• Tidak ada hasil yang ditemukan

The Power of Priority Channel Systems

N/A
N/A
Protected

Academic year: 2024

Membagikan "The Power of Priority Channel Systems"

Copied!
53
0
0

Teks penuh

(1)

The Power of

Priority Channel Systems

C. Haase S. Schmitz Ph. Schnoebelen (LSV, ENS Cachan, France)

Feb. 25th, 2014, CMI, Chennai

(2)

Outline

priority channel systems a model of computation

priority embedding a well quasi ordering

Contents

Channel Systems with Priorities Priority Embedding

Computational Power

(3)

Outline

priority channel systems a model of computation

priority embedding a well quasi ordering

Contents

Channel Systems with Priorities Priority Embedding

Computational Power

(4)

Channel Systems (CSs)

c1?m c1?n c2!a

c1!m c1!n c2?a

c1

c2

mn n

a

I model for communication protocols

I a.k.a. “queue automata”

I Turing-powerful

(5)

Channel Systems (CSs)

c1?m c1?n c2!a

c1!m c1!n c2?a

c1

c2

mn n

a

I model for communication protocols

I a.k.a. “queue automata”

I Turing-powerful

(6)

Channel Systems (CSs)

c1?m c1?n c2!a

c1!m c1!n c2?a

c1

c2

mn n

a

I model for communication protocols

I a.k.a. “queue automata”

I Turing-powerful

(7)

Channel Systems (CSs)

c1?m c1?n c2!a

c1!m c1!n c2?a

c1

c2

mn n

a

I model for communication protocols

I a.k.a. “queue automata”

I Turing-powerful

(8)

Channel Systems (CSs)

c1?m c1?n c2!a

c1!m c1!n c2?a

c1

c2

mn n

a

I model for communication protocols

I a.k.a. “queue automata”

I Turing-powerful

(9)

Channel Systems (CSs)

c1?m c1?n c2!a

c1!m c1!n c2?a

c1

c2

mn n

a

I model for communication protocols

I a.k.a. “queue automata”

I Turing-powerful

(10)

Channel Systems (CSs)

c1?m c1?n c2!a

c1!m c1!n c2?a

c1

c2

mn n

a

I model for communication protocols

I a.k.a. “queue automata”

I Turing-powerful

(11)

Lossy Channel Systems (LCSs)

(Abdulla and Jonsson, 1996; C´ec´eet al., 1996)

c1?m c1?n c2!a

c1!m c1!n c2?a

c1

c2

m n n

I applylosingrewriting rules to channel contents:

m→ ε m∈M

I model for imperfect or unreliable communications

I decidable: Fωω-complete(Chambart and Schnoebelen, 2008)

(12)

Lossy Channel Systems (LCSs)

(Abdulla and Jonsson, 1996; C´ec´eet al., 1996)

c1?m c1?n c2!a

c1!m c1!n c2?a

c1

c2

m n n

I applylosingrewriting rules to channel contents:

m→ ε m∈M

I model for imperfect or unreliable communications

I decidable: Fωω-complete(Chambart and Schnoebelen, 2008)

(13)

Lossy Channel Systems (LCSs)

(Abdulla and Jonsson, 1996; C´ec´eet al., 1996)

c1?m c1?n c2!a

c1!m c1!n c2?a

c1

c2

m n n

I applylosingrewriting rules to channel contents:

m→ ε m∈M

I model for imperfect or unreliable communications

I decidable: Fωω-complete(Chambart and Schnoebelen, 2008)

(14)

Lossy Channel Systems (LCSs)

(Abdulla and Jonsson, 1996; C´ec´eet al., 1996)

c1?m c1?n c2!a

c1!m c1!n c2?a

c1

c2

m n n

I applylosingrewriting rules to channel contents:

m→ ε m∈M

I model for imperfect or unreliable communications

I decidable: Fωω-complete(Chambart and Schnoebelen, 2008)

(15)

Lossy Channel Systems (LCSs)

(Abdulla and Jonsson, 1996; C´ec´eet al., 1996)

c1?m c1?n c2!a

c1!m c1!n c2?a

c1

c2

m n n

I applylosingrewriting rules to channel contents:

m→ ε m∈M

I model for imperfect or unreliable communications

I decidable: Fωω-complete(Chambart and Schnoebelen, 2008)

(16)

Lossy Channel Systems (LCSs)

(Abdulla and Jonsson, 1996; C´ec´eet al., 1996)

c1?m c1?n c2!a

c1!m c1!n c2?a

c1

c2

m n n

I applylosingrewriting rules to channel contents:

m→ ε m∈M

I model for imperfect or unreliable communications

I decidable: Fωω-complete(Chambart and Schnoebelen, 2008)

(17)

Priority Channel Systems (PCSs)

c1?0,m c1?1,n c2!1,a

c1!0,m c1!1,n c2?1,a

c1

c2

0,m0,m1,n 1,n

I applysupersedingrewriting rules to channel contents:

(a,m)(b,n)→# (b,n) a6b∈N, m,n∈M

I modeling communications with QoS, e.g.

differentiated services (RFC2475)

I decidable: Fε0-complete

(18)

Priority Channel Systems (PCSs)

c1?0,m c1?1,n c2!1,a

c1!0,m c1!1,n c2?1,a

c1

c2

0,m0,m1,n 1,n

I applysupersedingrewriting rules to channel contents:

(a,m)(b,n)→# (b,n) a6b∈N, m,n∈M

I modeling communications with QoS, e.g.

differentiated services (RFC2475)

I decidable: Fε0-complete

(19)

Priority Channel Systems (PCSs)

c1?0,m c1?1,n c2!1,a

c1!0,m c1!1,n c2?1,a

c1

c2

0,m0,m1,n 1,n

I applysupersedingrewriting rules to channel contents:

(a,m)(b,n)→# (b,n) a6b∈N, m,n∈M

I modeling communications with QoS, e.g.

differentiated services (RFC2475)

I decidable: Fε0-complete

(20)

Priority Channel Systems (PCSs)

c1?0,m c1?1,n c2!1,a

c1!0,m c1!1,n c2?1,a

c1

c2

0,m0,m1,n 1,n

I applysupersedingrewriting rules to channel contents:

(a,m)(b,n)→# (b,n) a6b∈N, m,n∈M

I modeling communications with QoS, e.g.

differentiated services (RFC2475)

I decidable: Fε0-complete

(21)

Priority Channel Systems (PCSs)

c1?0,m c1?1,n c2!1,a

c1!0,m c1!1,n c2?1,a

c1

c2

0,m0,m1,n 1,n

I applysupersedingrewriting rules to channel contents:

(a,m)(b,n)→# (b,n) a6b∈N, m,n∈M

I modeling communications with QoS, e.g.

differentiated services (RFC2475)

I decidable: Fε0-complete

(22)

Priority Channel Systems (PCSs)

c1?0,m c1?1,n c2!1,a

c1!0,m c1!1,n c2?1,a

c1

c2

0,m0,m1,n 1,n

I applysupersedingrewriting rules to channel contents:

(a,m)(b,n)→# (b,n) a6b∈N, m,n∈M

I modeling communications with QoS, e.g.

differentiated services (RFC2475)

I decidable: Fε0-complete

(23)

Priority Channel Systems (PCSs)

c1?0 c1?1 c2!1

c1!0 c1!1 c2?1

c1

c2

0,m0,m1,n 1,n

I applysupersedingrewriting rules to channel contents:

a b→# b a6b∈N

I modeling communications with QoS, e.g.

differentiated services (RFC2475)

I decidable: Fε0-complete

(24)

Remark: Alternative Models

strict superseding Turing-powerful ordered channels with rules

a b→sb a < b∈ N

overtaking Turing-powerful

ordered channels with rules a b →o b a a6b∈N

priority queues decidable(VASS w. ordered 0-tests)

unordered channels, maximal priority messages read first

(25)

Remark: Alternative Models

strict superseding Turing-powerful ordered channels with rules

a b→sb a < b∈ N

overtaking Turing-powerful

ordered channels with rules a b →o b a a6b∈N

priority queues decidable(VASS w. ordered 0-tests)

unordered channels, maximal priority messages read first

(26)

Losing as an Embedding

I losing rules define a quasi-ordering←− over M

I can be restated assubstring embedding:

xv y⇔def

x=m1· · ·m`,

y=z1m1z2· · ·z`m`z`+1 withz1, ..∈ M

I examples:

I 201v22011

I 120v10210

I ∀yMvy

(27)

Superseding as an Embedding

I ifd∈N, writeΣd =def {0, . . . ,d}

I superseding rules define a quasi-ordering←− # overΣd

I can be restated aspriority embedding:

xvp y⇔def x=a1· · ·a`,y=z1a1z2· · ·z`a`,∀i.zi ∈Σa

i I examples:

I 201vp22011

I 1206vp10210

I εvpyiffy=ε

(28)

Priority Embedding is Well

c.f. related orderings of Sch ¨utte and Simpson (1985)

Definition (wqo)

A quasi-order(A,6A)iswell⇔def in any infinite sequencex0,x1, . . . overA, there existi < js.t.

xi 6A xj.

Theorem

d,vp) is a wqo.

I proof by induction overd

I nested applications of Higman’s Lemma

(29)

PCSs are Well-Structured

(Abdullaet al., 2000; Finkel and Schnoebelen, 2001)

For a PCS with state setQandmchannels:

transition system (Q×(Σd)m,→)with

superseding steps or perfect steps wqo (Q×(Σd)m,vp) by Dickson’s Lemma monotonicity ∀(p, ¯x),(q, ¯x0),(p, ¯y)∈Q×(Σd)m,

if (p, ¯x)→(q, ¯x0) and ¯xvp y,¯ then∃y¯0 ∈(Σd)m, ¯yvpy¯ and

(p, ¯y)→(q, ¯y0).

Generic Algorithms

for Reachability, Inevitability, etc.

(30)

PCSs are Well-Structured

(Abdullaet al., 2000; Finkel and Schnoebelen, 2001)

For a PCS with state setQandmchannels:

transition system (Q×(Σd)m,→)with

superseding steps or perfect steps wqo (Q×(Σd)m,vp) by Dickson’s Lemma monotonicity ∀(p, ¯x),(q, ¯x0),(p, ¯y)∈Q×(Σd)m,

if (p, ¯x)→(q, ¯x0) and ¯xvp y,¯ then∃y¯0 ∈(Σd)m, ¯yvpy¯ and

(p, ¯y)→(q, ¯y0).

Generic Algorithms

for Reachability, Inevitability, etc.

(31)

Fast-Growing Complexity Classes

(Schmitz and Schnoebelen, 2012)

Ordinal-indexed complexity hierarchy inside R:

Elementary

Primitive Recursive Multiply Recursive

ε0-Ordinal Recursive

F3

Fω

Fωω

Fε0

(32)

Complexity of PCS Problems

Theorem

Reachability and Termination in PCSs are Fε0-complete.

upper bound usinglength function theorems for applications of Higman’s Lemma

(Schmitz and Schnoebelen, 2011)

lower bound reduction from acceptance of a Turing machine working inHε0(n) space

(33)

Lower Bound: Hardy Functions

fundamental sequences (λ(x))x

for limit ordinals λinε0+1: λ(x)< λ with limx→ωλ(x) =λ

Example

ω(x) =x+1 , ωω·2(x) =ωω+x+1,

0)(x) =Ωx+1

=def ωω···

ω x+1 stackedω’s

(34)

Lower Bound: Hardy Functions

Hardy functions (Hα)α6ε0

H0(x)=def x, Hα+1(x)=def Hα(x+1), Hλ(x) =def Hλ(x)(x).

Example

Hn(x) = x+n, Hω(x) = 2x+1 ,

Hω2(x) = 2x+1(x+1) −1 , Hω3 non elementary, Hωω Ackermannian,

Hε0 not provably total in Peano arithmetic

(35)

Lower Bound: Hardy Computations

rewrite system over (ε0+1)×ω:

α+1,x −→H α,x+1 λ,x −→H λ(x),x

computations α0,x0−→H α1,x1−→ · · ·H −→H αn,xn

I preserveHαi(xi)

I in particular ifαn=0 then xn=Hα0(x0)

(36)

Lower Bound: Encoding Ordinals

α∈ Ωd+1 3 ω2+1 t(α)∈Td+1

sd(α)∈Σd 222 1122

sd ωα1+· · ·+ωαn

=sd−11)d. . .sd−1n)d

(37)

Lower Bound: Encoding Ordinals

α∈ Ωd+1 3 ω2+1 t(α)∈Td+1

sd(α)∈Σd 222 1122

sd ωα1+· · ·+ωαn

=sd−11)d. . .sd−1n)d

Proposition (Robustness)

Ifsd(α)vpsd(β), then∀x, Hα(x)6Hβ(x).

(38)

Lower Bound: Weak Hardy Computations

Implement Hardy stepsα,n→β,mas a PCS:

I work on string encodings: sd(α),n−→H #sd0),m0

I weak: sd0) vp sd(β) andm06m, but the perfect behaviour is possible

I also forinversestepssd(β),m H

-1

−−→# sd(α),n0 withsd0)vp sd(α)andn0 6n

(39)

Lower Bound: Weak Hardy Computations

Implement Hardy stepsα,n→β,mas a PCS:

I work on string encodings: sd(α),n−→H #sd0),m0

I weak: sd0) vp sd(β) andm06m, but the perfect behaviour is possible

I also forinversestepssd(β),m H

-1

−−→# sd(α),n0 withsd0)vp sd(α)andn0 6n

(40)

Hinting at PCS implementation (1)

o: 3 3 4 5 4 5 $ theordinaltermωω2+ωω

c: 0 0 0 0 $ thecountervalue 4

t: $ thetemporarystorage

Storing data in channels: $hashighest priority

(41)

Hinting at PCS implementation (2)

p o?!xPd o?d o?! $ q r c?! 0

c! 0 c?! $

Pd =def ε+ (Pd−1)d = allcorrect encodings Implementing Hardy step (α+1,n) −→H (α,n+1)

ydd, 0n 7→ yd, 0n+1

(42)

Hinting at PCS implementation (3)

Going fromsd(λ)tosd(λ(n))

E.g. s5ω4) = 333345, also written 333 3a5 Thens5ω3·n) = (3334)n5

(43)

Hinting at PCS implementation (3)

Going fromsd(λ)tosd(λ(n))

E.g. s5ω4) = 333345, also written 333 3a5 Thens5ω3·n) = (3334)n5

Writexas

ydyd−1. . .yaa(a+1). . .d Thenx(n) is

ydyyd−1. . .ya+1(ya(a+1))n(a+2)ad

(44)

Hinting at PCS implementation (4)

pa

qa ra

o?!yd· · ·ya+1Pd· · ·Pa+1

o?yaPa; t!ya o?a(a+1); t!(a+1)

t?! $ c?! $ t?u t?! $

o?!(a+2)ad$

c?! 0 t?!u$; o!u

Implementing Hardy step (λ,n)−→H (λ(n),n)

(45)

Lower Bound: Wrapping Up

reduction from a Turing machineM working in spaceHε0(n) =Hd(n)for d=n+1.

simulate Mwith budgetB

q0 p0 ph qh

d,nH#· · ·H# 0,B 0,B0H

-1

−→#· · ·−→H-1#α,n0

I robustness: Hd(n)>B>B0>Hα(n0)

I coverability: α=Ωd∧n=n0

I impliesperfect simulation

(46)

Lower Bound: Wrapping Up

reduction from a Turing machineM working in spaceHε0(n) =Hd(n)for d=n+1.

simulate Mwith budgetB

q0 p0 ph qh

d,nH#· · ·H# 0,B 0,B0H

-1

−→#· · ·−→H-1#α,n0

I robustness: Hd(n)>B>B0>Hα(n0)

I coverability: α=Ωd∧n=n0

I impliesperfect simulation

(47)

Lower Bound: Wrapping Up

reduction from a Turing machineM working in spaceHε0(n) =Hd(n)for d=n+1.

simulate Mwith budgetB

q0 p0 ph qh

d,nH#· · ·H# 0,B 0,B0H

-1

−→#· · ·−→H-1#α,n0

I robustness: Hd(n)>B>B0>Hα(n0)

I coverability: α=Ωd∧n=n0

I impliesperfect simulation

(48)

Lower Bound: Wrapping Up

reduction from a Turing machineM working in spaceHε0(n) =Hd(n)for d=n+1.

simulate Mwith budgetB

q0 p0 ph qh

d,nH#· · ·H# 0,B 0,B0H

-1

−→#· · ·−→H-1#α,n0

I robustness: Hd(n)>B>B0>Hα(n0)

I coverability: α=Ωd∧n=n0

I impliesperfect simulation

(49)

Concluding Remarks

model priority channel systems ordering priority embedding

Perspectives

verifying PCSs regular model checking and acceleration

using PCSs reducing problems about other models (e.g. manipulating bounded depth trees and graphs)

(50)

Concluding Remarks

model priority channel systems ordering priority embedding

Perspectives

verifying PCSs regular model checking and acceleration

using PCSs reducing problems about other models (e.g. manipulating bounded depth trees and graphs)

(51)

References

Abdulla, P.A. and Jonsson, B., 1996. Verifying programs with unreliable channels.Inform. and Comput., 127(2):

91–101. doi:10.1006/inco.1996.0053.

Abdulla, P.A., ˇCer ¯ans, K., Jonsson, B., and Tsay, Y.K., 2000. Algorithmic analysis of programs with well quasi-ordered domains.Inform. and Comput., 160(1–2):109–127. doi:10.1006/inco.1999.2843.

C ´ec ´e, G., Finkel, A., and Purushothaman Iyer, S., 1996. Unreliable channels are easier to verify than perfect channels.Inform. and Comput., 124(1):20–31. doi:10.1006/inco.1996.0003.

Chambart, P. and Schnoebelen, Ph., 2008. The ordinal recursive complexity of lossy channel systems. InLICS 2008, pages 205–216. IEEE Press. doi:10.1109/LICS.2008.47.

Finkel, A. and Schnoebelen, Ph., 2001. Well-structured transition systems everywhere!Theor. Comput. Sci., 256 (1–2):63–92. doi:10.1016/S0304-3975(00)00102-X.

Schmitz, S. and Schnoebelen, Ph., 2011. Multiply-recursive upper bounds with Higman’s lemma. InICALP 2011, volume 6756 ofLNCS, pages 441–452. Springer. doi:10.1007/978-3-642-22012-8 35.

Schmitz, S. and Schnoebelen, Ph., 2012. Algorithmic aspects of WQO theory. Lecture notes.

http://cel.archives-ouvertes.fr/cel-00727025.

Sch ¨utte, K. and Simpson, S.G., 1985. Ein in der reinen Zahlentheorie unbeweisbarer Satz ¨uber endliche Folgen von nat ¨urlichen Zahlen.Arch. Math. Logic, 25(1):75–89. doi:10.1007/BF02007558.

(52)

Fundamental Sequences

Definition (Fundamental Sequences)

For limit ordinals inε0+1:

(γ+ωβ+1)(x)=def γ+ωβ·(x+1) (γ+ωλ)(x)=def γ+ωλ(x)

0)(x)=defx+1=def ωω···

ω x+1 stackedω’s

(53)

Encodings

sd:Td+1→Σd by induction ond:

sd(•(t1· · ·tn))=def

ε ifn=0,

sd−1(t1)d· · ·sd−1(tn)d otherwise.

sd:Ωd+1 →Σd by induction ond:

sd

Xn

i=1

γi def

=sd1)· · ·sdn), sdα) =def sd−1(α)d.

Referensi

Dokumen terkait