Fig. 3 in the
σ
v−mχ plane shows the lines satisfying observed relic abundance by Planck data h2= 0.1199±0.0027 [18] achieved for different values of the cou- plingλ.Thegreenandyellowshadedregionsdepict90%C.L.limit on annihilation cross section from Fermi-LAT [16] and 95% C.L.bound fromH.E.S.S. data [12], respectively.Theright-panelshows thecorrespondingsituationinthemN−yN plane.Onecanobserve an importantfeature that given a fixed value of λ, the observed reliccanbeobtainedforquiteextendedrangesoftheDMmassmχ by changingtheneutrinoYukawacoupling yN,vizcontrollingthe decay width.Thisparameter spaceis currentlyallowed by the limitsfromindirectdetectionexperimentshowevercanbeprobed bytheprojectedboundfromCTAinfuture.Thesystemofthecou- pledBoltzmannequations,(3) and(5),reducestotheconventional onewheretheRHNisassumedtobeinthermalequilibrium.This isrealizedwhen
σ
v 2×10−9GeV2andtheresultbecomesin- dependentof yN,whichisnicelydepictedintherightpanel. The gray shaded region isforbidden by theperturbativity limit on λ.Fig. 3.Theleftandrightpanelsshowtheallowedparameterspaceintheplaneof(mχσv)and(mN,yN),respectively.TheobservedrelicdensityisobtainedfortheDM couplingλ=0.4 (dashed),0.6(dot-dashed),0.8(dotted),1.0(long-dashed)and√
4π (solid).ThegreenandyellowshadedregionsareexcludedbyFermi-LAT(at90%C.L.) andH.E.S.S.(at95%C.L.)data,respectively.ThebluesolidcurverepresentsfutureboundfromCTAwheretheregionabove(below)willbeexcludedat90%C.L.forleft(right) panel.Thegrayregionisforbiddenbyperturbativitylimit.Themassesofχ,N,φareassumedtofollowmχ=nmN=1/nmφwithn=1.2,κ=1,andtheRHNisassumed todecayequallytoeachleptonflavor.
Fig. 4.The interaction of the DMχwith the Higgshinduced at one-loop level.
Forhighervaluesofn,theparallellinesfor yN≥10−7 intheleft panelofFig.3wouldbesatisfiedforhighervaluesofλforagiven mN.This isdueto thefact thatan increase inn decreases
σ
v, whichcanbereadfromEq. (2).4. Directdetection
Notice that the model contains no tree-level coupling of the fermionicDMtotheHiggsboson,butaneffectiveh–
χ
–χ
coupling arisesfromtheone-loopdiagramshowninFig.4:−
Lhχ χ= κ
hχ χ ¯
whereκ
≡ λ
2
κ
v 16π
2mχc1
(
x) −
mNc0(
x)
m2φ
,
(11)andc1,0(x)areloop-functionsofx≡m2N/m2φgivenby
c1
(
x) =
1−
4x+
3x2−
2x2lnx 2(
1−
x)
3,
c0(
x) =
1−
x+
xlnx(
1−
x)
2.
Theinduced h–
χ
–χ
couplingκ
(Eq. (11))controlsthe SInucle- oniccross-sectionσ
SI=
4π μ
r2κ
gnnh m2h2
,
(12)where
μ
r=mχmn/(mχ+mn) is the reduced mass and gnnh ≈ 0.0011 is thenucleon-Higgs coupling.Themeasurements ofDM- nucleonSIcrosssectionconstraintheeffectiveHiggs-DMcoupling stringentlyand the result is depicted inFig. 5 which showsthe latestboundfromXENON1T 2018result[19] and thefuturelim- itsfromLZ[20] andXENONnT [21] experiments.Theregionabove thementionedcurvesareexcludedat90%confidencelevel.Fig. 5.Thecontourplotfordirectdetectioncross-sectionthroughaloopinduced h–χ–χ couplingisshowninmχ− |λ2κ|plane.The2018XENON1T bound [19]
isshownbythered-dashedcurve.Thegreen- andorange-dottedcurvesarethe expectedboundsfromLZ [20] andXENONnT [21] experiments,respectively. The regionabovethementionedcurvesareexcludedat90%confidencelevel.
It canbe seenthat thelatest datafromXENON1T experiment excludes|λ2
κ
|≥O(1)formχ≤150 GeVandthefuturesensitivity ofXENONnT canruleout suchvalue of|λ2κ
|upto 600 GeV DM mass.Asthedirectdetectionprocessarisesatone-looplevelwith an additionalcouplingκ
irrelevantfortheDMannihilation,there remains a wide range of parameter space to be probed by both directandindirectdetections.5. Conclusion
The darksector maypossiblybe connectedto thevisiblesec- torthroughheavyMajoranaRHNswhichareintroducedtoexplain the observed neutrinomassesand mixing. Assuming afermionic DMcandidatewhichpair-annihilatestoaRHNpair,weperformed a comprehensiveanalysisofthe parameter spaceconsidering the neutrinoYukawaeffectinthethermalfreeze-outprocessandim- posing the current results of indirect and direct detection ex- periments. When the neutrino Yukawa coupling is too small to maintaintheRHNinfullthermalequilibrium,theDMannihilation cross-sectionneedstobelargerthanthestandardfreeze-outvalue toobtaintheobservedrelicdensity.However,theallowedparam- eterregionisquitelimitedandwellbelowthecurrentlimitsfrom Fermi-LATandH.E.S.S.telescopesdetectinggammaraysignals.The
CTA willbe ableto probea largepartof theregion asshown in Fig. 3. In this scenario, a DM-Higgs coupling arises at one loop andthuscouldbeprobedbydirectdetectionexperimentsthrough spin-independentscattering.The2018XENON1Tboundandfuture limitsareillustratedinFig.5.
Acknowledgements
We thank Christoph Weniger for the discussion and encour- agement.EJCissupported bythe NRFgrant fundedby theKorea government (MSIP) (No. 2009-0083526) through KNRC at Seoul NationalUniversity.FSQ thanks thefinancial support fromUFRN, MECandICTP-SAIFRFAPESPgrant2016/01343-7.TheworkofRM hasbeensupportedinpartby GrantsNo. FPA2014-53631-C2-1-P, FPA2017-84445-P and SEV-2014-0398 (AEI/ERDF, EU) and by PROMETEO/2017/053(GV,ES).
Appendix A
In this section we provide the expressions for cross sections involved in the coupled Boltzmann equations (Eqs. (3)–(5)). The scalarDM particleφ can annihilate to
χ
(N)pair viaa t-channel exchange of N(χ
) and the thermally averaged cross section is given in Eq. (13) ((14)). The φ pair can also annihilate to the SM particles where the dominant channels are φφ →hh and φφ→h→t¯t, W W, Z Z wherehistheSMHiggsboson.Thepro- cessφφ→hhcombinesthreecontributionsasshowninEq. (15);contact4-pointinteraction (first term), s-channel Higgsexchange (second term) and t-channel φ exchange (third term). All three channels written in Eq. (16) proceed through a s-channel Higgs exchangeandhencearelessdominantfarfromtheresonantHiggs production. We use these expressions in solving the Boltzmann equations(Eqs. (3)–(5))inSecs.2and3.
σ
vφφ→χ χ= λ
4mχ
+
mN 22
π
m2φ−
m2χ+
m2N2 1−
m2χ m2φ
3/2
,
(13)σ
vφφ→N N= λ
4mχ
+
mN 22
π
m2φ+
m2χ−
m2N2 1−
m2Nm2φ
3/2
,
(14)σ
vφφ→hh=
1
−
m2h m2φ1/2
1 64π
m2φ×
2
κ +
6κ
m2h(
4m2φ−
m2h) (
4m2φ−
m2h)
2+
m2h2h
2
+ κ
4v4 2π
m2φ2m2φ
−
m2h2,
(15)σ
vφφ→h→SM=
√
2κ
2v2GFπ (
4m2φ−
mh2)
2+
mh22h
×
3m2t 1−
m2tm2φ
3/2
+
2m2φ1
−
m2W m2φ1/2
+
m2φ 1−
m2Zm2φ
1/2
.
(16)References
[1]P.Minkowski,Phys.Lett.B67(1977)421;
T.Yanagida,in:TheWorkshoponGrandUnifiedTheoryandBaryonNumberof theUniverse,KEK,Japan,1979;
M.Gell-Mann,P.Ramond,R.Slansky,in:SanibelSymposium,February1979, CALT-68-709,retroprintarXiv:hep-ph/9809459;
M.Gell-Mann,P.Ramond,R.Slansky,in:D.Freedman,etal.(Eds.),Supergrav- ity,NorthHolland,Amsterdam,1979;
S.L.Glashow,in:QuarksandLeptons,Cargese,M.Levy,etal.(Eds.),Plenum, NewYork,1980,p. 707;
R.N.Mohapatra,G.Senjanovic,Phys.Rev.Lett.44(1980)912.
[2]P.Bandyopadhyay,E.J.Chun,J.C.Park,J. HighEnergyPhys.1106(2011)129, arXiv:1105.1652 [hep-ph].
[3]P.Bandyopadhyay,E.J.Chun,R.Mandal, Phys.Rev.D97 (1)(2018)015001, arXiv:1707.00874 [hep-ph].
[4]J.A.Dror,E.Kuflik,W.H.Ng,Phys.Rev.Lett.117 (21)(2016)211801, arXiv:
1607.03110 [hep-ph].
[5]S.Okawa, M.Tanabashi, M.Yamanaka, Phys. Rev.D 95 (2)(2017) 023006, arXiv:1607.08520 [hep-ph].
[6]J.Kopp,J.Liu,T.R.Slatyer,X.P.Wang,W.Xue,J. HighEnergyPhys.1612(2016) 033,arXiv:1609.02147 [hep-ph].
[7]M.Pospelov,A.Ritz,M.B.Voloshin,Phys.Lett.B662(2008)53,arXiv:0711.4866 [hep-ph].
[8]A.Falkowski,J.Juknevich,J.Shelton,arXiv:0908.1790 [hep-ph].
[9]V.González-Macías,J.I.Illana,J.Wudka,J. HighEnergyPhys.1605(2016)171, arXiv:1601.05051 [hep-ph].
[10]M.Escudero,N.Rius,V.Sanz,Eur.Phys.J.C77 (6)(2017)397,arXiv:1607.
02373 [hep-ph].
[11]Y.L.Tang,S.h.Zhu, J. HighEnergyPhys. 1701(2017)025,arXiv:1609.07841 [hep-ph].
[12]M.D.Campos,F.S.Queiroz,C.E.Yaguna,C.Weniger,J. Cosmol.Astropart.Phys.
1707 (07)(2017)016,arXiv:1702.06145 [hep-ph].
[13]B.Batell,T.Han,B.Shams Es Haghi,arXiv:1704.08708 [hep-ph].
[14]M.Chianese,S.F.King,arXiv:1806.10606 [hep-ph].
[15]P.Athron,J.M.Cornell,F.Kahlhoefer,J. McKay,P.Scott,S.Wild,arXiv:1806. 11281 [hep-ph].
[16]M.G.Folgado,G.A.Gómez-Vargas,N.Rius,R.RuizDeAustri,arXiv:1803.08934 [hep-ph].
[17]B.S.Acharya,etal.,CherenkovTelescopeArrayConsortium,arXiv:1709.07997 [astro-ph.IM].
[18]P.A.R.Ade, et al., PlanckCollaboration, Astron. Astrophys. 594 (2016)A13, arXiv:1502.01589 [astro-ph.CO].
[19]E.Aprile,etal.,XENONCollaboration,arXiv:1805.12562 [astro-ph.CO].
[20]B.J.Mount,etal.,arXiv:1703.09144 [physics.ins-det].
[21]E.Aprile,etal., XENONCollaboration,J. Cosmol.Astropart.Phys. 1604 (04) (2016)027,arXiv:1512.07501 [physics.ins-det].