This Question Paper consists of 36 questions including 3 figures and 12 printed pages + Graph Sheet.
§â ÂýàÙ-Âæ ×ð´
36ÂýàÙ ÌÍæ
3ç¿æ °ß´
12×éçÎýÌ ÂëcÆU + »ýæÈ¤ àæèÅU ãñ´Ð
Roll No.
¥Ùé·ý¤×æ´·¤
Code No.·¤æðÇU Ù´. 49/HIS/1
MATHEMATICS
(»çæÌ)
(211)
Day and Date of Examination
ÂÚUèÿææ ·¤æ çÎÙ ß çÎÙæ´·¤
Signature of Invigilators 1.
çÙÚUèÿæ·¤æð´ ·ð¤ ãSÌæÿæÚU
2.
General Instructions :
1. Candidate must write his/her Roll Number on the first page of the Question Paper.
2. Please check the Question Paper to verify that the total pages and total number of questions contained in the Question Paper are the same as those printed on the top of the first page.
Also check to see that the questions are in sequential order.
3. For the objective type of questions, you have to choose any one of the four alternatives given in the question i.e. (A), (B), (C) or (D) and indicate your correct answer in the Answer-Book given to you.
4. All the questions including objective type questions are to be answered within the allotted time and no separate time limit is fixed for answering objective type questions.
5. Making any identification mark in the Answer-Book or writing Roll Number anywhere other than the specified places will lead to disqualification of the candidate.
6. Write your Question Paper code No.
49/HIS/1-A
on the Answer-Book.7. (a) The Question Paper is in English/Hindi medium only. However, if you wish, you can answer in any one of the languages listed below :
English, Hindi, Urdu, Punjabi, Bengali, Tamil, Malayalam, Kannada, Telugu, Marathi, Oriya, Gujarati, Konkani, Manipuri, Assamese, Nepali, Kashmiri, Sanskrit and Sindhi.
You are required to indicate the language you have chosen to answer in the box provided in the Answer-Book.
(b) If you choose to write the answer in the language other than Hindi and English, the responsibility for any errors/mistakes in understanding the question will be yours only.
Set A
âæ×æØ ¥ÙéÎðàæ Ñ
1.
ÂÚUèÿææÍèü ÂýàÙÂæ ·ð¤ ¤ÂãÜð ÂëcÆU ÂÚU ¥ÂÙæ ¥Ùé·ý¤×æ´·¤ ¥ßàØU çܹð´Ð
2
. ·ë¤ÂØæ ÂýàÙÂæ ·¤æð Áæò¡¿ Üð´ ç·¤ ÂýàÙÂæ ·ð¤ ·é¤Ü ÂëcÆUæð´ ÌÍæ ÂýàÙæð´ ·¤è ©ÌÙè ãè â´UØæ ãñ çÁÌÙè ÂýÍ× ÂëcÆ ·ð ¤âÕâ𠪤ÂÚU ÀUÂè ãñÐ §â ÕæÌ ·¤è Áæò¡¿ Öè ·¤ÚU Üð´ ç·¤ ÂýàÙ ·ý ç×·¤ UM¤Â ×ð´ ãñ´Ð
3.
ßSÌéçÙcÆU ÂýàÙæð´ ×ð´ ¥æÂ·¤æð ¿æÚU çß·¤ËÂæð´
(A), (B), (C)ÌÍæ
(D)×ð´ âð ·¤æð§ü °·¤ ©æÚ ¿éÙÙæ ãñ ÌÍæ Îè »§ü
©æÚU-ÂéçSUÌ·¤æ ×ð´ ¥æÂ âãè ©æÚ çÜç¹°ÐU
4.
ßSÌéçÙcÆU ÂýàÙæð´ ·ð¤ âæÍ-âæÍ âÖè ÂýàÙæð´ ·ð¤ ©æÚ çÙÏæüçÚUÌ ¥ßçÏ ·ð ÖèÌÚU ãè ÎðÙð ãñ´Ð ßSÌéçÙcÆU ÂýàÙæð´ ·ð¤ çܰ¤¥Ü»
âð âר Ùãè´ çÎØæ Áæ°»æÐ
5.
¤ ©æÚU-ÂéçSUÌ·¤æ ×ð´ Âã¿æÙ-ç¿q ÕÙæÙð ¥Íßæ çÙçÎücÅU SÍæÙæð´ ·ð¤¤ ¥çÌçÚUÌ ·¤ãè´ Öè ¥Ùé·ý¤×æ´·¤ çܹÙð ÂÚU ÂÚUèÿææÍèü
·¤æð ¥ØæðØ ÆUãÚUæØæ ÁæØð»æÐ
6.
¥ÂÙè ©æÚU-ÂéçSUÌ·¤æ ÂÚU ÂýàÙÂæ ·¤è ·¤æðÇU â´Øæ 49/HIS/1-A çܹð´Ð
7.
(·¤) ÂýàÙÂæ ·ð¤ßÜ çã´Îè
/¥´»ýðÁè ×ð´ ãñÐ çȤÚU Öè, ØçÎ ¥æÂ ¿æãð´ Ìæð Ùè¿ð Îè »§ü ç·¤âè °·¤ Öæáæ ×ð´ ©æÚ Îð â·¤Ìð ãñ´ Ñ
¥´»ýðÁè, çã´Îè, ©Îêü, ´ÁæÕè, Õ¡»Üæ, Ìç×Ü, ×ÜØæÜ×, ·¤ÙǸ, ÌðÜé»é, ×ÚUæÆUè, ©çÇ¸Øæ, »éÁÚUæÌè, ·¤æð´·¤æè,
×çæÂéÚUè, ¥âçרæ, ÙðÂæÜè, ·¤à×èÚUè, â´S·ë¤Ì¤¥æñÚU çâ´ÏèÐ
·ë¤ÂØæ ©æÚU-ÂéçSÌ·¤æ ×ð´ çΰ »° Õæòâ ×ð´ çܹð´ ç·¤ ¥æÂ ç·¤â Öæáæ ×ð´ ©æÚU çܹ ÚUãð ãñ´Ð ¤
(¹) ØçÎ ¥æÂ çã´Îè °ß´ ¥´»ýðÁè ·ð¤ ¥çÌçÚUÌ ç·¤âè ¥Ø Öæáæ ×ð´ ©æÚU çܹÌð ãñ´ Ìæð ÂýàÙ ·¤æð â×ÛæÙð ×ð´ ãæðÙð ßæÜè
æéçÅUØæð´
/»ÜçÌØæð´ ·¤è çÁ×ðUÎæÚè ·ð ßÜ ¥æÂ·¤è ãæð»èÐ
MATHEMATICS
(»çæÌ)
(211)
Time : 3 Hours ] [ Maximum Marks : 100
âר Ñ
3æÅðU ] [ ÂêææZ·¤ Ñ
100Note : (1) Question Numbers (1-14) are Multiple Choice Questions. Each question carries one mark. For each question, four alternative choices A, B, C and D are provided, of which only one is correct. You have to select the correct alternative and indicate it in the answer-book provided to you by writing (A), (B), (C) or (D) as the case may be.
(2) Question Numbers (15-24) carry 2 marks each.
(3) Question Numbers (25-33) carry 5 marks each.
(4) Question Numbers (34-36) carry 7 marks each.
(5) All questions are compulsory.
çÙÎðüàæ Ñ
(1)ÂýàÙ â´Øæ
(1-14)Ì·¤ Õãéçß·¤ËÂè ÂýàÙ
(Multiple Choice Question)ãñ´Ð ÂýØð·¤ ÂýàÙ °·¤
¥´·¤ ·¤æ ãñÐ ÂýØð·¤ ÂýàÙ ×ð´ ¿æÚU çß·¤ËÂ
A, B, CÌÍæ
DçÎØð »Øð ãñ´, çÁÙ×ð´ âð ·ð¤ßÜ °·¤ âãè ãñÐ
¥æÂ·¤æð âãè çß·¤Ë ¿éÙÙæ ãñ ÌÍæ ÂýØð·¤ ÂýàÙ ·ð¤ ©æÚU ¥ÂÙè ©æÚU ÂéçSÌ·¤æ ×ð´
(A), (B), (C)¥Íßæ
(D)Áñâè Öè çSÍçÌ ãæð, çܹ·¤ÚU ÎàææüÙæ ãñÐ
(2)
ÂýàÙ â´Øæ
(15-24)Ì·¤ ÂýØð·¤ ÂýàÙ ·ð¤
2¥´·¤ ãñ´Ð
(3)
ÂýàÙ â´Øæ
(25-33)Ì·¤ ÂýØð·¤ ÂýàÙ ·ð¤
5¥´·¤ ãñ´Ð
(4)
ÂýàÙ â´Øæ
(34-36)Ì·¤ ÂýØð·¤ ÂýàÙ ·ð¤
7¥´·¤ ãñ´Ð
(5)
âÖè ÂýàÙ ¥çÙßæØü ãñ´Ð
1. A rational number equivalent to the rational number 5 9
2 is : 1
ÂçÚU×ðØ â´Øæ
59
2
·ð¤ â×ÌéËØ ÂçÚU×ðØ â´Øæ ãñ Ñ
(A) 5
9 (B) 10
9 2
(C) 10
18
2 (D) 10
18
2. 2.07 as a percent can be written as : 1
2.07
·¤æð ÂýçÌàæÌ ·ð¤ M¤Â ×ð´ çܹÙð ÂÚU ÂýæÌ ãæðÌæ ãñ Ñ
(A) 207% (B) 20.7%
(C) 2.07% (D) 0.207%
3. ` 2000 at the rate of 8.5% per annum simple interest will yield ` 510 in : 1
(A) 1 year (B) 2 years
(C) 3 years (D) 4 years
` 2000
ÂÚU
8.5%ßæçáü·¤ âæÏæÚUæ ØæÁ ·¤è ÎÚU âð
` 510çÁÌÙð ßáæðZ ×ð´ ÂýæÌ ãæð´»ð ßã ãñ Ñ
(A) 1
ßáü
(B) 2ßáü
(C) 3
ßáü
(D) 4ßáü
4. A shopkeeper marks his goods 10% more than their cost price and allows a discount of 10%. His gain or loss percent is :
(A) 1% gain (B) 1% loss
(C) 0% gain or loss (D) 10% gain
°·¤ Îé·¤æÙÎæÚU ¥ÂÙð âæ×æÙ ÂÚU ·ý¤Ø ×êËØ âð
10%¥çÏ·¤ ×êËØ ¥´ç·¤Ì ·¤ÚUÌæ ãñ, ÌÍæ
10%Õ^æ ÎðÌæ ãñÐ
©â·¤æ ÂýçÌàæÌ ÜæÖ Øæ ãæçÙ ãñ Ñ
(A) 1%
ÜæÖ
(B) 1%ãæçÙ
(C) 0%
ÜæÖ Øæ ãæçÙ
(D) 10%ÜæÖ
1
5. If x 1 5
2 5 x , then 3 13
x 2 x equals : 1
ØçÎ
x2 5 1x 5ãñ, Ìæð
3 3x 1
2 x
·¤æ ×æÙ ãñ Ñ
(A) 140 (B) 145
(C) 135 (D) 130
6. If cos A5 1
3, then the value of tan A is : 1
ØçÎ
cos A5 13ãñ, Ìæð
tan A·¤æ ×æÙ ãñ Ñ
(A) 2 (B) 1
2 (C) 1
2 (D) 2
7. If a ladder 10 m long is touching the top of a wall, making an angle of 608 with the wall, the height of wall (in meters) is :
ØçÎ °·¤
10×è Ü´Õè âèÉ¸è °·¤ ÎèßæÚU ·ð¤ çàæ¹ÚU ·¤æð ÀêUÌè ãé§ü, ÎèßæÚU ·ð¤ âæÍ
608·¤æ ·¤æðæ ÕÙæ ÚUãè ãñ, Ìæð ÎèßæÚU ·¤è ª¡¤¿æ§ü (×èÅUÚUæð´ ×ð´) ãñ Ñ
(A) 5 3 (B) 5
(C) 5 2 (D) 5
2
8. If tan A5cot B, then the value of (A1B) is : 1
ØçÎ
tan A5cot Bãñ, Ìæð
(A1B)·¤æ ×æÙ ãñ Ñ
(A) 458 (B) 608
(C) 908 (D) 1808
1
9. Two different coins are tossed at the same time. The probability of getting head on one and tail on the other coin is :
Îæð çÖÙ-çÖÙ çâ·¤æð´ ·¤æð °·¤ âæÍ ©ÀUæÜæ »ØæÐ °·¤ çâ·ð¤ ÂÚU ç¿æ ÌÍæ ÎêâÚðU ÂÚU ÂÅ÷ ¥æÙð ·¤è ÂýæçØ·¤Ìæ ãñ Ñ
(A) 1
4 (B) 3
4
(C) 1 (D) 1
2
10. The median of the data 16, 1, 6, 14, 4, 13, 8, 9, 23, 9, 7, 8, 17 is : 1
¥æ´·¤Ç¸æð´
16, 1, 6, 14, 4, 13, 8, 9, 23, 9, 7, 8, 17·¤æ ×æØ·¤ ãñ Ñ
(A) 8 (B) 9
(C) 8.5 (D) 11
11. In the given figure, DE??BC. If AD53 cm, DB55 cm and AE56 cm, then length of AC is :
(A) 10 cm (B) 16 cm
(C) 6 cm (D) 8 cm
Îè »§ü ¥æ·ë¤çÌ ×ð´,
DE??BCãñÐ ØçÎ
AD53âð.×è.,
DB55âð.×è. ÌÍæ
AE56âð.×è. ãñ, Ìæð
AC·¤è Ü´Õæ§ü ãñ Ñ
(A) 10
âð.×è.
(B) 16âð.×è.
(C) 6
âð.×è
. (D) 8âð.×è.
1
1
12. In the given figure, AB is a chord of a circle with centre O. If ÐOAB5508, then ÐACB is :
Îè »§ü ¥æ·ë¤çÌ ×ð´, ·ð¤Îý
OßæÜð ßëæ ·¤è °·¤ Áèßæ
ABãñÐ ØçÎ
ÐOAB5508ãñ, Ìæð
ÐACBÕÚUæÕÚU ãñ Ñ
(A) 408 (B) 508
(C) 1008 (D) 258
13. The co-ordinates of the point which divides the line segment joining the points (1,22) and (4, 7) internally in the ratio 1 : 2 is :
çÕ´Î饿ð´
(1,22)ÌÍæ
(4, 7)·¤æð ç×ÜæÙð ßæÜð ÚðU¹æ¹ÇU ·¤æð
1 : 2×ð´ ¥ÌÑ çßÖæÁÙ ·¤ÚUÙð ßæÜð çÕ´Îé ·ð¤
çÙÎðüàææ´·¤ ãñ´ Ñ
(A) (1, 3) (B) (3, 2)
(C) (2, 1) (D) (3, 1)
14. If tan4u1tan2u51, then sec2u is equal to : 1
ØçÎ
tan4u1tan2u51ãñ, Ìæð
sec2u·¤æ ×æÙ ãñ Ñ
(A) cot2u (B) tan2u
(C) tanu (D) cotu
15. Perimeter of a rhombus is 104 cm and the length of one of its diagonal is 48 cm. Find the length of its other diagonal.
°·¤ â׿ÌéÖéüÁ ·¤æ ÂçÚU׿Â
104âð×è ãñ ÌÍæ §â·ð¤ °·¤ çß·¤æü ·¤è Ü´Õæ§ü
48âð×è ãñ Ìæð §â·ð¤ ÎêâÚðU çß·¤æü
·¤è Ü´Õæ§ü ææÌ ·¤èçÁ°Ð
1
1
2
16. Prove the identity : 2
âßüâç×·¤æ ·¤æð çâh ·¤èçÁ° Ñ
tan A cot B
tan A. cot B.
cot A tan B 1 5 1
17. Three cubes of edge 6 cm each are joined end to end to form a cuboid. Find the surface area of the cuboid so formed.
6
âð.×è. ç·¤ÙæÚðU ßæÜð ÌèÙ æÙæð´ ·¤æð çâÚðU âð çâÚUæ ç×Üæ ·¤ÚU °·¤ æÙæÖ ÕÙæØæ ÁæÌæ ãñÐ §â æÙæÖ ·¤æ ÂëcÆUèØ ÿæðæÈ¤Ü ææÌ ·¤èçÁ°Ð
18. L and M are the mid-points of the sides AB and AC of DABC, right angled at B. Show that 4 LC25AB214 BC2.
ç·¤âè â×·¤æðæ çæÖéÁ
ABC,çÁâ×ð´
ÐBâ×·¤æðæ ãñ, ·¤è ÖéÁæ¥æð´
ABÌÍæ
AC·ð¤ רçÕ´Îé ·ý¤×àæÑ
LÌÍæ
M
ãñ´Ð Îàææü§° ç·¤
4 LC25AB214 BC2.19. Show that a cyclic parallelogram is a rectangle. 2
Îàææü§° ç·¤ °·¤ ¿·ý¤èØ â׿´ÌÚU ¿ÌéÖéüÁ °·¤ ¥æØÌ ãæðÌæ ãñÐ
20. Factorise : 2
»éæÙ¹ÇU ·¤èçÁ° Ñ
a22b218b216.
21. If 110 is reduced to 88, find the reduction percent. 2
ØçÎ
110·¤æð æÅUæ ·¤ÚU
88·¤ÚU çÎØæ Áæ°, Ìæð ÂýçÌàæÌ ·¤×è ææÌ ·¤èçÁ°Ð
2
2
22. The sides of a triangle are 28 cm, 36 cm and 48 cm. Find the lengths of line-segments into which the smallest side is divided by the bisector of the angle opposite to it.
°·¤ çæÖéÁ ·¤è ÖéÁæ°¡
28âð.×è,
36âð.×è. ÌÍæ
48âð.×è. ãñ´Ð âÕâð ÀUæðÅUè ÖéÁæ ·ð¤ âæ×Ùð ·ð¤ ·¤æðæ ·¤æ â×çmÖæÁ·¤ ©â ÖéÁæ ·¤æð çÁÙ Îæð ÚðU¹æ¹ÇUæð´ ×ð´ çßÖæçÁÌ ·¤ÚðU»æ, ©Ù·¤è Ü´Õæ§Øæ¡ ææÌ ·¤èçÁ°Ð
23. In two similar triangles ABC and PQR, if the corresponding altitudes AD and PS are in the ratio 9 : 25, find the ratio of the areas of DABC and DPQR.
ØçÎ Îæð â×M¤Â çæÖéÁæð´
ABCÌÍæ
PQR·ð¤ ÌÎÙM¤Âè àæèáü Ü´Õæð´
ADÌÍæ
PS×ð´
9 : 25·¤æ ¥ÙéÂæÌ ãñ Ìæð
DABC
ÌÍæ
DPQR·ð¤ ÿæðæÈ¤Üæð´ ·¤æ ¥ÙéÂæÌ ææÌ ·¤èçÁ°Ð
24. Solve the following system of equations :
çÙÙ â×è·¤ÚUæ çÙ·¤æØ ·¤æ ãÜ ææÌ ·¤èçÁ° Ñ
3x2y57, 4x25y52.
25. Prove that the tangents drawn from an external point to a circle are of equal length.
çâh ·¤èçÁ° ç·¤ ç·¤âè Õæs çÕ´Îé âð ßëæ ÂÚU ¹è´¿è »§ü SÂàæü ÚðU¹æ¥æð´ ·¤è Ü´Õæ§Øæ¡ â×æÙ ãæðÌè ãñ´Ð
26. From the top of a building 60 m high, the angles of depression of the top and bottom of a tower are observed to be 458 and 608 respectively. Find the height of the tower and its distance from the building. [ Use 351.73 ]
60
×è. ª¡¤¿ð °·¤ ÖßÙ ·ð¤ çàæ¹ÚU âð, °·¤ ×èÙæÚU ·ð¤ çàæ¹ÚU °ß´ ÂæÎ ·ð¤ ¥ßÙ×Ù ·¤æðæ ·ý¤×àæÑ
458ÌÍæ
608ãñ´Ð
×èÙæÚU ·¤è ª¡¤¿æ§ü ÌÍæ ÖßÙ âð §â·¤è ÎêÚUè ææÌ ·¤èçÁ°Ð
[ 351.73ÜèçÁ°
]2
2
2
5
5
27. Draw a histogram for the following data :
Height (in cm) : 125 - 130 130 - 135 135 - 140 140 - 145 145 - 150 150 - 155 155 - 160 Number of
students : 1 2 3 5 4 3 2
çÙÙ ¥æ¡·¤Ç¸æð´ ·ð¤ çܰ °·¤ ¥æØÌç¿æ ¹è´ç¿°Ð
¤Ëá (ÇÕ.¼Í. ¼Õ) ¶
125 - 130 130 - 135 135 - 140 140 - 145 145 - 150 150 - 155 155 - 160ÌÄlË̲á½ËÕ Í
Ç½Ë ¶
1 2 3 5 4 3 2OR/
¥Íßæ
( For visually impaired candidates only )
(·ð¤ßÜ ÎëçcÅU çß·¤Üæ´» çßlæçÍüØæð´ ·ð¤ çܰ)
The class marks of a distribution and the corresponding frequencies are given below :
Class marks 5 15 25 35 45 55 65 75
Frequencies 2 6 10 15 12 8 5 2
Determine the frequency table and hence construct the cumulative frequency table.
ç·¤âè Õ´ÅUÙ ·ð¤ ß»ü ç¿ã ¥æñÚU â´»Ì ÕæÚU´ÕæÚUÌæ°¡ Ùè¿ð âæÚUæè ×ð´ Îè ãñ´ Ñ
Ä á ̤üÈ
5 15 25 35 45 55 65 75ºË¿UºË¿U±Ë
2 6 10 15 12 8 5 2©ÂÚUæðÌ ¥æ¡·¤Ç¸æð´ âð ÕæÚ´UÕæÚUÌæ âæÚUæè ÕÙæ§° ¥ÌÑ â´¿Øè ÕæÚ´UÕæÚUÌæ âæÚUæè ÕÙæ§°Ð
28. The denominator of a rational number is greater than its numerator by 8. If the denominator is decreased by 1 and numerator is increased by 17, the number obtained is 3
2. Find the rational number.
°·¤ ÂçÚU×ðØ â´Øæ ·¤æ ãÚU, ©â·ð¤ ¥´àæ âð
8ÕǸæ ãñÐ ØçÎ ãÚU ×ð´ âð
1æÅUæ çÎØæ Áæ° ÌÍæ ¥´àæ ×ð´
17ÁæðǸ çÎØæ Áæ°, Ìæð â´Øæ
32ÂýæÌ ãæðÌè ãñÐ ÂçÚU×ðØ â´Øæ ææÌ ·¤èçÁ°Ð
5
5
29. The cost of a machinery is ` 3,60,000 today. In the first year, the value depreciates by 12% and subsequently, the value depreciates by 8% each year. Find the depreciated value of the machinery at the end of 3 years.
¥æÁ °·¤ ×àæèÙÚUè ·¤æ ×êËØ
` 3,60,000ãñÐ ÂãÜð ßáü ×ð´ §â·ð¤ ×êËØ ×ð´
12%·¤æ ¥ß×êËØÙ ãæðÌæ ãñ ¥æñÚU
©â·ð¤ Âà¿æÌ÷ ãÚU ßáü §â·¤æ ×êËØ
8%æÅU ÁæÌæ ãñÐ ææÌ ·¤èçÁ° ç·¤
3ßáü ·ð¤ ¥Ì ×ð´ ×àæèÙÚUè ·¤æ ×êËØ ç·¤ÌÙæ ÚUã ÁæØð»æ?
30. From the following distribution of bulbs kept in boxes, find the mean number of bulbs kept in a box.
Number of bulbs : 50 - 52 52 - 54 54 - 56 56 - 58 58 - 60
Number of boxes : 15 100 126 105 30
Õâæð´ ×ð´ ÚU¹ð ÕËÕæð´ ·ð¤ çÙÙ Õ´ÅÙ âð °·¤ Õâð ×ð´ ÚU¹ð ÕËÕæð´ ·¤æ ×æØ â´Øæ ææÌ ·¤èçÁ° Ñ º°ºËÕ Í Ç½Ë ¶
50 - 52 52 - 54 54 - 56 56 - 58 58 - 60ºþÇËÕ Í Ç½Ë ¶
15 100 126 105 3031. In the given figure, BA and DC are two chords of a circle intersecting each other at a point P outside the circle. If PA54 cm, PB510 cm and CD53 cm, find PC.
Îè »§ü ¥æ·ë¤çÌ ×ð´, Áèßæ°¡
BAÌÍæ
DCßëÌ ·ð¤ ÕæãÚU °·¤ çÕ´Îé
PÂÚU ÂÚUSÂÚU ·¤æÅUÌè ãñ´Ð ØçÎ
PA54âð.×è.,
PB510
âð.×è. ÌÍæ
CD53âð.×è. ãñ, Ìæð
PCææÌ ·¤èçÁ°Ð
32. Simplify and express the following as rational expression in lowest terms :
çÙÙçÜç¹Ì ·¤æð âÚUÜ ·¤èçÁ° ÌÍæ ÂçÚU×ðØ ÃØ´Á·¤ ·ð¤ ØêÙÌ× M¤Â ×ð´ ÃØÌ ·¤èçÁ° Ñ
2 2
2 2
2 24 6
12 9
x x x x
x x x .
1 2 4 2 2
2 2 2
5
5
5
5
33. Find the value of x 1
2 x if 4 14
727
x 1 x 5 . 5
ØçÎ
x4 14 7271 x 5
ãñ, Ìæð
x2 1x·¤æ ×æÙ ææÌ ·¤èçÁ°Ð
34. Construct a DABC in which BC56.5 cm, ÐABC5608 and AB55 cm. Then construct another triangle whose sides are 3
5 times the corresponding sides of DABC.
°·¤ çæÖéÁ
ABC·¤è ÚU¿Ùæ ·¤èçÁ° çÁâ×ð´
BC56.5âð.×è.,
ÐABC5608ÌÍæ
AB55âð.×è. ãñÐ çȤÚU
°·¤ ¥Ø çæÖéÁ ·¤è ÚU¿Ùæ ·¤èçÁ° çÁâ·¤è ÖéÁæ°¡
DABC·¤è â´»Ì ÖéÁæ¥æð´ ·¤è
35»éÙè ãñ´Ð
OR/
¥Íßæ
( For visually impaired candidates only )
(·ð¤ßÜ ÎëçcÅU çß·¤Üæ´» çßlæçÍüØæð´ ·ð¤ çܰ)
Write the steps of construction for constructing a DABC in which AB54 cm, ÐA5458 and AC2BC51 cm.
°·¤
DABC,çÁâ×ð´
AB54âð.×è.,
ÐA5458ÌÍæ
AC2BC51âð.×è. ãñ, ·¤è ÚU¿Ùæ ·ð¤ çܰ, ÚU¿Ùæ ·ð¤
ÂÎ çÜç¹°Ð
35. The product of digits of a two digit number is 12. When 9 is added to the number, the digits interchange their places. Determine the number.
Îæð ¥´·¤æð´ ·¤è °·¤ â´Øæ ·ð¤ ¥´·¤æð´ ·¤æ »éæÙȤÜ
12ãñÐ â´Øæ ×ð´
9ÁæðǸÙð ÂÚU ¥´·¤ ¥ÂÙæ SÍæÙ ÕÎÜ ÜðÌð ãñ´Ð â´Øæ ææÌ ·¤èçÁ°Ð
36. Find the area of a trapezium whose parallel sides are 11 cm and 25 cm and whose non-parallel sides are 15 cm and 13 cm.
°·¤ â×Ü´Õ ·¤æ ÿæðæÈ¤Ü ææÌ ·¤èçÁ° çÁâ·¤è â׿´ÌÚU ÖéÁæ¥æð´ ·¤è Ü´Õæ§Øæ¡
11âð.×è. ¥æñÚU
25âð.×è. ãñ´ ÌÍæ
¥â׿´ÌÚU ÖéÁæ¥æð´ ·¤è Ü´Õæ§Øæ¡
15âð.×è. ¥æñÚU
13âð.×è. ãñ´Ð
7
7
7