w w w . j m r t . c o m . b r
Availableonlineatwww.sciencedirect.com
Original Article
XRD, internal field-NMR and Mössbauer
spectroscopy study of composition, structure and magnetic properties of iron oxide phases in iron ores
Mushtagatte Manjunatha
a, Rajeev Kumar
b, Aroli V. Anupama
b, Vijay B. Khopkar
b, Ramakrishna Damle
a, Karalapura P. Ramesh
c,∗, Balaram Sahoo
b,∗aDepartmentofPhysics,BangaloreUniversity,Bangalore560056,India
bMaterialsResearchCentre,IndianInstituteofScience,Bangalore560012,India
cDepartmentofPhysics,IndianInstituteofScience,Bangalore560012,India
a r t i c l e i n f o
Articlehistory:
Received29August2018 Accepted25January2019 Availableonline11April2019
Keywords:
Ironores
Phasecomposition Magneticproperties InternalfieldNMR Mössbauerspectroscopy
a bs t r a c t
Wereportthephase-composition,structureandmagneticpropertiesoftworepresentative samplesofnaturallyavailableiron-oxidecontainingores/soilscollectedfromtwodifferent regionsinKarnataka,India.PresenceofelementssuchasFe,Si,AlandOwereidentifiedin boththesamplesusingenergydispersiveanalysisofX-rays(EDAX).X-raydiffractionresults confirmedthatdifferentceramicphasessuchascrystallineironoxidephases(Fe3O4,␥-Fe2O3
and␣-Fe2O3),aluminosilicates(Al2SiO5)andlow-quartz(SiO2)phasesconstitutethesoil.
Thepresenceofferrimagneticphases(Fe3O4,␥-Fe2O3)makesthesoilrespondtoaperma- nentmagnet.Separationbetweenthemagneticandnon-magneticphaseswasperformed usingapermanentmagnet.Thenon-magneticpartofthesamplecontainsahighamount of␣-Fe2O3 phasealongwithaluminosilicatesandlow-quartz.Themagneticphaseswere furthercharacterizedandquantified.ThepresenceofFe3O4phaseinthesampleswascon- firmedfromtheVerweytransitionobservedbyinternal-fieldNMRspectroscopy.Ourresults demonstratethatinternal-fieldNMRandMössbauerspectroscopyarecomplementarytools forcharacterizingironcontainingsoils.Furthermore,wefoundthatthesoilcollectedfrom thelowtemperatureregion(Sandur)containsmoreamountsofferrimagneticoxide(Fe3O4,
␥-Fe2O3)phases,whereasthehightemperatureregion(Hospete)containsmore␣-Fe2O3
phase.Hence,ourresultsconfirmthatthephasecompositionofthesoilisintimatelyrelated tothelocaldailytemperature.
©2019TheAuthors.PublishedbyElsevierB.V.Thisisanopenaccessarticleunderthe CCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).
∗ Correspondingauthors.
E-mails:[email protected](K.P.Ramesh),[email protected](B.Sahoo).
https://doi.org/10.1016/j.jmrt.2019.01.022
2238-7854/© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
j mater res technol.2019;8(2):2192–2200
2193
1. Introduction
Hematiteandmagnetitearetheprimaryironoresusedforthe extractionofmetallicironbythesteelindustries.Ironoresthat areusedbythesteelindustryrequirestocontain≥58wt%iron compounds,suchasironoxidesbeforebeingconsidered as commerciallyusable[1].Apartfromextractionofmetalliciron, theironoxides(Fe3O4,␣-Fe2O3and␥-Fe2O3)havenumerous directapplications,suchasinelectromagneticinterference shielding[2–4],magnetorheology[5,6],magneticrecording[7], highfrequencyopticalmodulators[8]andbiomedicalappli- cations[9,10]etc.
Theanalysis ofthe characterizationresults ofdifferent minerals and their development provides enormous infor- mationaboutunderstandingofthechangesoftheminerals throughdifferentnaturalprocesses[11,12].Duetotheinven- tionofvariousadvancedscientifictechniques,thein-depth characterization ofvarious unknown minerals interms of their elemental and phase composition became feasible.
Thereare manyreportsonthe studyofironoresindiffer- entpartsofworld.Forexample:Longworthetal.conducted Mössbauerspectroscopicstudyonthemagneticstateofiron oxidesinthesoilscollectedfromtheregionsaroundEngland [13].Theyfoundthatthepercentageofnon-magneticcom- poundinthesoilsvariesbetween50%and63%.Resendeetal.
reportedontheironoxideoresfoundinthetropicalregionsof Braziliansoilsthatcontains∼63%ofhematiteore[14]andFar- bisetal.reportedthattheBraziliansoilsalsocontainhigher amount (∼17%) of magnetite [15]. The iron soils collected fromtheNewZealandcontainsalmost20–40%ofmagnetite [16].
Therearemanyparameterssuchastemperature,quality ofair,pressurebelowthegroundetc.thatdecidethereten- tion ofthe amount ofdifferent iron oxidephases insoils.
Furthermore,thereare many environmentalparametersor combinationofparameterssuchastemperature,mechanical pressure(belowearthcrust),moisture,oxygengas(air)along withmanyotherpollutantsthatinfluencethetransformation ofelementaliron/iron-oxideintootherironoxidephases.The aimofthisstudyistodemonstratetheinfluenceoflocaldaily temperatureandmoisture(duetorainintheforestareas)on theironoxidephasetransformationinthesoilscollectedfrom twonearbyplacesinKarnataka,India,wherethelocaldaily temperaturesdifferbyabout2◦C.
2. Materials and methods
Two different representative soilswere collected from two differentregions(HospeteandSandur)inKarnataka,India.
These cities are situated atabout 350km toward north of Bangalore,India.Theyarenotmorethan∼30kmapartfrom eachother.Allovertheyear,Hospeteexperiencesabout2◦C higher temperature than Sandur. This temperature differ- encecouldbeduetothefactthatHospetehasmuchmore dry-landthanSandur,whichincludeforestregions.Thevir- ginsoilsamplescollectedfromHospeteandSandurregions werelabeledasHSandSS,respectively.Toassessthecom- position and properties of the samples a host ofcomplex
characterizationswere performed.Initially, the as-collected samplesweregroundtofinepowders.Theelementalcomposi- tionandmorphologicalcharacterizationsofthesampleswere performedusingthetechniqueslikeEnergyDispersiveAnal- ysisofX-rays(EDAX)(Zeiss,Germany),X-raydiffraction(XRD) (PANAlytical,UK),ScanningElectronMicroscope(SEM)(Zeiss, Germany)andVibratingSampleMagnetometry(VSM)(Quan- tum Design, USA). Thesamples were foundto bestrongly magnetic,astheyshowstrongattractiontoamagnetduring preliminary assessment. Afterinitial characterizations, the magneticparticles wereseparatedfromtheoriginalsoilvia apermanentmagnetofmaximumfieldstrengthof∼1T.The fractionofthe magneticparticles ofthesamplewas about 64% and 68% forHS and SSsamples, respectively(i.e., the non-magnetic part was about 36% and 32% for HS and SS samples,respectively).Thenon-magneticsamplesobtained afterthemagneticseparationwere labeledasHS1andSS1 forHospeteandSandursoils,respectively,whereasthemag- neticsamplesobtainedaftertheseparationwerelabeledas HS2andSS2,respectively.Thepresenceofdifferentcrystalline phasesinallthesampleswasidentifiedusingXRD.Thestruc- turalandmagneticpropertiesofHS2andSS2sampleswere studiedusingXRD,57Feinternalfieldnuclearmagneticres- onance(IFNMR) spectroscopy,57FeMössbauerspectroscopy, X-ray photoelectron spectroscopy (XPS) (AXIS ULTRA, UK) andVSM.
XRDpatternsofthesampleswerecollectedusingPANalyt- icalX’PertProdiffractometer(Cu-K␣radiation).Thecrystalline phasespresentinthesoilsampleswereidentifiedbyreferring totheBraggpositionsandtheirrelativeintensities.Rietveld refinements[17]ofthestructuralparameterswerecarriedout usingthecomputerprogramFullProf[18].Thecrystallographic informationfortherefinementwasobtainedfromstandard crystallographic informationfiles (CIF) from ICSDdatabase.
57Fe-Mössbauerspectroscopywascarriedoutintransmission modeatRT(usingSEECo.USAinstrument).Thespectrawere recordedusingagas-filledproportionalcounter.Thevelocity ofthedrivewascalibratedusing␣-FefoilatRT.Theobtained Mössbauerspectrawereleastsquarefitusing“NORMOS”pro- gram[19,20].TheM-Hloopsofthesampleswererecordedat RTusinga“PPMS9T”magnetometer.
Ahome-madepulsedIFNMRspinechospectrometerwith two“equalpulsesequences”[21]wasusedforthemeasure- mentofthesamplesatRTandat77K.Adetaileddescription andworkingprincipleoftheIFNMRinstrument isprovided elsewhere [22]. In a typical room temperature experimen- tal setup, a LC parallel probe was excited with a pulse sequenceof‘/2––/2’(twoequalpulsessequence).Forthe twoequalpulses,anoptimizedpulsewidthof1swasused asthe/2pulse,forwhichtheechoamplitudewasthehigh- est.The /2 pulsewas followedbya delay time of20s beforearrivalofthesecond/2pulse(1s).Forlowtempera- ture(77K)experiment,weusedaspeciallydesignedcoaxial probe. Thepulse-widthsofthetwo equalpulseswere also keptconstantevenat77K.However,thedelaybetweenthe two pulses was increased to 30s, in order to accommo- date longer spin–spin relaxationtime atlow temperature.
The echoamplitude (NMR signal) wasrecorded asa func- tionoffrequencyvaryingfrom65MHzto80MHzinstepsof 0.1MHz.
Fig.1–(i)Thephotographsoftheas-collectedsoilsamplescollectedfromSandur(SS)andHospete(HS).(ii)SEMimagesof theHSandSSsamples.(iii)EDAXspectraoftheHSandSSsamples.
Table1–ElementalcompositionobtainedfromEDAX experiment.
SoilSample Elements Atomic%
HS O 57.97
Al 3.60
Si 3.50
Fe 34.93
SS O 79.01
Al 2.18
Si 3.65
Fe 15.16
3. Results and discussion
3.1. Samplesbeforeseparationofthemagneticphases
Thephotographsoftheas-collectedHSandSSsamplesare shown inFig. 1(a).TheHospete soil(HS) isdark brown in colorwhereastheSandursoil(SS)isbrownish.Thissuggests thatboththesoilscontainhighamountofironoxidephases.
Fig.1(b)showstheSEMmicrographsofHSandSSsamples, respectively.Theirregularstructuralmorphologyoftheparti- clesinthesoilsisevidentfromtheSEMmicrographsofboth thesamples.Fig.1(c)showstheEDAXspectraforHSandSS samples,respectively.BoththesamplescontainFe,Si,AlandO asmajorelements.Theelementalcompositionofboththesoil samples(HSandSS)obtainedfromEDAXislistedinTable1.
Astheamountoftheseelementslargelydependsonsam- plingareaofthesample,wecannotconcludeontheaccuracy ofelementalcomposition.However,itseemsthatHScontains higherpercentage(34.93at%)ofFethanthatofSS(15.16at%).
However,boththesamplescontainoxygenasthemostabun- dantelement(57.96at%forHSand79.01at%forSS).Presence ofthese twomajor elements indicates thatboth the sam- ples contain high amount of iron oxide phases (␣-Fe2O3, Fe3O4and␥-Fe2O3)assupportedbytheXRDresultsdiscussed below.Assigningappropriate(stoichiometric)amountofoxy- gentothealuminosilicate(4–5mol%,Al2SiO5)andlow-quartz
(2–3mol%, SiO2)phases,a simplecalculationsuggests that thereareoxygendeficientregions(oxygenvacancies)present inthesamples.ItcanberationalizedfromTable1thatHSsam- ple contains moreoxygen deficientiron containingphases than the SS sample.TheXRD patterns ofHS and SSsam- plesare shown inFig. 2(a).TheXRD patternsindicate that samplescontainironoxides(␣-Fe2O3,Fe3O4and␥-Fe2O3)as majorphasesalongwithsmallamountsofaluminosilicates and quartz.TheM–Hloops forthe HSand SS samplesare showninFig.2(b).ItisclearthatHSsamplehassaturation magnetization(MS)of∼8emu/gwhereasSSsampleshowsan MSvalueof∼19emu/g.ThisconfirmsthatSSsampleisslightly moremagneticascomparedtoHSsample.
3.2. Samplesafterremovalofthenon-magnetic phases
Aftergrindingtheascollectedsamplestofinepowders,the magneticpartofboththesampleswereseparatedfromthe non-magnetic/weaklymagneticparts.However,astheparti- clessizeswerestillbigger,presenceofsmallmagneticgrains inthenon-magneticmatrixandviceversa,cannotberuled out.Thenon-magneticpartofthesamplesobtainedafterthe magneticseparation were labeledasHS1 and SS1forHos- pete and Sandur soils,respectively.Similarly, themagnetic partsofthesampleswerelabeledasHS2andSS2.Afterthe magneticseparationwehavefurthercollectedtheXRDpat- ternsofboththemagneticandnon-magneticpartsofboth thesamples.Fig.3(a)showstheXRDpatternsofallthesam- plesmeasuredafterthemagneticseparation.Itcanbeseen that non-magnetic phaseslike aluminosilicatesand quartz areprominentoverthemagneticphases.Differentcrystalline formsofaluminosilicatespresentinthesamplesareidentified asKyanite(Space-group:P−1)andSillimanite(Space-group:
Pnma),asgiveninFig.3(a).Thesoilscontainmostlyalumi- nosilicatesandquartzasthenon-magneticphases.
Tounderstandtheeffectofdailyenvironmentaltemper- ature onthe phase compositionand phase transformation
j mater res technol.2019;8(2):2192–2200
2195
Fig.2–(a)XRDpatternsforthesoilsamplesHSandSS.(b)M–Hloopsofthestudiedsoilsamples:HS(black)andSS(Red), measuredatRT.
Fig.3–TheXRDpatternsofthesoilsamples:(a)HS1andSS1,(b)HS2andSS2.Foridentificationpurposesstandard(ICSD) XRDpatternsoftheobservedphasesarealsoshown.(c)TheRietveldrefinedXRDpatternsforthesoilsamples.Thedata pointsinredcircles,blacklinesandbluelines(belowXRDpattern)representtheexperimentaldata,fittotheexperimental dataandthedifferencepattern(mismatchbetweenexperimentaldataandrefineddata),respectively.Theverticalbars belowtheXRDpatterns(ingreencolor)representBraggpositions.
Table2–TheRietveldrefinedXRDparameters.Theabbreviations‘a’and‘V’standfortheunitcellparameterandcell volume,respectively.Theerrorinestimationof‘a’isinthe4thdecimal.
Sample Phase(wt%)spacegroup Cellparameters(Å),volume(Å3)
HS2 Fe3O4/␥-Fe2O3(5.3±0.5)[Fd-3m] a=8.4077,V=594.3
␣-Fe2O3(81.5±1.3)[R-3c] a=5.0364,c=13.7541,V=302.13 Lowquartz(13.2±1.0)[P3221] a=4.8365,c=5.5604,V=112.64
SS2 Fe3O4/␥-Fe2O3(20.9±1.0)[Fd-3m] a=8.3775,V=587.95
␣-Fe2O3(71.1±1.2)[R-3c] a=5.0329,c=13.7451,V=301.52 Lowquartz(8.0±0.6)[P3221] a=4.8186,c=5.5682,V=111.97
behavior, the magnetic part of the samples were studied extensively.TheXRDpatternsofthemagneticpartofthesoil samples(HS2andSS2)showpresenceofFe3O4/␥-Fe2O3(Fd- 3m),␣-Fe2O3(R-3c)andlowquartz(P3221)phases(Fig.3(b)).The RietveldrefinedXRDpattersareshowninFig.3(c).Themajor BraggreflectionsareindexedinFig.3(c)andtheindicesofindi- vidualphasesare color-coded forclarity. From theRietveld refinementresults(Table2),weobservethatboththesam- ples(after separationbyamagnet) stillcontain␣-Fe2O3 as themajorphase,i.e.,∼81%forHS2and∼71%forSS2sam- ples.However,theamountofmagneticphase(Fe3O4/␥-Fe2O3) isestimatedtobe∼5.3±0.5wt%forHS2and∼20.9±1.0for SS2samples,i.e.,theSS2samplecontainsmoreamountof magneticphasethanHS2sample.Also,thetotalamountof
ironoxidephases(Fe3O4/␥-Fe2O3+␣-Fe2O3)ishigherinSS2 thanHS2sample(Table2).Therearesmallquantitiesofthe non-magnetic low-quartz (SiO2) phasestill present inboth thesamples(∼13wt%inHS2soiland8wt%inSS2soil).Note that,althoughtheBraggpositionscorrespondtoFd-3mstruc- tureofFe3O4phase,␥-Fe2O3canalsoassumeFd-3mstructure [23]. Hence, quantificationofthe magneticpart into Fe3O4
and␥-Fe2O3phases,byXRDalone,isnotpossible,unless␥- Fe2O3possessesP4332structure[24,25].However,itisknown that␥-Fe2O3ordefected-Fe3O4(Fe2+partiallyoxidizedtoFe3+) usually has lower lattice parameter than the Fe3O4 phase [23,25,26].Interestingly,incaseofHS2,thecellparameter(a)is 8.4077 ˚A,whilethatforSS2is8.3775 ˚A.ThissuggeststhatSS2 mightcontaindefected-Fe3O4asprominentphase.Incaseof
Fig.4–TheXPSspectraof(a)HS2and(b)SS2samplesoverthewholemeasuredenergyrange.TheFe2pXPSspectraof(c) HS2and(d)SS2samples.
boththe samples,aslightmisfitatafewdiffractionangles (andanunaddressedpeakat∼27.5◦(markedasasterisk)for HS2sample) correspond tothe aluminosilicatesinthe soil samples.However,theabundanceofthisphaseis<2wt%in thewholesample.
Fig.4(a,b)showstheXPSspectraofthetwosoilsamples (HS2andSS2).TheFe2pandO1speaksarewellpronounced alongwiththe C1speak (duetothe carbontapeuseddur- ingthemeasurement).TheFe2pXPSspectraoftheHS2and SS2sampleswerefurthermeasuredwithbetterenergyreso- lutionandareshowninFig.4(c,d).Itisclearthat,thebinding energyfortheironliesbetween700and735eV.Theintense peak,whichappearsaround710eV,confirmsthepresenceof Fe2+(Fe2P3/2)inboththesamples.Thepeakat∼713eVcor- respondstoFe3+(Fe2P3/2).Thesatellitepeakscorresponding toFe2+andFe3+appearintherange∼715–722eV.Thepeaks seenat∼724eVand∼728eVcorrespondtotheFe2+andFe3+
ions(Fe2P1/2),respectively.Thepeaksobservedintherange
∼730–736eVcorrespondtothesatellitelinesofFe2+andFe3+
ions(Fe2P1/2).TheXPSresultscorroboratetheXRDresultsthat bothFe2+andFe3+ionsarepresentinthesample,i.e.,␣-Fe2O3, Fe3O4and␥-Fe2O3phasesarepresentinboththesamples.The peakobservedat∼708eVgivestheimpressionthatmetallic iron(Fe0)mightbepresentinboththesamples.However,we havenotobservedanytraceofmetallicFephaseinanyofthe characterizationmethodsreportedhere.Earlier,asimilarpeak wasobservedforlowspinFe2+state[27–29].Theoriginoflow spinFe2+statecanbeduetothepresenceofhighamountof defectsinthesamplesasindicatedfromtheEDAXmeasure- ments(Table1).Hence,thispeakmaycorrespondtothesame lowspin2+oxidationstateofFe.
TheMössbauerspectraofboththesamplesmeasuredat RTaregiveninFig.5.KeepingtheXRDresultsinmind,that boththesamplescontainFe3O4,␣-Fe2O3and␥-Fe2O3phases, and eachspectrumwas fitwithfoursub-spectra shownas foursextetsinFig.5(a).AlltheMössbauerparametersobtained fromtheleast-squaresfittingarelistedinTable3.Alltheiso- mershift(IS)valuesaregivenwithrespecttothe57Cosource (Rh-matrix)atRT.Thedominantsextet(S1)seeninbothsam- ples(darkgreencolor,Bhf=51.5T)isassignedtothe␣-Fe2O3 phase[25].Thesextet(S2)showningreencolor(Bhf=49.7T)is assignedtothe␥-Fe2O3phase.Theothertwoadditionalsex- tetshavingBhf=48.9T(S3)and45.9T(S4)areassignedtothe AandBsitesofFe3O4phase,respectively.Asinglet(P)corre- spondingtoparamagneticphaseisalsoobservedinboththe samples,whichmightbeduetothepresenceofsomeFeatoms inthenon-magneticphase[9].Clearly,theHS2samplecon- tainsmore␣-Fe2O3phase.Acomparisonbetweenthearea%
obtainedfor␣-Fe2O3andfortheferrimagneticphases(␥-Fe2O3
andFe3O4)suggeststhatthefractionof␣-Fe2O3contentinHS2 ismuchhigherthanSS2sample.
Fig. 5(b) shows the M versus H loops for HS2 and SS2 samples.Thesamples(themagneticparts)showsaturation magnetization(MS)of∼16emu/gand∼22emu/gforHS2and SS2,respectively.Asseenearlier,theMSvalueforHSandSS sampleswere 8emu/gand 19emu/g,respectively(Fig.2(b)).
Hence,thesaturationmagnetizationvaluesforthemagnetic partofthesamplesincreasedonlyslightlyforSS2sample,but considerablyforHS2sample.However,thesaturationmagne- tizationvaluesarenotquitesimilartotheMSvaluesofFe3O4
and␥-Fe2O3phase[29–33].Thissuggeststhattheseparation ofmagneticandnon-magneticpartsisnotideal.
j mater res technol.2019;8(2):2192–2200
2197
Fig.5–(a)The57FeMössbauerspectraofboththesamples(HS2andSS2)measuredatRT.(b)MagnetizationloopsforHS2 andSS2samples,measuredatRT.
Table3–MössbauerspectralparametersobtainedfromtheleastsquarefittingoftheMössbauerspectraoftheHS2and SS2samples.IS,isomershift(withrespectto57Co-source(Rh-matrix));2,quadrupolenuclearlevelshift;Bhf,magnetic hyperfinefield;Area%,percentareaunderthesub-spectrum.Theestimatederrorinthevalueofeachquantityisalso given.
Sample Phase Sub-spectra IS(mm/s)±0.005 2(mm/s)±0.005 Bhf(T)±0.5 Area%±2%
HS2 ␣-Fe2O3 S1 0.027 −0.179 51.5 83.88
␥-Fe2O3 S2 0.020 0.002 49.7 2.63
Fe3O4(Asite) (B-site) S3 S4 0.200 0.560 −0.020 0.05 48.9 45.9 4.387.59
Paramagnetic P 1.52
SS2 ␣-Fe2O3 S1 0.027 −0.167 51.5 66.20
␥-Fe2O3 S2 0.020 0.002 49.7 5.83
Fe3O4(Asite) (B-site) S3 S4 0.200 0.560 −0.020 0.050 48.9 45.9 5.5716.28
Paramagnetic P 6.12
TheIFNMRisatechniquetoassessthemagneticproper- tiesofferromagneticandferrimagneticmaterials[21,34-36].
InatypicalIFNMRexperimentthetransitionofnuclearspins between mI=+
½
and mI=−½
state is governed by an RF pulse,whichcreatesaresonancecondition.Theconditionfor resonanceisgivenbyω=Hint,whereωistheprecessionfre- quencyofthenuclearspinsandalsothematchingfrequency oftheRF pulse, isthegyromagneticratioof57Fenucleus (=1.382MHz/T),Hintissameasthemagnetichyperfinefield (Bhf)experiencedbytheNMRactivenucleus.Fromtheelemen- talanalysisandtheMössbauerstudiesitisclearthatbothof oursamples(HS2andSS2)contain␥-Fe2O3andFe3O4asmajor ferrimagneticphasesinitscomposition.Asdiscussedinthe Mössbauerspectroscopyresults,themagnetichyperfinefield ofthesetwophases(␥-Fe2O3andFe3O4)variesbetween48and 52TatRTandbetween50and55Tat77K,whichmatcheswith manyotherpreviousreports[29,37–41].TheseBhfvaluescorre- spondtoanNMRfrequencybetween60and72MHzatRTand between65and76MHzat77K.Asexpected,␣-Fe2O3phase beingantiferromagnetic,nosignalwasobservedatbothmea- surementtemperatures(RT and77K).TheobtainedIFNMR resultsforboththestudiedsamples(HS2andSS2)aredis- cussedbelow.TheIFNMRspectraforboththesamples(HS2andSS2)mea- suredatRTisshowninFig.6(a)and(b),respectively.Forboth
thesamplesthreeisolatedpeaksareobserved.Thepeakswere assignedinaccordancewiththepreviousdiscussionandare consistentwithpreviousreports[36,38,39].Thepeakatabout 63.5,67.5and69.5MHzareassignedtotheFeatomspresentat theB-siteofFe3O4,theA-siteofFe3O4and(boththesitesof)
␥-Fe2O3phase,respectively.ItisclearfromtheIFNMRspec- troscopythatboththeFe3O4and␥-Fe2O3phasesarepresent inthesamples.Wehavequantifiedtheamountofeachphase ineachsamplebyintegratingtheareaundereachcurvein Fig.6.TheresultsaretabulatedinTable4.FromTable4itcan berationalizedthatthesiteoccupancyofFecationsinAandB sitesofFe3O4is∼2:1.Furthermore,thesumoftheintegrated areaunderallthepeaksis0.62fortheHS2sample(Fig.6(a)) and0.90fortheSS2sample(Fig.6(b)).Thisclearlysuggests thattheamountofmagneticphases(Fe3O4+␥-Fe2O3)inHS2 sampleislowerthan thatofSS2sample.These resultsare furtherverifiedbytheIFNMRmeasurementsat77K,whichis discussedbelow.
The internalfield of the ferrimagneticmaterials largely dependsonthetemperature;atlowertemperaturetheinter- nalfieldishigher.TheIFNMRspectrameasuredat77Kare giveninFig.6(c,d).SimilartotheIFNMRspectrameasuredat RT,wehaveobservedthreepeakseach,forboththesamples (HS2andSS2)at77K.However,thelinewidthofthepeaksis highandthepeaksareoverlapping.Thelowfrequencypeaks
Fig.6–The57FeIFNMRspectra(echoamplitudeversusfrequency)of(a)HS2(b)SS2samplesmeasuredatRTusinga two-equal-pulsessequence(1s–25s–1s).Thecoloredlinesrepresentthefittedcurvestothemeasureddatapoints.The
57FeIFNMRspectraof(c)HS2and(d)SS2samples,measuredat77Kusingatwo-equal-pulsessequence(1s–30s–1s).
TheblueandpinklinescorrespondtoBandAsitesofFe3O4,respectively,andthegreenlinesrepresent␥-Fe2O3.Thered linerepresentsthefittedcumulativecurvetothemeasureddatapoints.
Table4–NMRparametersobtainedfromtheexperimentattwodifferenttemperatures(RTand77K).Phasecomposition indicatesthemagneticphase;NMRfrequencyisthecenterfrequency,internalfieldobtainedfromthecorresponding centralNMRfrequency.AreaisobtainedafterintegratingtheNMRfrequencycurves.
Soilsample Temperature(K) Phasecomposition Correspondingfrequency(MHz) Internalfield(T) Areain%
HS2 RT Fe3O4B-site 63.48 45.93 41
A-site 67.59 48.90 20
␥-Fe2O3 69.53 50.30 39
77 Fe3O4B-site 70.16 50.62 57
A-site 71.94 52.12 26
␥-Fe2O3 73.05 52.80 17
SS2 RT Fe3O4B-site 63.55 45.98 40
A-site 67.48 48.82 22
␥-Fe2O3 69.55 50.32 38
77 Fe3O4B-site 69.96 50.62 54
A-site 72.11 52.17 27
␥-Fe2O3 73.02 52.83 19
at∼ 70and∼72MHzare assignedtotheB-siteand A-site ofFe3O4 phaseand theotherpeakat∼ 73MHzisassigned to(bothA-andB-sitesof) the␥-Fe2O3 phase.Theorigin of the overlapping ofthe twopeaks corresponding to A-and B-sites ofFe3O4 iswell known inthe literatureas‘Verwey transition’[40–45]. This correspondsto the transitionfrom metallictoinsulatingbehaviorofFe3O4belowthetempera- tureTV≈122K.Thischangeisalsoassociatedwithastructural transformationfromcubicinversespineltomonoclinicstruc- ture.Thisleadstoachangeinmagneticpropertiesandboth the sitesacquiring similarinternal field/hyperfinefield. As aresult,boththepeaks,correspondingtoA-andB-sitesof Fe3O4,appearveryclosetoeachotherasseeninFig.6(c,d).
Theeffectofthelocaldailytemperatureonthecomposi- tionofthesoilsisdescribedbelow.MostpartoftheHospete is dry-land whereas large part ofSandur includes aforest area.Sandurcityisonlyabout30kmfromHospete.Although, the solar radiation receivedbyboth the citiesis verysim- ilar, the local temperature experienced daily is about 2◦C higher atHospete than Sandur. Hence, the environmental parameters, e.g.,humidity, atboththe placesare different.
Both the cities are known fortheir iron ore deposits. The soil alsocontains a high amount ofiron-oxide phases. As weseefromtheaboveresults,thesoilscollectedfromboth the placescontainaveryhigh amountofnon-magnetic ␣- Fe2O3(hematite)alongwithferrimagneticFe3O4(magnetite)
j mater res technol.2019;8(2):2192–2200
2199
and␥-Fe2O3(maghemite)phases.However,the␣-Fe2O3con- tentinHospetesoilisrelativelymuchhigherthanthatofthe Sandursoil.
According to earlier investigations, the ferrimagnetic iron-oxide phases (Fe3O4 and ␥-Fe2O3) transform to sta- ble ␣-Fe2O3 phase between 200 and 350◦C [29]. Fe3O4 first transforms to ␥-Fe2O3 phase between 200 and 250◦C, the
␥-Fe2O3 phase then transforms to ␣-Fe2O3 between 300 and 350◦C. These transformations are often observed to occurinnatureevenatlowertemperatures,butveryslowly depending on the temperature and other environmental conditions.
According to Mössbauer spectroscopy (Fig. 5(a)), VSM (Fig. 5(b)) andIFNMRspectroscopy(Fig.6)results,themag- neticpartoftheSS2sampleshowedrelativelyhigheramount ofmagneticphases(Fe3O4and␥-Fe2O3)thanHS2sample.Note thattheparticleshavesizeshigherthan1m(Fig.1(i)),hence, theseparationofthemagneticandnon-magneticpartcan- notbedoneperfectlybyapermanentmagnet,because,even thefinely-groundparticlescancontainboththephasesinthe sameparticle.ThisisevidentfromtheXRDpattern(Fig.2(a)) ofthenon-magneticpartsofthesamples(HS1andSS1).How- ever,thisprocessseparatesonlythemagneticparticlesthat areattractedbythemagnetoffieldstrength1T.Hence,with- outlosinganygenerality,wemaysaythatthemagneticparts ofthe samplescontainproportionallyhigher ferrimagnetic phases.Alltheresultstakentogether,weobservedthatthe as-collectedHS(Hospete)samplehasloweramountofmag- neticphases(Fe3O4and␥-Fe2O3)thanthatoftheas-collected SS(Sandur)sample.Consideringthatequalamountofiron- oxide phases were created atthe beginning (as thesetwo cities,HospeteandSandur,areclosetoeachother),therate oftransformationofFe3O4and␥-Fe2O3to␣-Fe2O3ishigher inHospetesoilthaninSandursoil,becausetheSandursoil containshigheramountofferrimagneticiron-oxidephases.
Hence,thephasecompositionofthesoilisintimatelyrelated tothelocaldailytemperature.
4. Conclusion
Thestructure,elementalcomposition,phasecompositionand magneticpropertiesoftworepresentativeironorescollected fromtwodifferentregions(HospeteandSandur)ofKarnataka, India, were investigated. Both the samples predominantly contain ceramic phases with Fe and O as the major ele- ments along witha small amount ofAland Si. We found that ␣-Fe2O3 is the dominantphase (∼80wt%) inboth the samples.Otheriron-oxidephasessuchas␥-Fe2O3andFe3O4
alsoconstitutethesamplesalongwithtracesofaluminosil- icate(Al2SiO5)andlow-quartz(SiO2).Presenceofalltheiron oxidephaseswasconfirmedbycomplementarycharacterizing methodssuchasXPS,Mössbauerspectroscopyandinternal- fieldNMRspectroscopy.Weobservedthatthesoilcollected fromlowtemperatureregion(Sandur)containsmoreamounts offerrimagneticoxide(Fe3O4,␥-Fe2O3)phases,whereasthat collectedfromthehightemperatureregion(Hospete)contains more␣-Fe2O3phaseinthesoil.
Conflicts of interest
Theauthorsdeclarenoconflictsofinterest.
references
[1]USGS.Globalironoreproductiondata;clarificationof reportingfromtheUSGS.MınEng2017;69:20–3.
www.miningengineeringmagazine.com.
[2]LiW,LeC,QiaoL,ZhenJ,YaoY,LiangY,etal.
Electromagneticinterferenceshieldingeffectivenessand microwaveabsorptionofferrite-polymercompositeusing Ni0.32Cu0.08Zn0.6Fe2O4.In:FerriteProg.Electromagn.Res.
Symp.(PIERS).2016.p.8–11.
[3]ChoudharyHK,PawarSP,KumarR,AnupamaAV,BoseS, SahooB.Mechanisticinsightintothecriticalconcentration ofbariumhexaferriteandtheconductivepolymericphase withrespecttosynergisticallyelectromagneticinterference (EMI)shielding.ChemSelect2017;2:830–41.
[4]SinghK,OhlanA,PhamVH,VarshneyBRS,JangJ,HurSH, etal.Nanostructuredgraphene/Fe3O4incorporated polyanilineasahighperformanceshieldagainst electromagneticpollution.Nanoscale2013;5:2411.
[5]ChaeHS,KimSD,PiaoSH,ChoiHJ.Core-shellstructured Fe3O4@SiO2nanoparticlesfabricatedbysol–gelmethodand theirmagnetorheology.ColloidPolymSci2016;294:647–55.
[6]ChandM,ShankarA,AliN,JainK,PantRP,SinghK,etal.
Nanostructuredgraphene/Fe3O4incorporatedpolyanilineas ahighperformanceshieldagainstelectromagnetic pollution.ColloidPolymSci2016;5:647–55.
[7]HlrotaK,SuglmuraM,HlrotaE.Hot-pressferritesfor magneticrecordingheads.IndEngChemProdResDev 1984;23:323–30.
[8]BabichevaVE,ZhukovskySV,LavrinenkoAV.Bismuthferrite aslow-lossswitchablematerialforplasmonicwaveguide modulator.OptExpress2014;22.
[9]BodaSK,AnupamaAV,BasuB,SahooB.Structuraland magneticphasetransformationsof
hydroxyapatite-magnetitecompositesunderinertand ambientsinteringatmospheres.JPhysChemC 2015;119:6539–55.
[10]SugimotoM.Thepast,present,andfutureofferrites.JAm CeramSoc1999;82:269–80.
[11]MukherjeeS.Appliedmineralogy.Netherlands:Springer Publications;2011.
[12]PetrukW.Appliedmineralogyintheminingindustry.
Netherlands:ElsevierBV;2000.
[13]LongworthG,BeckerL,ThompsonR,OldfieldF,DearingJ, RummeryT.Mössbauereffectandmagneticstudiesof secondaryironoxidesinsoils.JSoilSci1979;30:93–110.
[14]ResendeM,AllanJ,CoeyJ.ThemagneticsoilsofBrazil.Earth PlanetSciLett1986;78:322–6.
[15]FabrisJ,deJesusFilhoM,CoeyJ,MusselWN,GoulartA.
Iron-richspinelsfromBraziliansoils.HyperfInteract 1997;110:23–32.
[16]ParfittR,ChildsC.EstimationofformsofFeandAl–a review,andanalysisofcontrastingsoilsbydissolutionand Mossbauermethods.SoilRes1988;26:121–44.
[17]YoungR.Therietveldmethod.OxfordUniversityPress:
London;1993.
[18]Rodríguez-CarvajalJ.FULLPROF:aprogramforrietveld refinementandpatternmatchinganalysis.In:Abstr.Satell.
Meet.PowderDiffr.XVCongr.IUCr,vol.127.1990.
[19]BrandRA.Improvingthevalidityofhyperfinefield distributionsfrommagneticalloys.NuclInstrumMethods PhysResSectB:BeamInteractMaterAtoms1987;28:398–416.
[20]BrandRA.Improvingthevalidityofhyperfinefield distributionsfrommagneticalloys.NuclInstrumMethods PhysRes1987;B28:417–32.
[21]AnupamaAV,ManjunathaM,RathodV,JaliVM,DamleR, RameshKP,etal.57Feinternalfieldnuclearmagnetic resonanceandMössbauerspectroscopystudyofLi–Zn ferrites.JMagnReson2017;286:68–77.
[22]SiddeshBM,ManjunathaM,RamakrishnaDamleKP.
Ramesh,fabricationoflowcostandversatileinternalfield nuclearmagneticresonancespectrometertostudythe magneticmaterials.IndianJPureApplPhys2018;56:11.
[23]SawatzkyGA,CoeyJMD,MorrishAH.Mossbauerstudyof electronhoppingintheoctahedralsitesofFe3O4.JApplPhys 1969;40:1402–3.
[24]GreavesC.apowderneutrondiffractioninvestigationof vacancyorderingandcovalencein␥-Fe2O3.JSolidState Chem1983;49:325–33.
[25]AnupamaAV,KeuneW,SahooB.Thermallyinducedphase transformationinmulti-phaseironoxidenanoparticleson vacuumannealing.JMagnMagnMater2017;439:156–66.
[26]GossCJ.Saturationmagnetisation,coercivityandlattice parameterchangesinthesystemFe3O4-␥Fe2O3,andtheir relationshiptostructure.PhysChemMiner1988;16:164–71.
[27]BiesingerMC,PayneBP,GrosvenorAP,LauLWM,GersonAR, SmartRSC.ResolvingsurfacechemicalstatesinXPSanalysis offirstrowtransitionmetals,oxidesandhydroxides:Cr,Mn, Fe,CoandNi.ApplSurfSci2011;257:2717–30.
[28]PayneBP,BiesingerMC,McIntyreNS.Useofoxygen/nickel ratiosintheXPScharacterisationofoxidephasesonnickel metalandnickelalloysurfaces.JElectronSpectrosRelat Phenomena2012;185:159–66.
[29]UhligI,SzarganR,NesbittH,LaajalehtoK.Surfacestates andreactivityofpyriteandmarcasite.ApplSurfSci 2001;179:222–9.
[30]LiGY,JiangYR,HuangKl,DingP,ChenJ.Preparationand propertiesofmagneticFe3O4–chitosannanoparticles.J AlloysComp2008;466:451–6.
[31]WangP,WangX,YuS,ZouY,WangJ,ChenZ,etal.Silica coatedFe3O4magneticnanospheresforhighremovalof organicpollutantsfromwastewater.ChemEngJ 2016;306:280–8.
[32]WangT,LiuZ,LuM,WenB,OuyangQ,ChenY,etal.
Graphene–Fe3O4nanohybrids:synthesisandexcellent electromagneticabsorptionproperties.JApplPhys 2013;113:024314.
[33]ChenY,GaoP,ZhuC,WangR,WangL,CaoM,etal.
Synthesis,magneticandelectromagneticwaveabsorption propertiesofporousFe3O4/Fe/SiO2core/shellnanorods.J ApplPhys2009;106:054303.
[34]ManjunathaM,KumarR,SahooB,DamleR,RameshKP.
Determinationofmagneticdomainstateofcarboncoated ironnanoparticlesvia57Fezero-external-fieldNMR.JMagn MagnMater2018;453:125–31.
[35]BastowTJ,TrinchiA,HillMR,HarrisR,MusterTH.Vacancy orderingin␥-Fe2O3nanocrystalsobservedby57FeNMR.J MagnMagnMater2009;321:2677–81.
[36]BastowTJ,TrinchiA.NMRanalysisofferromagnets:Fe oxides.SolidStateNuclMagnReson2009;35:25–31.
[37]ShimJH,LeeS,ParkJH,HanSJ,JeongYH,ChoYW.
Coexistenceofferrimagneticandantiferromagneticordering inFe-invertedzincferriteinvestigatedbyNMR.PhysRevB 2006;73.
[38]DaouTJ,GrenecheJ,LeeS,LeeS,LefevreC.SpinCantingof maghemitestudiedbyNMRandin-fieldMössbauer spectrometry.JPhysChemC2010;114:8794–9.
[39]LeeSJ,LeeS.Thespinstructureofmaghemiteinvestigated by57FeNMR.NewJPhys2006;8:1–7.
[40]Tabi´sW,KuszJ,Kim-NganNTH,TarnawskiZ,ZontoneF, KakolZ,etal.StructuralchangesattheVerweytransitionin Fe3O4.RadiatPhysChem2009;78:93–6.
[41]JacksonM,MoskowitzB,BowlesJ.ThemagnetiteVerwey transition.IRMQ2011;20:1–11.
[42]SennMS,WrightJP,AttfieldJP.Chargeorderandthree-site distortionsintheVerweystructureofmagnetite.Nature 2012;481:173–6.
[43]LiuM,HoffmanJ,WangJ,ZhangJ,Nelson-CheesemanB, BhattacharyaA.Non-volatileferroelasticswitchingofthe VerweytransitionandresistivityofepitaxialFe3O4/PMN-PT (011).SciRep2013;3:1–8.
[44]TarnawskiZ,Wieche ´cA,MadejM,NowakD,OwocD,KrólG, etal.Studiesoftheverweytransitioninmagnetite.Acta PhysPolA2004;106:771–5.
[45]VerweyEJW.Electronicconductionofmagnetite(Fe3O4)and itstransitionpointatlowtemperatures.Nature
1939;144:327–8.