• Tidak ada hasil yang ditemukan

Scrutinizing right-handed neutrino portal dark matter with Yukawa effect

N/A
N/A
Protected

Academic year: 2023

Membagikan "Scrutinizing right-handed neutrino portal dark matter with Yukawa effect"

Copied!
5
0
0

Teks penuh

(1)

Contents lists available atScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Scrutinizing right-handed neutrino portal dark matter with Yukawa effect

Priyotosh Bandyopadhyay

a

, Eung Jin Chun

b

, Rusa Mandal

c,d,

, Farinaldo S. Queiroz

e

aIndianInstituteofTechnologyHyderabad,Kandi,Sangareddy-502287,Telengana,India bKoreaInstituteforAdvancedStudy,Seoul130-722,RepublicofKorea

cTheInstituteofMathematicalSciences,HBNI,Taramani,Chennai600113,India dIFIC,UniversitatdeValència-CSIC,Apt.Correus22085,E-46071València,Spain

eInternationalInstituteofPhysics,UniversidadeFederaldoRioGrandedoNorte,CampusUniversitário,LagoaNova,Natal,RN59078-970,Brazil

a r t i c l e i n f o a b s t ra c t

Articlehistory:

Received24July2018

Receivedinrevisedform6November2018 Accepted2December2018

Availableonline4December2018 Editor:G.F.Giudice

Keywords:

Right-handedneutrino Darkmatter

Directandindirectdetection

AnalyzingtheneutrinoYukawaeffectinthefreeze-outprocessofagenericdarkmattercandidatewith right-handedneutrinoportal,weidentifytheparameterregionssatisfyingtheobserveddarkmatterrelic density aswell as the currentFermi-LATand H.E.S.S.limits and the future CTA reachongamma-ray signals.InthisscenariothedarkmattercouplestotheHiggsbosonatone-looplevelandthuscouldbe detectedbyspin-independentnucleonicscatteringforareasonablerangeoftherelevantparameters.

©2018TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

The smallness of neutrino masses may be explained by the presence of right-handed neutrinos (RHNs) with large Majorana mass realizing the seesaw mechanism [1]. It is conceivable that adarkmatter(DM)candidatecouplestoaRHNandthusitspair- annihilation to a RHN pair is responsible for the DM freeze-out.

SuchasituationcanberealizedspecificallywhenRHNs areintro- ducedinassociationwithanextended(BL)gaugesymmetry[2, 3].Inthisscenario,an interesting featurearisesintheprocess of DM thermalfreeze-out. Due to a tiny neutrino Yukawa coupling of a RHN with lepton and Higgs doublet, the RHN may not be fullythermalizedandthus the observedDM relicdensitycan be achievedbythe DMannihilationratedifferentfromthestandard freeze-outvalue[2,3].Suchafeaturehasbeenrealizedalsoinvar- iousscenarios[4–6].

TheRHNasaportaltoDMwassuggestedinasimplesetupas- sumingthecouplingN

χ

φwhereafermion

χ

orascalarφcanbe aDMcandidate [7],andstudiedextensivelyinRefs. [8–14].Inthis

*

Correspondingauthor.

E-mailaddresses:[email protected](P. Bandyopadhyay),[email protected] (E.J. Chun),Rusa.Mandal@ific.uv.es(R. Mandal),[email protected] (F.S. Queiroz).

paper,weexploretheenlargedparameterspaceincludingtheRHN Yukawaeffecttoinvestigatehowitis constrainedby thethermal DM relic density, direct andindirect detections. We will assume that DMisthefermionfield

χ

,andthusthenucleon-DMscatter- ingarisesatone-loopthroughtheφφ-Higgscoupling.

The restof the paper is organized as follows.In Sec. 2, after describing the RHN portal structure with a fermionic DM can- didate, we discuss the impact of neutrino Yukawa couplings to the thermalfreeze-outcondition oftheDMpair-annihilationtoa RHN pair. This allows usto identify parameter regions satisfying the observed DMrelicdensity, whichare constrainedby indirect detection experiments.Applying thelatest Fermi-LATandH.E.S.S.

data ongamma-ray signals, produced by RHNdecays inour sce- nario,weputcombinedconstraintsonthemodelparameterspace in Sec. 3. In Sec. 4, we consider a direct detection process aris- ingfromone-loopinducedDM–DM-Higgscouplingandlimitsfrom therecentdataandfuturesensitivityonspin-independent(SI)DM scatterings.FinallyweconcludeinSec.5.

2. DMfreeze-outincludingneutrinoYukawaeffect

Let us consider the simplistic scenario for a RHN-portal DM basedontheType-Iseesaw.TheLagrangianofsuchconstructwill containthefollowingnewterms

https://doi.org/10.1016/j.physletb.2018.12.003

0370-2693/©2018TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(2)

Fig. 1.TheFeynmandiagramsfortheDMparticleχannihilationtoRHNNpair(a) andthedecayofNtoSMparticles(b),(c)areshown.

L

1

2m20

φ

2

+ κ φ

2

|

H

|

2

+

1

2mχ

χ χ +

1 2mNN N

+

yNL H N

+ λ

N

χ φ +

h.c.

.

(1)

Here L and H are theSM SU(2)L doublets and N is aMajorana fermion(RHN).Therearetwonewfieldsinthedarksector:areal scalarφ andaMajorana fermion

χ

whicharesinglets underthe SMgaugegroup.ForthestabilityofaDMcandidate,weassigned, e.g.,a Z2 parityunderwhichthe darksector fieldsare odd.After theelectroweaksymmetry breaking, H=(v+h)/

2,we getthe scalarmassm2φ=m20+

κ

v2 andthehφφcoupling

κ

v.

Therearetwocouplingsλand

κ

whichconnectthedarksector (φ and

χ

) tothe visiblesector. When φ is a thermalDMcandi- date,theHiggsportalcoupling

κ

plays an importantrole.Inthis case,theparameterspaceishighlyconstrainedbyvariousconsid- erationsincludingthelatestXENON1Tresult [15].TheRHN-portal process,φφN N throughthet-channel exchangeof

χ

,canalso beoperativetoproducetherightthermalrelicdensity.Noticethat a similar situation was studied in Ref. [2] where φ corresponds toaright-handedsneutrinoDM.Inthispaper,weconcentrateon thefermion

χ

asa DMcandidate.Ourresultson theRHN-portal propertycanalsobe appliedto thecaseofthescalarφ asaDM candidate.

When

χ

is lighter thanφ,it becomes a viableDM candidate.

FormN<mχ,the DMparticle

χ

canannihilate to the RHNpair viaat-channelexchangeofφ(Fig.1(a)).Thethermalaveragean- nihilationcrosssectionisgivenby,

σ

v

χ χN N

= λ

4

mχ

+

mN

2

16

π

m2χ

+

m2φ

m2N

2

1

m2N m2χ

1/2

.

(2)

There are other relevant annihilation processes like φφ

χ χ

(N,N),φφSMparticlesandco-annihilationchannel

χ

φNSM particles which can contribute inthe evaluationofDM numberdensity. We quote these expressions in Appendix A. We noticethattheco-annihilation channelis suppressedbytwo rea- sons;firstlythe tinyYukawa coupling yN, secondlythe choiceof parameterspaceaway fromtheresonant N production,andthus hasinsignificanteffectinthefreezeoutmechanism.Westartwith thecoupledBoltzmannequationswrittenintermsofthevariable Yini/s,describingtheactualnumberofparticlei percomoving volume,wherenibeingthenumberdensity,sistheentropyden- sity ofthe Universe, and the variable xmχ/T. The Boltzmann equationsrelevantforourstudyare

dYχ dx

= −

1

x2 s

(

mχ

)

H

(

mχ

) σ

v

χ χN N

Yχ2

Yχeq

YNeq

2

YN2

+

1 x2

s

(

mχ

)

H

(

mχ

) σ

v

φφχ χ

Yφ2

Yφeq

Yχeq

2

Yχ2

,

(3)

dYφ dx

= −

1

x2 s

(

mχ

)

H

(

mχ

) σ

v

φφχ χ

Yφ2

Yφeq

Yχeq

2

Yχ2

1 x2

s

(

mχ

)

H

(

mχ

) σ

v

φφN N

Yφ2

Yφeq

YNeq

2

YN2

1 x2

s

(

mχ

)

H

(

mχ

) σ

v

φφSM

Yφ2

Yφeq2

,

(4)

dYN dx

=

1

x2 s

(

mχ

)

H

(

mχ

) σ

v

χ χN N

Yχ2

Yχeq

YNeq

2

YN2

+

1 x2

s

(

mχ

)

H

(

mχ

) σ

v

φφN N

Yφ2

Yφeq

YNeq

2

YN2

H

(

mχ

)

x

YN

YeqN

.

(5)

TheentropydensitysandHubbleparameterHattheDMmassis s

(

mχ

) =

2

π

2

45 gm3χ

,

H

(

mχ

) = π

90

g Mrplm2χ

,

whereMrpl=2.44×1018GeV isthereducedPlanckmassandYNeq istheequilibriumnumberdensityofi-thparticlegivenby Yieq

n

eq i

s

=

45 2

π

4

π

8

gi

g mi

T

3/2

emiT

0

.

145

g

i

100 mi mχ

3/2

x3/2e

mi mχx

.

(6)

HereinthelastlineofEq. (6) weusetheeffectivenumberofrel- ativisticdegreesoffreedom g 100 andtheinternal degreesof freedom gχ,N=2 forthetwoMajoranaparticles

χ

,N and=1 forφbeingtherealscalar.Thefirsttermsontheright-handsideof Eqs. (3) and(5) denotetheforwardandbackwardreactionsof

χ χ

to N N throught-channel φexchangeshowninFig.1(a).Itcanbe seenfromEq. (1) thattheYukawainteractionoftheright-handed neutrinoallowsittodecaytoSMparticlesviathemixingwiththe SM neutrinos proportional tothe coupling yN.The third termof Eq. (5) describes thedecay andthe inversedecayof N shownin Fig.1(b)and(c)wherebeingthetotaldecaywidthofN.Below wequotetheexpressionsofthepartialdecaywidthsofN tothree possiblechannelsh

ν

,±W andZ

ν

,respectively.

(

N

h

ν ) = (

N

h

ν ¯ )

=

y2NmN 64

π

1

m2h

m2N

2

,

(7)

(

N

W+

) =(

N

+W

)

=

y2NmN 32

π

1

m2W

m2N

2

1

+

2m2W

m2N

,

(8)

(

N

Z

ν ) = (

N

Z

ν ¯ )

=

y2NmN 64

π

1

m2Z

m2N

2

1

+

2m2Z

m2N

.

(9) TherelicabundanceoftheDMcandidate

χ

canbeevaluatedby,

h2

=

mχs0Yχ

()

ρ

c

/

h2

,

(10)

(3)

Fig. 2.Theactualnumberofχ, φandNpercomovingvolumeareshowninbluedashed,greendot-dashedandreddottedcurves,respectively.Thepanelsfrom(a)to(d) areobtainedbysolvingthecoupledBoltzmannequations(Eqs. (3)–(5))withthetotaldecaywidthofNas1010GeV,1015GeV,1020GeV and0 GeV,respectively.The effectofdecaytermisprominentfromtheplots.Themassesofχ,N,φareassumedtofollowmχ=nmN=1/nmφwithn=1.2,mN=300 GeVandthecouplingsλ=0.4, κ=1.Theobservedrelicdensityissatisfiedinpanel(b)with=1015GeV.

wheres0=2890 cm3 isthecurrententropydensityoftheUni- verse and

ρ

c/h2=1.05×105 GeV/cm3 is the critical density.

Yχ()istheasymptoticvalue oftheactualnumberof

χ

perco- moving volume obtained from numerical solutions of the above Boltzmannequations.Weillustratetheeffectofdecayandinverse decayof RHN in the evaluationof DM density,for a benchmark case,inFig.2.Itcanbeseenthat,inthiscase,thecontributionof scalarDM φ to relicdensityis negligiblecompared to theMajo- ranafermion

χ

.

Dependingontheflavor structureoftheYukawacoupling yN, theRHN decays differentlytoeach lepton flavor, which willlead toadifferentpredictionforindirectdetection.Forouranalysisof indirectdetection,wewillassumeN decayingequallytothreelep- tonflavors.

3. Indirectdetection

Here we would like to mention that the RHN-portal models canbeprobedbyindirectdetectionexperiments.Theannihilation ofDMpairtoRHNs, whichthendecaythrough weakinteractions inducedbyactive-sterileneutrinomixing,leadstogamma-raysig- nals that can be probed by experiments such as Fermi-LAT and H.E.S.S. telescopes [12,13]. In our work we employed the receipt describedin [12] tofindthe H.E.S.S.boundsandtheresultsfrom [16] fortheFermi-LATboundonthedarkmatterannihilationcross section for the

χ χ

N N process which is depicted in Fig. 3.

We emphasize that H.E.S.S. and CTA limits rely on the current

(projected)sensitivitytogamma-ray emissionstemmingfromthe GalacticCenter.Sincenoexcesshasbeenobserved,stringentcon- straints have been placed on the dark matter annihilation cross section.ItisclearfromthefigurethattheCTAlimit ismorecon- straining and this is a direct result of the CTA array containing Large, Medium andSmall-Sized Telescopes that will significantly strengthen CTA sensitivity to darkmatter models [17]. We focus our discussion on the benchmark scenario where =nmN = 1/nmφ.

The left panel of Fig. 3 in the

σ

vmχ plane shows the lines satisfying observed relic abundance by Planck data h2= 0.1199±0.0027 [18] achieved for different values of the cou- plingλ.Thegreenandyellowshadedregionsdepict90%C.L.limit on annihilation cross section from Fermi-LAT [16] and 95% C.L.

bound fromH.E.S.S. data [12], respectively.Theright-panelshows thecorrespondingsituationinthemNyN plane.Onecanobserve an importantfeature that given a fixed value of λ, the observed reliccanbeobtainedforquiteextendedrangesoftheDMmass by changingtheneutrinoYukawacoupling yN,vizcontrollingthe decay width.Thisparameter spaceis currentlyallowed by the limitsfromindirectdetectionexperimentshowevercanbeprobed bytheprojectedboundfromCTAinfuture.Thesystemofthecou- pledBoltzmannequations,(3) and(5),reducestotheconventional onewheretheRHNisassumedtobeinthermalequilibrium.This isrealizedwhen

σ

v 2×109GeV2andtheresultbecomesin- dependentof yN,whichisnicelydepictedintherightpanel. The gray shaded region isforbidden by theperturbativity limit on λ.

(4)

Fig. 3.Theleftandrightpanelsshowtheallowedparameterspaceintheplaneof(mχσv)and(mN,yN),respectively.TheobservedrelicdensityisobtainedfortheDM couplingλ=0.4 (dashed),0.6(dot-dashed),0.8(dotted),1.0(long-dashed)and

4π (solid).ThegreenandyellowshadedregionsareexcludedbyFermi-LAT(at90%C.L.) andH.E.S.S.(at95%C.L.)data,respectively.ThebluesolidcurverepresentsfutureboundfromCTAwheretheregionabove(below)willbeexcludedat90%C.L.forleft(right) panel.Thegrayregionisforbiddenbyperturbativitylimit.Themassesofχ,N,φareassumedtofollowmχ=nmN=1/nmφwithn=1.2,κ=1,andtheRHNisassumed todecayequallytoeachleptonflavor.

Fig. 4.The interaction of the DMχwith the Higgshinduced at one-loop level.

Forhighervaluesofn,theparallellinesfor yN107 intheleft panelofFig.3wouldbesatisfiedforhighervaluesofλforagiven mN.This isdueto thefact thatan increase inn decreases

σ

v, whichcanbereadfromEq. (2).

4. Directdetection

Notice that the model contains no tree-level coupling of the fermionicDMtotheHiggsboson,butaneffectiveh

χ

χ

coupling arisesfromtheone-loopdiagramshowninFig.4:

Lhχ χ

= κ

h

χ χ ¯

where

κ

λ

2

κ

v 16

π

2

mχc1

(

x

)

mNc0

(

x

)

m2φ

,

(11)

andc1,0(x)areloop-functionsofxm2N/m2φgivenby

c1

(

x

) =

1

4x

+

3x2

2x2lnx 2

(

1

x

)

3

,

c0

(

x

) =

1

x

+

xlnx

(

1

x

)

2

.

Theinduced h

χ

χ

coupling

κ

(Eq. (11))controlsthe SInucle- oniccross-section

σ

SI

=

4

π μ

r2

κ

gnnh m2h

2

,

(12)

where

μ

r=mχmn/(mχ+mn) is the reduced mass and gnnh ≈ 0.0011 is thenucleon-Higgs coupling.Themeasurements ofDM- nucleonSIcrosssectionconstraintheeffectiveHiggs-DMcoupling stringentlyand the result is depicted inFig. 5 which showsthe latestboundfromXENON1T 2018result[19] and thefuturelim- itsfromLZ[20] andXENONnT [21] experiments.Theregionabove thementionedcurvesareexcludedat90%confidencelevel.

Fig. 5.Thecontourplotfordirectdetectioncross-sectionthroughaloopinduced hχχ couplingisshowninmχ− |λ2κ|plane.The2018XENON1T bound [19]

isshownbythered-dashedcurve.Thegreen- andorange-dottedcurvesarethe expectedboundsfromLZ [20] andXENONnT [21] experiments,respectively. The regionabovethementionedcurvesareexcludedat90%confidencelevel.

It canbe seenthat thelatest datafromXENON1T experiment excludes|λ2

κ

|O(1)for150 GeVandthefuturesensitivity ofXENONnT canruleout suchvalue of|λ2

κ

|upto 600 GeV DM mass.Asthedirectdetectionprocessarisesatone-looplevelwith an additionalcoupling

κ

irrelevantfortheDMannihilation,there remains a wide range of parameter space to be probed by both directandindirectdetections.

5. Conclusion

The darksector maypossiblybe connectedto thevisiblesec- torthroughheavyMajoranaRHNswhichareintroducedtoexplain the observed neutrinomassesand mixing. Assuming afermionic DMcandidatewhichpair-annihilatestoaRHNpair,weperformed a comprehensiveanalysisofthe parameter spaceconsidering the neutrinoYukawaeffectinthethermalfreeze-outprocessandim- posing the current results of indirect and direct detection ex- periments. When the neutrino Yukawa coupling is too small to maintaintheRHNinfullthermalequilibrium,theDMannihilation cross-sectionneedstobelargerthanthestandardfreeze-outvalue toobtaintheobservedrelicdensity.However,theallowedparam- eterregionisquitelimitedandwellbelowthecurrentlimitsfrom Fermi-LATandH.E.S.S.telescopesdetectinggammaraysignals.The

(5)

CTA willbe ableto probea largepartof theregion asshown in Fig. 3. In this scenario, a DM-Higgs coupling arises at one loop andthuscouldbeprobedbydirectdetectionexperimentsthrough spin-independentscattering.The2018XENON1Tboundandfuture limitsareillustratedinFig.5.

Acknowledgements

We thank Christoph Weniger for the discussion and encour- agement.EJCissupported bythe NRFgrant fundedby theKorea government (MSIP) (No. 2009-0083526) through KNRC at Seoul NationalUniversity.FSQ thanks thefinancial support fromUFRN, MECandICTP-SAIFRFAPESPgrant2016/01343-7.TheworkofRM hasbeensupportedinpartby GrantsNo. FPA2014-53631-C2-1-P, FPA2017-84445-P and SEV-2014-0398 (AEI/ERDF, EU) and by PROMETEO/2017/053(GV,ES).

Appendix A

In this section we provide the expressions for cross sections involved in the coupled Boltzmann equations (Eqs. (3)–(5)). The scalarDM particleφ can annihilate to

χ

(N)pair viaa t-channel exchange of N(

χ

) and the thermally averaged cross section is given in Eq. (13) ((14)). The φ pair can also annihilate to the SM particles where the dominant channels are φφhh and φφht¯t, W W, Z Z wherehistheSMHiggsboson.Thepro- cessφφhhcombinesthreecontributionsasshowninEq. (15);

contact4-pointinteraction (first term), s-channel Higgsexchange (second term) and t-channel φ exchange (third term). All three channels written in Eq. (16) proceed through a s-channel Higgs exchangeandhencearelessdominantfarfromtheresonantHiggs production. We use these expressions in solving the Boltzmann equations(Eqs. (3)–(5))inSecs.2and3.

σ

v

φφχ χ

= λ

4

mχ

+

mN

2

2

π

m2φ

m2χ

+

m2N

2

1

m

2χ m2φ

3/2

,

(13)

σ

v

φφN N

= λ

4

mχ

+

mN

2

2

π

m2φ

+

m2χ

m2N

2

1

m2N

m2φ

3/2

,

(14)

σ

v

φφhh

=

1

m2h m2φ

1/2

1 64

π

m2φ

×

2

κ +

6

κ

m2h

(

4m2φ

m2h

) (

4m2φ

m2h

)

2

+

m2h

2h

2

+ κ

4v4 2

π

m2φ

2m2φ

m2h

2

,

(15)

σ

v

φφhSM

=

2

κ

2v2GF

π (

4m2φ

mh2

)

2

+

mh2

2h

×

3m2t

1

m2t

m2φ

3/2

+

2m2φ

1

m2W m2φ

1/2

+

m2φ

1

m2Z

m2φ

1/2

.

(16)

References

[1]P.Minkowski,Phys.Lett.B67(1977)421;

T.Yanagida,in:TheWorkshoponGrandUnifiedTheoryandBaryonNumberof theUniverse,KEK,Japan,1979;

M.Gell-Mann,P.Ramond,R.Slansky,in:SanibelSymposium,February1979, CALT-68-709,retroprintarXiv:hep-ph/9809459;

M.Gell-Mann,P.Ramond,R.Slansky,in:D.Freedman,etal.(Eds.),Supergrav- ity,NorthHolland,Amsterdam,1979;

S.L.Glashow,in:QuarksandLeptons,Cargese,M.Levy,etal.(Eds.),Plenum, NewYork,1980,p. 707;

R.N.Mohapatra,G.Senjanovic,Phys.Rev.Lett.44(1980)912.

[2]P.Bandyopadhyay,E.J.Chun,J.C.Park,J. HighEnergyPhys.1106(2011)129, arXiv:1105.1652 [hep-ph].

[3]P.Bandyopadhyay,E.J.Chun,R.Mandal, Phys.Rev.D97 (1)(2018)015001, arXiv:1707.00874 [hep-ph].

[4]J.A.Dror,E.Kuflik,W.H.Ng,Phys.Rev.Lett.117 (21)(2016)211801, arXiv:

1607.03110 [hep-ph].

[5]S.Okawa, M.Tanabashi, M.Yamanaka, Phys. Rev.D 95 (2)(2017) 023006, arXiv:1607.08520 [hep-ph].

[6]J.Kopp,J.Liu,T.R.Slatyer,X.P.Wang,W.Xue,J. HighEnergyPhys.1612(2016) 033,arXiv:1609.02147 [hep-ph].

[7]M.Pospelov,A.Ritz,M.B.Voloshin,Phys.Lett.B662(2008)53,arXiv:0711.4866 [hep-ph].

[8]A.Falkowski,J.Juknevich,J.Shelton,arXiv:0908.1790 [hep-ph].

[9]V.González-Macías,J.I.Illana,J.Wudka,J. HighEnergyPhys.1605(2016)171, arXiv:1601.05051 [hep-ph].

[10]M.Escudero,N.Rius,V.Sanz,Eur.Phys.J.C77 (6)(2017)397,arXiv:1607.

02373 [hep-ph].

[11]Y.L.Tang,S.h.Zhu, J. HighEnergyPhys. 1701(2017)025,arXiv:1609.07841 [hep-ph].

[12]M.D.Campos,F.S.Queiroz,C.E.Yaguna,C.Weniger,J. Cosmol.Astropart.Phys.

1707 (07)(2017)016,arXiv:1702.06145 [hep-ph].

[13]B.Batell,T.Han,B.Shams Es Haghi,arXiv:1704.08708 [hep-ph].

[14]M.Chianese,S.F.King,arXiv:1806.10606 [hep-ph].

[15]P.Athron,J.M.Cornell,F.Kahlhoefer,J. McKay,P.Scott,S.Wild,arXiv:1806. 11281 [hep-ph].

[16]M.G.Folgado,G.A.Gómez-Vargas,N.Rius,R.RuizDeAustri,arXiv:1803.08934 [hep-ph].

[17]B.S.Acharya,etal.,CherenkovTelescopeArrayConsortium,arXiv:1709.07997 [astro-ph.IM].

[18]P.A.R.Ade, et al., PlanckCollaboration, Astron. Astrophys. 594 (2016)A13, arXiv:1502.01589 [astro-ph.CO].

[19]E.Aprile,etal.,XENONCollaboration,arXiv:1805.12562 [astro-ph.CO].

[20]B.J.Mount,etal.,arXiv:1703.09144 [physics.ins-det].

[21]E.Aprile,etal., XENONCollaboration,J. Cosmol.Astropart.Phys. 1604 (04) (2016)027,arXiv:1512.07501 [physics.ins-det].

Referensi

Dokumen terkait

Conclusies Ik sluit deze paragraaf af met drie conclusies; 1 het idee dat Israëls God het vermogen heeft om doden te doen herrijzen, kwam voor het eerst naar voren in

This explains that while faculty are knowledgeable in green technology, this does not mean that they practice it more often compared TABLE 6 Test of difference in the respondents'