The Power of
Priority Channel Systems
C. Haase S. Schmitz Ph. Schnoebelen (LSV, ENS Cachan, France)
Feb. 25th, 2014, CMI, Chennai
Outline
priority channel systems a model of computation
priority embedding a well quasi ordering
Contents
Channel Systems with Priorities Priority Embedding
Computational Power
Outline
priority channel systems a model of computation
priority embedding a well quasi ordering
Contents
Channel Systems with Priorities Priority Embedding
Computational Power
Channel Systems (CSs)
c1?m c1?n c2!a
c1!m c1!n c2?a
←c1
c2→
mn n
a
I model for communication protocols
I a.k.a. “queue automata”
I Turing-powerful
Channel Systems (CSs)
c1?m c1?n c2!a
c1!m c1!n c2?a
←c1
c2→
mn n
a
I model for communication protocols
I a.k.a. “queue automata”
I Turing-powerful
Channel Systems (CSs)
c1?m c1?n c2!a
c1!m c1!n c2?a
←c1
c2→
mn n
a
I model for communication protocols
I a.k.a. “queue automata”
I Turing-powerful
Channel Systems (CSs)
c1?m c1?n c2!a
c1!m c1!n c2?a
←c1
c2→
mn n
a
I model for communication protocols
I a.k.a. “queue automata”
I Turing-powerful
Channel Systems (CSs)
c1?m c1?n c2!a
c1!m c1!n c2?a
←c1
c2→
mn n
a
I model for communication protocols
I a.k.a. “queue automata”
I Turing-powerful
Channel Systems (CSs)
c1?m c1?n c2!a
c1!m c1!n c2?a
←c1
c2→
mn n
a
I model for communication protocols
I a.k.a. “queue automata”
I Turing-powerful
Channel Systems (CSs)
c1?m c1?n c2!a
c1!m c1!n c2?a
←c1
c2→
mn n
a
I model for communication protocols
I a.k.a. “queue automata”
I Turing-powerful
Lossy Channel Systems (LCSs)
(Abdulla and Jonsson, 1996; C´ec´eet al., 1996)
c1?m c1?n c2!a
c1!m c1!n c2?a
←c1
c2→
m n n
I applylosingrewriting rules to channel contents:
m→∗ ε m∈M
I model for imperfect or unreliable communications
I decidable: Fωω-complete(Chambart and Schnoebelen, 2008)
Lossy Channel Systems (LCSs)
(Abdulla and Jonsson, 1996; C´ec´eet al., 1996)
c1?m c1?n c2!a
c1!m c1!n c2?a
←c1
c2→
m n n
I applylosingrewriting rules to channel contents:
m→∗ ε m∈M
I model for imperfect or unreliable communications
I decidable: Fωω-complete(Chambart and Schnoebelen, 2008)
Lossy Channel Systems (LCSs)
(Abdulla and Jonsson, 1996; C´ec´eet al., 1996)
c1?m c1?n c2!a
c1!m c1!n c2?a
←c1
c2→
m n n
I applylosingrewriting rules to channel contents:
m→∗ ε m∈M
I model for imperfect or unreliable communications
I decidable: Fωω-complete(Chambart and Schnoebelen, 2008)
Lossy Channel Systems (LCSs)
(Abdulla and Jonsson, 1996; C´ec´eet al., 1996)
c1?m c1?n c2!a
c1!m c1!n c2?a
←c1
c2→
m n n
I applylosingrewriting rules to channel contents:
m→∗ ε m∈M
I model for imperfect or unreliable communications
I decidable: Fωω-complete(Chambart and Schnoebelen, 2008)
Lossy Channel Systems (LCSs)
(Abdulla and Jonsson, 1996; C´ec´eet al., 1996)
c1?m c1?n c2!a
c1!m c1!n c2?a
←c1
c2→
m n n
I applylosingrewriting rules to channel contents:
m→∗ ε m∈M
I model for imperfect or unreliable communications
I decidable: Fωω-complete(Chambart and Schnoebelen, 2008)
Lossy Channel Systems (LCSs)
(Abdulla and Jonsson, 1996; C´ec´eet al., 1996)
c1?m c1?n c2!a
c1!m c1!n c2?a
←c1
c2→
m n n
I applylosingrewriting rules to channel contents:
m→∗ ε m∈M
I model for imperfect or unreliable communications
I decidable: Fωω-complete(Chambart and Schnoebelen, 2008)
Priority Channel Systems (PCSs)
c1?0,m c1?1,n c2!1,a
c1!0,m c1!1,n c2?1,a
←c1
c2→
0,m0,m1,n 1,n
I applysupersedingrewriting rules to channel contents:
(a,m)(b,n)→# (b,n) a6b∈N, m,n∈M
I modeling communications with QoS, e.g.
differentiated services (RFC2475)
I decidable: Fε0-complete
Priority Channel Systems (PCSs)
c1?0,m c1?1,n c2!1,a
c1!0,m c1!1,n c2?1,a
←c1
c2→
0,m0,m1,n 1,n
I applysupersedingrewriting rules to channel contents:
(a,m)(b,n)→# (b,n) a6b∈N, m,n∈M
I modeling communications with QoS, e.g.
differentiated services (RFC2475)
I decidable: Fε0-complete
Priority Channel Systems (PCSs)
c1?0,m c1?1,n c2!1,a
c1!0,m c1!1,n c2?1,a
←c1
c2→
0,m0,m1,n 1,n
I applysupersedingrewriting rules to channel contents:
(a,m)(b,n)→# (b,n) a6b∈N, m,n∈M
I modeling communications with QoS, e.g.
differentiated services (RFC2475)
I decidable: Fε0-complete
Priority Channel Systems (PCSs)
c1?0,m c1?1,n c2!1,a
c1!0,m c1!1,n c2?1,a
←c1
c2→
0,m0,m1,n 1,n
I applysupersedingrewriting rules to channel contents:
(a,m)(b,n)→# (b,n) a6b∈N, m,n∈M
I modeling communications with QoS, e.g.
differentiated services (RFC2475)
I decidable: Fε0-complete
Priority Channel Systems (PCSs)
c1?0,m c1?1,n c2!1,a
c1!0,m c1!1,n c2?1,a
←c1
c2→
0,m0,m1,n 1,n
I applysupersedingrewriting rules to channel contents:
(a,m)(b,n)→# (b,n) a6b∈N, m,n∈M
I modeling communications with QoS, e.g.
differentiated services (RFC2475)
I decidable: Fε0-complete
Priority Channel Systems (PCSs)
c1?0,m c1?1,n c2!1,a
c1!0,m c1!1,n c2?1,a
←c1
c2→
0,m0,m1,n 1,n
I applysupersedingrewriting rules to channel contents:
(a,m)(b,n)→# (b,n) a6b∈N, m,n∈M
I modeling communications with QoS, e.g.
differentiated services (RFC2475)
I decidable: Fε0-complete
Priority Channel Systems (PCSs)
c1?0 c1?1 c2!1
c1!0 c1!1 c2?1
←c1
c2→
0,m0,m1,n 1,n
I applysupersedingrewriting rules to channel contents:
a b→# b a6b∈N
I modeling communications with QoS, e.g.
differentiated services (RFC2475)
I decidable: Fε0-complete
Remark: Alternative Models
strict superseding Turing-powerful ordered channels with rules
a b→sb a < b∈ N
overtaking Turing-powerful
ordered channels with rules a b →o b a a6b∈N
priority queues decidable(VASS w. ordered 0-tests)
unordered channels, maximal priority messages read first
Remark: Alternative Models
strict superseding Turing-powerful ordered channels with rules
a b→sb a < b∈ N
overtaking Turing-powerful
ordered channels with rules a b →o b a a6b∈N
priority queues decidable(VASS w. ordered 0-tests)
unordered channels, maximal priority messages read first
Losing as an Embedding
I losing rules define a quasi-ordering←−∗ ∗ over M∗
I can be restated assubstring embedding:
xv∗ y⇔def
x=m1· · ·m`,
y=z1m1z2· · ·z`m`z`+1 withz1, ..∈ M∗
I examples:
I 201v∗22011
I 120v∗10210
I ∀y∈M∗.εv∗y
Superseding as an Embedding
I ifd∈N, writeΣd =def {0, . . . ,d}
I superseding rules define a quasi-ordering←−∗ # overΣ∗d
I can be restated aspriority embedding:
xvp y⇔def x=a1· · ·a`,y=z1a1z2· · ·z`a`,∀i.zi ∈Σ∗a
i I examples:
I 201vp22011
I 1206vp10210
I εvpyiffy=ε
Priority Embedding is Well
c.f. related orderings of Sch ¨utte and Simpson (1985)
Definition (wqo)
A quasi-order(A,6A)iswell⇔def in any infinite sequencex0,x1, . . . overA, there existi < js.t.
xi 6A xj.
Theorem
(Σ∗d,vp) is a wqo.
I proof by induction overd
I nested applications of Higman’s Lemma
PCSs are Well-Structured
(Abdullaet al., 2000; Finkel and Schnoebelen, 2001)
For a PCS with state setQandmchannels:
transition system (Q×(Σ∗d)m,→)with
superseding steps or perfect steps wqo (Q×(Σ∗d)m,vp) by Dickson’s Lemma monotonicity ∀(p, ¯x),(q, ¯x0),(p, ¯y)∈Q×(Σ∗d)m,
if (p, ¯x)→(q, ¯x0) and ¯xvp y,¯ then∃y¯0 ∈(Σ∗d)m, ¯yvpy¯ and
(p, ¯y)→(q, ¯y0).
Generic Algorithms
for Reachability, Inevitability, etc.
PCSs are Well-Structured
(Abdullaet al., 2000; Finkel and Schnoebelen, 2001)
For a PCS with state setQandmchannels:
transition system (Q×(Σ∗d)m,→)with
superseding steps or perfect steps wqo (Q×(Σ∗d)m,vp) by Dickson’s Lemma monotonicity ∀(p, ¯x),(q, ¯x0),(p, ¯y)∈Q×(Σ∗d)m,
if (p, ¯x)→(q, ¯x0) and ¯xvp y,¯ then∃y¯0 ∈(Σ∗d)m, ¯yvpy¯ and
(p, ¯y)→(q, ¯y0).
Generic Algorithms
for Reachability, Inevitability, etc.
Fast-Growing Complexity Classes
(Schmitz and Schnoebelen, 2012)
Ordinal-indexed complexity hierarchy inside R:
Elementary
Primitive Recursive Multiply Recursive
ε0-Ordinal Recursive
F3
Fω
Fωω
Fε0
Complexity of PCS Problems
Theorem
Reachability and Termination in PCSs are Fε0-complete.
upper bound usinglength function theorems for applications of Higman’s Lemma
(Schmitz and Schnoebelen, 2011)
lower bound reduction from acceptance of a Turing machine working inHε0(n) space
Lower Bound: Hardy Functions
fundamental sequences (λ(x))x
for limit ordinals λinε0+1: λ(x)< λ with limx→ωλ(x) =λ
Example
ω(x) =x+1 , ωω·2(x) =ωω+x+1,
(ε0)(x) =Ωx+1
=def ωω···
ω x+1 stackedω’s
Lower Bound: Hardy Functions
Hardy functions (Hα)α6ε0
H0(x)=def x, Hα+1(x)=def Hα(x+1), Hλ(x) =def Hλ(x)(x).
Example
Hn(x) = x+n, Hω(x) = 2x+1 ,
Hω2(x) = 2x+1(x+1) −1 , Hω3 non elementary, Hωω Ackermannian,
Hε0 not provably total in Peano arithmetic
Lower Bound: Hardy Computations
rewrite system over (ε0+1)×ω:
α+1,x −→H α,x+1 λ,x −→H λ(x),x
computations α0,x0−→H α1,x1−→ · · ·H −→H αn,xn
I preserveHαi(xi)
I in particular ifαn=0 then xn=Hα0(x0)
Lower Bound: Encoding Ordinals
α∈ Ωd+1 3 ω2+1 t(α)∈Td+1
sd(α)∈Σ∗d 222 1122
sd ωα1+· · ·+ωαn
=sd−1(α1)d. . .sd−1(αn)d
Lower Bound: Encoding Ordinals
α∈ Ωd+1 3 ω2+1 t(α)∈Td+1
sd(α)∈Σ∗d 222 1122
sd ωα1+· · ·+ωαn
=sd−1(α1)d. . .sd−1(αn)d
Proposition (Robustness)
Ifsd(α)vpsd(β), then∀x, Hα(x)6Hβ(x).
Lower Bound: Weak Hardy Computations
Implement Hardy stepsα,n→β,mas a PCS:
I work on string encodings: sd(α),n−→H #sd(β0),m0
I weak: sd(β0) vp sd(β) andm06m, but the perfect behaviour is possible
I also forinversestepssd(β),m H
-1
−−→# sd(α),n0 withsd(α0)vp sd(α)andn0 6n
Lower Bound: Weak Hardy Computations
Implement Hardy stepsα,n→β,mas a PCS:
I work on string encodings: sd(α),n−→H #sd(β0),m0
I weak: sd(β0) vp sd(β) andm06m, but the perfect behaviour is possible
I also forinversestepssd(β),m H
-1
−−→# sd(α),n0 withsd(α0)vp sd(α)andn0 6n
Hinting at PCS implementation (1)
o: 3 3 4 5 4 5 $ theordinaltermωω2+ωω
c: 0 0 0 0 $ thecountervalue 4
t: $ thetemporarystorage
Storing data in channels: $hashighest priority
Hinting at PCS implementation (2)
p o?!x∈Pd o?d o?! $ q r c?! 0
c! 0 c?! $
Pd =def ε+ (Pd−1)∗d = allcorrect encodings Implementing Hardy step (α+1,n) −→H (α,n+1)
ydd, 0n 7→ yd, 0n+1
Hinting at PCS implementation (3)
Going fromsd(λ)tosd(λ(n))
E.g. s5(ωω4) = 333345, also written 333 3a5 Thens5(ωω3·n) = (3334)n5
Hinting at PCS implementation (3)
Going fromsd(λ)tosd(λ(n))
E.g. s5(ωω4) = 333345, also written 333 3a5 Thens5(ωω3·n) = (3334)n5
Writexas
ydyd−1. . .yaa(a+1). . .d Thenx(n) is
ydyyd−1. . .ya+1(ya(a+1))n(a+2)ad
Hinting at PCS implementation (4)
pa
qa ra
o?!yd· · ·ya+1∈Pd· · ·Pa+1
o?ya∈Pa; t!ya o?a(a+1); t!(a+1)
t?! $ c?! $ t?u t?! $
o?!(a+2)ad$
c?! 0 t?!u$; o!u
Implementing Hardy step (λ,n)−→H (λ(n),n)
Lower Bound: Wrapping Up
reduction from a Turing machineM working in spaceHε0(n) =HΩd(n)for d=n+1.
simulate Mwith budgetB
q0 p0 ph qh
Ωd,n−→H#· · ·−→H# 0,B 0,B0H
-1
−→#· · ·−→H-1#α,n0
I robustness: HΩd(n)>B>B0>Hα(n0)
I coverability: α=Ωd∧n=n0
I impliesperfect simulation
Lower Bound: Wrapping Up
reduction from a Turing machineM working in spaceHε0(n) =HΩd(n)for d=n+1.
simulate Mwith budgetB
q0 p0 ph qh
Ωd,n−→H#· · ·−→H# 0,B 0,B0H
-1
−→#· · ·−→H-1#α,n0
I robustness: HΩd(n)>B>B0>Hα(n0)
I coverability: α=Ωd∧n=n0
I impliesperfect simulation
Lower Bound: Wrapping Up
reduction from a Turing machineM working in spaceHε0(n) =HΩd(n)for d=n+1.
simulate Mwith budgetB
q0 p0 ph qh
Ωd,n−→H#· · ·−→H# 0,B 0,B0H
-1
−→#· · ·−→H-1#α,n0
I robustness: HΩd(n)>B>B0>Hα(n0)
I coverability: α=Ωd∧n=n0
I impliesperfect simulation
Lower Bound: Wrapping Up
reduction from a Turing machineM working in spaceHε0(n) =HΩd(n)for d=n+1.
simulate Mwith budgetB
q0 p0 ph qh
Ωd,n−→H#· · ·−→H# 0,B 0,B0H
-1
−→#· · ·−→H-1#α,n0
I robustness: HΩd(n)>B>B0>Hα(n0)
I coverability: α=Ωd∧n=n0
I impliesperfect simulation
Concluding Remarks
model priority channel systems ordering priority embedding
Perspectives
verifying PCSs regular model checking and acceleration
using PCSs reducing problems about other models (e.g. manipulating bounded depth trees and graphs)
Concluding Remarks
model priority channel systems ordering priority embedding
Perspectives
verifying PCSs regular model checking and acceleration
using PCSs reducing problems about other models (e.g. manipulating bounded depth trees and graphs)
References
Abdulla, P.A. and Jonsson, B., 1996. Verifying programs with unreliable channels.Inform. and Comput., 127(2):
91–101. doi:10.1006/inco.1996.0053.
Abdulla, P.A., ˇCer ¯ans, K., Jonsson, B., and Tsay, Y.K., 2000. Algorithmic analysis of programs with well quasi-ordered domains.Inform. and Comput., 160(1–2):109–127. doi:10.1006/inco.1999.2843.
C ´ec ´e, G., Finkel, A., and Purushothaman Iyer, S., 1996. Unreliable channels are easier to verify than perfect channels.Inform. and Comput., 124(1):20–31. doi:10.1006/inco.1996.0003.
Chambart, P. and Schnoebelen, Ph., 2008. The ordinal recursive complexity of lossy channel systems. InLICS 2008, pages 205–216. IEEE Press. doi:10.1109/LICS.2008.47.
Finkel, A. and Schnoebelen, Ph., 2001. Well-structured transition systems everywhere!Theor. Comput. Sci., 256 (1–2):63–92. doi:10.1016/S0304-3975(00)00102-X.
Schmitz, S. and Schnoebelen, Ph., 2011. Multiply-recursive upper bounds with Higman’s lemma. InICALP 2011, volume 6756 ofLNCS, pages 441–452. Springer. doi:10.1007/978-3-642-22012-8 35.
Schmitz, S. and Schnoebelen, Ph., 2012. Algorithmic aspects of WQO theory. Lecture notes.
http://cel.archives-ouvertes.fr/cel-00727025.
Sch ¨utte, K. and Simpson, S.G., 1985. Ein in der reinen Zahlentheorie unbeweisbarer Satz ¨uber endliche Folgen von nat ¨urlichen Zahlen.Arch. Math. Logic, 25(1):75–89. doi:10.1007/BF02007558.
Fundamental Sequences
Definition (Fundamental Sequences)
For limit ordinals inε0+1:
(γ+ωβ+1)(x)=def γ+ωβ·(x+1) (γ+ωλ)(x)=def γ+ωλ(x)
(ε0)(x)=def Ωx+1=def ωω···
ω x+1 stackedω’s
Encodings
sd:Td+1→Σ∗d by induction ond:
sd(•(t1· · ·tn))=def
ε ifn=0,
sd−1(t1)d· · ·sd−1(tn)d otherwise.
sd:Ωd+1 →Σ∗d by induction ond:
sd
Xn
i=1
γi def
=sd(γ1)· · ·sd(γn), sd(ωα) =def sd−1(α)d.