Contents lists available atScienceDirect
Physics Letters B
www.elsevier.com/locate/physletb
Type II Dirac seesaw with observable N eff in the light of W-mass anomaly
Debasish Borah
a, Satyabrata Mahapatra
b, Dibyendu Nanda
c, Narendra Sahu
b,∗aDepartmentofPhysics,IndianInstituteofTechnologyGuwahati,Assam781039,India
bDepartmentofPhysics,IndianInstituteofTechnologyHyderabad,Kandi,Sangareddy502285,Telangana,India cSchoolofPhysics,KoreaInstituteforAdvancedStudy,Seoul02455,RepublicofKorea
a rt i c l e i n f o a b s t r a c t
Articlehistory:
Received26April2022 Accepted8July2022 Availableonline14July2022 Editor:G.F.Giudice
WeproposeatypeIIseesawmodelforlightDiracneutrinostoprovideanexplanationfortherecently reported anomalyin Wboson mass by the CDFcollaboration with 7σ statistical significance. Inthe minimalmodel,therequiredenhancementinWbosonmassisobtainedattreelevelduetothevacuum expectationvalueofarealscalartriplet,whichalsoplaysaroleingeneratinglightDiracneutrinomass.
Dependinguponthecouplingsandmassesofnewlyintroducedparticles,wecanhavethermallyornon- thermallygeneratedrelativisticdegreesoffreedomNeffintheformofrighthandedneutrinoswhich can be observed at future cosmology experiments. Extending the model to a radiative Dirac seesaw scenariocanalsoaccommodatedarkmatterandleptonanomalousmagneticmoment.
©2022TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.
1. Introduction
The CDF collaboration has provided an updated measurement of the W boson mass MW =80433.5±9.4 MeV [1] using the data corresponding to8.8fb−1 integratedluminosity collected at theCDF-IIdetectorofFermilabTevatroncollider.Thisnewlymea- sured value has 7
σ
deviation from the standard model (SM) expectation(MW =80357±6 MeV). Thishas ledto several dis- cussions on possible implications and interpretations in the last week relatedto effectivefield theory [2,3], electroweakprecision parameters [4–7],beyondstandardmodel(BSM)physicslikedark matter(DM)[8–13],additionalscalarfields[14–24],supersymme- try[25–29] andseveralothers[30–42].Assumingthisanomaly to beoriginatingfrombeyondstandardmodel(BSM)physics,herewe consider a seesaw model forDirac neutrinoswhere a real scalar tripletplaysanon-trivialroleingeneratingtherequiredenhance- ment inW bosonmass aswell aslight neutrino masses. Due to theexistenceofadditionallightspeciesintheformofrightchiral parts of light Diracneutrinos, we can get enhancement ineffec- tiverelativisticdegreesoffreedomNeff dependinguponYukawa couplings and masses of additional particles including those in- volvingthetriplet scalar.Weshowthat suchenhanced Neff can not onlybeconstrainedbyexistingdatafromthePlanckcollabo-*
Correspondingauthor.E-mailaddresses:[email protected](D. Borah),[email protected] (S. Mahapatra),[email protected](D. Nanda),[email protected](N. Sahu).
ration,butalsoremainswithinreachofnextgenerationcosmology experiments.AfterdiscussingtheminimalmodeloftreelevelDirac seesaw,weconsideraradiativeversionofitwhichcanaccommo- datedarkmatteraswellasleptonanomalousmagneticmoments, whicharealsosignaturesofBSMphysics.
2. TreelevelDiracseesaw
WhilemostoftheneutrinomassmodelsinvoketheMajorana nature of neutrinos, the possibility of Dirac seesaw is relatively lessexploredyetequallyappealing.DifferentBSMframeworksfor originof light Diracneutrino mass can be found in [43–74] and referencestherein. Here we consider a type II seesaw realisation ofthe dimension sixoperator forlight Diracneutrinomass [61].
The particle content of the minimal model is shownin Table 1.
A vector-like fermion doublet and a real scalar triplet are introducedtorealisethetypeIIDiracseesaw.1Asoftlybrokendis- crete Z2 symmetryisintroducedtoforbiddirectcouplingofright handed neutrino
ν
R to the SM lepton and Higgs in the form of LH˜ν
R. An overall globallepton number symmetry isassumed as inconventionalDirac seesawmodels tokeep leptonnumbervio- latingMajoranamasstermsawayfromtheLagrangian.1 Thisisnotauniquechoiceinvolvingarealscalartriplet.Forexample,onecan considervector-likefermiontriplet insteadoffermiondoublettootorealisethe sameseesawrealisationofdimensionsixoperator.Suchchoicesdonotchangethe analysissignificantlyandwesticktotheminimalchoiceoffermiondoublet.
https://doi.org/10.1016/j.physletb.2022.137297
0370-2693/©2022TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.
Fig. 1.Origin of tree level Dirac Neutrino Mass.
TherelevantYukawaLagrangiancanbewrittenas
−
L⊇
M+
yLLR
+
yνRLH
˜ ν
R+
h.
c (1) where=(ψ0,ψ−)T isthevector-likefermiondoublet.Scalarpotentialoftheminimalmodelcanbewrittenas
V
(
H, ) = − μ
2HH†H+ λ
H H†H 2−
M2Tr2
+ λ
Tr4
+ λ
(
Tr2
)
2+ λ
H H†H Tr2
+ λ
HH†
2H
+ ζ
H†H
.
(2)Here weconsider M2<0 suchthat theneutralcomponentof acquires only an induced vacuum expectation value (VEV) after electroweaksymmetrybreaking.Aftersymmetrybreaking,neutri- noswillacquireaDiracmassattreelevelfromthediagramshown inFig.1.Thiscanbeestimatedas
mν
=
yLyνR H M.
(3)3. Wbosonmass
Any newphysicswhich couldbe responsible fortheW boson massanomaly,canbeparametrised byobliqueparametersS,T,U [75,76]. Considering the U parameter to be suppressed, one can parametrise any BSM physics contribution to W boson mass in termsofS,T parameters.Taking
α
EW,GF,mZasinputparameters, the requiredfitting of S,T parameters in view ofthe recent W- massanomaly hasbeendiscussedin[3].It shouldbe notedthat, changeinS,T parametersduetoBSMphysicswillalsochangethe weakmixingangleθW,whichispreciselymeasured.Themassof WbosonmW andsin2θW(mZ)M S canbeexpressedintermsofelec- troweakprecisionparametersnamely,SandTas[77],mW
=
80.
357 GeV(
1−
0.
0036S+
0.
0056T) ,
sin2θW
(
mZ)
MS=
0.
23124(
1−
0.
0157S+
0.
0112T) ,
(4) which implies that the compatibility of the enhanced W boson mass withprecision measurements of θW requiresboth S andT parameters to be non-zero, also seen from the fits presented in [3].However,inthecaseofrealscalartriplet,wewillnotgetany correctiontoSparameter,evenatone-looplevel[78].Ontheother hand,Tparameter can getcontributionfrom theinduced VEVof theneutralcomponentoftriplet.TherequiredlimitonT,inorder toexplaintheenhancedWbosonmass,willbe
v
= ζ
v2 2√
2M2
.
(7)Since isarealscalartripletwithhyperchargezero,it willcon- tributeonlytoWmassandnottoZmassattreelevel.Therefore, itwillchangeonlytheTparameterthroughitscontributiontoW- massandcanbeexpressedas,
T
=
v2α
ζ
2M4
,
(8)where
α
is the fine structure constant. It should be noted that, thevector-likefermiondoublet,inspiteofhavingSU(2)L gauge interactions,cannotgiverisetotherequiredenhancementviara- diativecorrectionsduetodegeneratemassesofitscomponents.4. ObservableNeff
Thermalisationofthe
ν
Rs givesextracontributionto thetotal radiationenergydensityoftheuniverse Neff.Thequantity Neff is definedasthe contributionofnon-photon componentstothera- diationenergydensitynormalisedby thecontributionofa single activeneutrinospecies(νL)[79] i.e.
Neff
≡
rad−
γνL
,
(9)which,duringtheeraofrecombination(z∼1100),isrestrictedby Planck2018data[80] tobe
Neff
=
2.
99+−00..3433 (10)at2
σ
CLincluding baryon acousticoscillation (BAO)data. At 1σ
CL it becomes more stringent to Neff=2.99±0.17. Both these bounds are consistent with the standard model (SM) prediction NeffSM=3.045 [79,81,82].Upcoming cosmicmicrowavebackground (CMB)experimentslikeSPT-3G[83] andCMB-S4[84] willbeable toconstrainNeff upto amuchhigheraccuracy,havingthepoten- tialtoverifyBSMscenarioslike ourswhichlead toenhancement inNeff.SomerecentstudiesonlightDiracneutrinosandenhanced Neff can be found in [72,85–94]. For thermalised
ν
R, the en- hancementtoNeff canbeexpressedas,Neff
=
Neff−
NeffSM=
NνR TνRTνL
4=
NνR⎛
⎝
g∗ TνdecL
g∗ TνdecR⎞
⎠
4/3
.
(11)Fig. 2.ContributiontoNeffasafunctionoftheYukawainteractionyνR forthree benchmarkvaluesofMψ.
This can be computed simply by assuming instantaneous decou- pling of
ν
R’s and finding the corresponding decoupling temper- ature. This also agrees to a great accuracy with more detailed analysis involving Boltzmann equations [88,94]. The correspond- ing resultsare showninFig.2forbenchmark choicesof mass and Yukawa couplings which dictate the thermalisation as well as decoupling temperature ofν
R. Clearly, the entire parameter spaceremainswithin thereachoffutureCMBexperiments.How- ever,ν
R canalsobeproducedthroughfreeze-inmechanismifthe corresponding interactions are not sufficientto keep themin the thermalplasma.Fornon-thermalproductionofν
R,wecancalcu- late the enhancement in Neff by solving the Boltzmannequation which tracksthenon-thermal productionofν
R fromother parti- cles [91]. The corresponding Boltzmann equation can be written, forourmodel,asdYνR
dx
=
2β(
x)
H s1/3x
EYψeq
,
(12) where xisdefinedasMψ/T,s istheentropydensityoftheuni- verse, and β(T)=1+T dg3gs/sdT
. The 2 factor in the right hand side ofthe Boltzmannequation isdueto theDiracnature of
ν
R. Thecollisionterm<E>canbewrittenas E=
y2νR
(
M2ψ−
m2h)
2 32π
M2ψ 1−
m2 h
M2ψ
.
(13)Here,weconsiderthatthe
ν
R producedfromthedecayofψ which was in thermalequilibriumwiththe SM particles owingto their gauge interactions.Onecanwritethecorrespondingenhancement toNeff asNeff
=
3s4/3YνRρ
νLT=TCMB
,
(14)wherethenumericalvalueofYνR atT=TCMB isfoundbysolving equation (12). Theresults are shownin Fig.3 forchosen bench- markparameters. As expected, withtherise inYukawacoupling, the non-thermal contribution to
ν
R density and hence Neff in- creases.AscanbenoticedwhilecomparingwithFig.2,theYukawa coupling remains suppressed in this case forν
R to be in non- thermalregime.InFig.4,weshowthescanintheplaneofζandMwhichsat- isfy enhanced W-masscriteriareportedby theCDFcollaboration.
TherequiredenhancementinW-massconstrainstheVEVof to
Fig. 3.Non-thermalcontributiontoNefffromthedecayoffermiondoubletasa functionoftheYukawainteractionyνR.
Fig. 4.AllowedparameterspaceinζvsMplanefromtheTparameterconstraint showninequation(5).HerewehavefixedMψat250GeVandyLat10−8.
lieinfewGeVregimewhichcan betranslatedintoconstraintsin ζ,M plane followingEq. (7) as showninFig.4. Incolour code, weshowtheYukawacouplingstrength of
ν
R consideringittobe thermallygeneratedproviding alarge contributionto Neff within reachoffutureCMBexperiments,asshowninFig.2.Wealsotake intoaccounttheconstraintonthescaleofneutrinomass.Togen- eratethe correctneutrino mass,the product of yLyνR hasto be O(10−10) assuming Mψ andH=v havesimilar order. In case ofverysmall yL (say yL ∼ 10−8), yνR hasto belarge enoughto generatethecorrectneutrinomass.Such interactions can leadto the thermalisationofν
R in the early universe whoseeffects can be seen as the extra radiationenergy density atthe time of re- combination. On the other hand, if we consider sizable yL this makes yνR automatically small from the requirement of correct neutrinomass. In thiscase, althoughν
R can not be thermalised dueto such feeble interactions, they can still be produced from thenon-thermaldecayofψ asthey werepresentinthe thermal plasmaduetotheirgaugeinteractions.5. RadiativeDiracseesaw
TheparticlecontentofthemodelisshowninTable2.Therel- evantLagrangiancanbewrittenas:
−
L⊇
M+
MNN N+
YH N
+
YNlLη ˜
1NRFig. 5.Origin of Scotogenic Dirac Neutrino Mass.
+
YRL
η ˜
2ν
R+
YψlL
η
1lR+
h.
c (15) One of the discrete symmetriesnamely Z2 willbe broken while theotherwillremainunbrokenensuringthestabilityofdarkmat- ter.Aftertheelectroweaksymmetrybreaking,lightDiracneutrino massesariseatone-looplevelasshowninFig.5.Thecorrespond- ingone-loop contributioncanbeestimatedfollowing[45,54].The analysis for W boson mass correction from triplet VEV and en- hancementofNeff fromthermalornon-thermalν
R remainsmore or lesssame as in the minimal model andhence we only com- mentonadditionalphenomenology ofthe radiativemodelbelow.ItshouldbenotedthatsimilartothetreelevelDiracseesawmodel discussed earlier, here also we consider a global lepton number symmetryinordertokeeptheMajoranamasstermsaway.
After electroweakphase transition,theVEVofSM Higgsleads tomixingbetweentheneutralcomponentofdoubletψ0(as(T= (ψ0,ψ−))andN givingrisetothewellmotivatedsinglet-doublet DM Model which has been studied extensively in the literature [95–115]. Asclear fromtheLagrangian inEq. (15),herewe con- sider a Diracversion ofthe singlet-doubletDM model.The mass termsforthesefieldscanthenbewrittentogetherasfollows:
−
LVFmass=
Mψ
0ψ
0+
Mψ
+ψ
−+
MNN N+ √
Y v2
ψ
0N+ √
Y v 2 Nψ
0=
N
ψ
0 MN Y v/ √
2 Y v/ √
2 M
Nψ
0+
Mψ
+ψ
−.
(16) The unphysicalbasis,
N ψ0T
is relatedtophysical basis, ψ1 ψ2
T
throughthefollowingunitarytransformation:
Nψ
0=
Uψ
1ψ
2=
cosθ −
sinθ
sinθ
cosθ
ψ
1ψ
2,
(17)wherethemixingangleisgivenby:
tan 2
θ = −
√
2Y v M−
MN.
(18)Themasseigenvaluesofthephysicalstatesψ1andψ2 arerespec- tivelygivenby:
Y
= −
Msin 2θ
√
2v,
M
=
Mψ1sin2θ +
Mψ2cos2θ,
(21) whereM=Mψ2−Mψ1Thus the interactionterms of thedark sector fermions inthe massbasisare:
LDMint
= [
iγ
μ(∂
μ−
igσ
a2 Waμ
−
igY 2Bμ)]
+
N(
iγ
μ∂
μ)
N− (
YH N
+
h.
c.)
LDMint=
gZsin2
θ ψ
1γ
μZμψ
1+
cos2θ ψ
2γ
μZμψ
2+
sinθ
cosθ (ψ
1γ
μZμψ
2+ ψ
2γ
μZμψ
1)
+
gW(
sinθ ψ
1γ
μWμ+ψ
−+
cosθ ψ
2γ
μWμ+ψ
−) +
gW(
sinθ ψ
+γ
μWμ−ψ
1+
cosθ ψ
+γ
μWμ−ψ
2)
−
gZc2wψ
+γ
μZμψ
−−
e0ψ
+γ
μAμψ
−− √
Y 2hsin 2
θ (ψ
1ψ
1− ψ
2ψ
2) +
cos 2θ (ψ
1ψ
2+ ψ
2ψ
1)
(22) where gZ =e0/2swcw, gW =e0/√
2sw and sw, cw,c2w denote sinθW andcosθW andcos 2θW respectively.
Theimportantparameterswhichdecidetherelicabundanceof ψ1 aremass ofDM(Mψ1), themass splitting(M) betweenthe DMandthenext-to-lighteststableparticle(NLSP)andthesinglet- doubletmixinganglesinθ.HerewehaveusedmicrOmega[116]
to calculate the relic density of DM. In this scenario the an- nihilation cross-section increases with sinθ, as it enhances the SU(2)componentandhenceresultsinsmallerrelicdensity.When the mass-splitting is small it leads to effective co-annihilation and hence reduces the relic density contribution (due to less Boltzmann suppression). In this case the effect of sinθ on relic abundance is quite negligible whereas for large M, asthe co- annihilationbecomessuppressed,theeffectofsinθ orrelicabun- danceis clearly visible. Forsmall sinθ, the effectiveannihilation cross-sectionissmallleadingtoalargerelicabundance,whilefor large sinθ therelic abundanceis smallprovided that the M is largeenoughtoreducetheco-annihilationcontributions.
InFig.6,wehaveshownthepointssatisfyingcorrectrelicden- sityintheplaneof Mψ1 versus M.We canseethat,forawide rangeof singlet-doublet mixing(sinθ) which is indicated by the colour bar,we cangetcorrectrelicabundance.Thisresultcanbe explainedby understanding the interplaybetweensinθ and M in deciding the effective annihilation cross-section of the DM. If we dividethe plane of Mψ1 versus m into two regions:(I)the
Fig. 6.DMRelicdensity(fromPLANCK)allowedparameterspaceshownintheplane ofMψ1 vsM.
bottom portionwithsmallm,whereM decreases withlarger mass of ψ1, (II) the top portion with larger mass splitting m, wherem increasesslowlywithlargerDMmassMψ1.Inthefor- mercase, foragivenrangeofsinθ,theannihilationcross-section decreasesasmassofDMincreases.Therefore,moreco-annihilation contribution is needed for compensation,which requires M to decrease. This also implies that the region below this is under abundantassmallmass-splittingimplylargeco-annihilation,while theregionabove,isoverabundant aslargeMlead tosmallco- annihilation for a given mass ofDM. Now in region (II), as M is large, co-annihilation contribution is much smaller here and hence theannihilation processes effectivelydecide the relicden- sity. However asthe Yukawa coupling Y ∝Msinθ, for a given sinθ,larger M leads to larger Y andtherefore larger annihila- tioncross-sectionleading tounderabundance,whichcanonlybe brought to correct ballpark by having a larger DM mass.That is thereason,incase-(II),theregionabovetheshownallowedregion ofcorrectrelicdensityisunderabundant, whiletheregionbelow itisoverabundant.
Now imposing the constraints fromDM direct search experi- mentsontopoftherelicdensityallowed parameterspace(Fig.6) intheM versus Mψ1 plane, weobtainFig.7,whichshowsthat the parameterspaceiscruciallytamed downascomparedto the parameterspacesatisfyingcorrectrelicdensity.Asinthisscenario, dueto thesinglet-doubletmixing, theDM ψ1 canscatter offthe target nucleusat terrestrialdirect search experiments,via Zand Higgsmediatedprocesses,thecross-sectionfor Z-bosonmediated DM-nucleonscatteringisgivenby [117,118]
σ
SIZ=
G2 Fsin4
θ
π
A2μ
r2Z fp
+ (
A−
Z)
fn 22 (23)
and similarly the spin-independent DM-nucleon cross-section throughHiggsmediationisgivenby
σ
SIh=
4π
A2μ
2rY2sin22
θ
Mh4 mp vfT up
+
fT dp+
fT sp+
2 9fT Gp+
mnv
fT un
+
fT dn+
fT sn+
2 9fT Gn 2(24)
Itclearly showsthatifsinθ islarge,thenthe interactionstrength is large andhence the DM-nucleon cross-section becomes large.
Fig. 7.DMRelicdensity(fromPLANCK)+Directsearch(fromXENON1T)allowed parameterspaceshownintheplaneofMψ1 vsM.
Fig. 8.Lepton(g−2)in scotogenic Dirac model.
Thusthedirectsearchexperimentsconstraintssinθ toagreatex- tent.Thisstringentupperlimitonsinθissinθ≤0.05.Asaresult, only smallMregionbecomesviable,ascorrectrelicdensitycan beachieveddominantlythroughco-annihilationprocesses.
Recently, the E989 experiment at Fermilab has measured the muonanomalous magnetic momentaμ =(g−2)μ/2 reporting a 4.2
σ
observed excess of aμ=251(59)×10−11 [119]. On the otherhand,themeasurementofthefinestructureconstantusing Cesiumatoms[120] hasled to a discrepancyinelectron anoma- lousmagneticmomentae innegativedirectionwith2.4σ
statisti- calsignificance.Inourmodel,theone-loop contributiontolepton anomalous magneticmoment(g−2)l canarise withthe Z2-odd particlesintheloopasshowninFig.8.Thiscontributionisgiven by [121,122]:al
= −
ml16
π
2M2η+sin 2θ (
YNlYψl)
×
Mψ
1F
M2ψ1
M2η+
−
Mψ2FMψ22M2η+
−
m2 l
8
π
2M2η+(
YNl2 cos2θ +
Yψ2lsin2θ )
G M2ψ1 Mη2+
−
ml28
π
2M2η+(
Yψ2lcos2θ +
Y2Nlsin2θ )
G M2ψ2 Mη2+
(25) WheretheloopfunctionsF andG aregivenby
Fig. 9.Lepton(g−2)in radiative Dirac seesaw model.
F
(
x) =
1−
x2+
2xlogx 2(
1−
x)
3G
(
x) =
1−
6x+
3x2+
2x3−
6x2logx12
(
1−
x)
4 (26)Wecalculatedtheanomalousmagneticmomentforbothelectron andmuonwiththeparameterspaceconsistentwithrelicanddi- rectsearchconstraintsforDMandtheresultisshowninFig.9.We find that this radiative Dirac seesaw model with singlet-doublet DMcangiverisetobothelectronandmuon(g−2)incertainre- gionofparameterspaceonlywhentherelevantcouplingsYψl and YNl are large approaching theperturbativity limit. The blackand cyan lines show the correct ball park for aμ and ae respec- tively.Itisworthmentioningherethattherelativesignofaeand aμ canbeeasily achievedby appropriatelychoosingthesignof therelevantYukawacouplings.
Here it is worth mentioning that the presence of the inert scalardoublets intheradiativeDiracseesaw modelcanalsocon- tributeto thecorrection toW bosonmass.However ifthe mass- splittingbetweenthechargedandtheneutralcomponentsofthe doublet is within 10GeV andifthe massof thedoublet is cho- sen beyond 800 GeVor so, then it can not explain the W-mass anomaly asin such a case the S andT parameters are found to be of the order O(10−5) and O(10−3) respectively. Similar con- clusionwasalsogivenin [123].Forsimplicity,wehaveconsidered a parameter space for the inertdoublet scalar such that its co- annihilations withthe DMare alsonegligible implyingthat inert doubletcomponentsremainmuchheaviercomparedtoDM.Given that DM mass lies up to a few hundred GeV and inert doublet mass remainsheavier, thedominantcorrection toW boson mass in oursetup is comingfromthe triplet scalarVEV only.In addi- tion, the presence of the additional singlet-doublet fermion also doesnotaffecttheS andTparametersignificantly toexplain the CDF-II resultsasthe mass-splittingbetweenthecharged andthe neutral componentsremain extremelysmallas aconsequence of theupperlimitonmixinganglesinθfromDMdirectsearchexper- iments.2Thus,thesinglet-doubletDiracfermionDMwithmassup to afewhundredGeVwithdesiredrelicanddirectdetectioncross section automatically keepsthe contribution of Z2-odd particle’s radiative contribution to W-mass suppressed. We find that after imposition oftherelevantDMconstraints,theallowed parameter
2 SimilarconclusionsareobtainedevenforMajoranasinglet-doubletDM[115].
parameteratoneloopremainssmallTη<0.01.Insuchacase,we could get their maximum contribution to S parameter to be ap- proximately Sη≤0.003,which stillkeepsθW awayfromthe LEP estimate. Considering the possibility of both scalar doublets and tripletvia radiative andtreelevelcontribution precision parame- tersrespectively,shouldbeabletoreducethistension.
6. Conclusion
Wehaveproposeda Diracseesaw mechanismforlight neutri- noswherearealscalartripletplaysanon-trivialrole.Inthemin- imal model with tree level seesaw, vector-like fermion doublets arealsointroducedtoallowtripletcouplingstoleptonsleadingto the seesaw mechanism. The induced VEV of the neutral compo- nentofthetripletnotonlytakespartinneutrinomassgeneration butalso provides the necessary enhancement in W boson mass, inview ofthe recentlyreported resultsby theCDF collaboration ofFermilab.Depending upontriplet andvector-likefermiondou- blet couplingsto righthanded neutrinos, we findthat additional effectiverelativistic degreesof freedom Neff can be generatedin theearlyuniverseeitherthermallyornon-thermally.WhilePlanck 2018 data already constrains such enhancement in Neff, future CMBexperimentswillbeabletoprovemostpartoftheparameter space, providing a complementary probe of the model. We then discuss a radiative version of the same Dirac seesaw model af- terincludingadditionalscalardoubletsandfermionsingletswhich alsoleadsto therealisationofsinglet-doubletDiracfermiondark matterphenomenology.Themodelcanalsoaccommodateanoma- lous magnetic moments of electron and muon provided the re- spective Yukawa couplings are of order one in order to remain consistent with other phenomenological requirements. The pro- posedscenarios provide interesting phenomenology and comple- mentaryprobesofrealscalartripletoriginofW-massanomalyin the context of tree level andradiative Dirac seesaw. Apart from therich phenomenology provided by theradiative model, italso hasthepotentialtoreducethetensionbetweenWmassandpre- cisionmeasurementofθW whichexistinthepuretripletoriginof Wmassanomaly.Incorporatingcomparablecontributionofscalar doublets at one loop and scalar triplet at tree level to W mass should be able to relax this condition. A detailed exploration of suchapossibilityalongwiththechangeinDM,g-2resultsisleft forfuturestudies.
Declarationofcompetinginterest
The authors declare the following financial interests/personal relationshipswhichmaybeconsideredaspotentialcompetingin- terests:
Narendra Sahureports financial support,equipment, drugs,or supplies,andtravelwere providedbyIndiaDepartmentofAtomic Energy.
Acknowledgements
DN would liketo thankSanjoy Mandal forusefuldiscussions.
The workofDN issupported byNationalResearchFoundation of Korea (NRF)’sgrants, grantsno.2019R1A2C300500913.SM would liketothankPurusottamGhoshforusefuldiscussion.NSacknowl- edgesthesupportfromDepartmentofAtomicEnergy(DAE)- Board ofResearchinNuclear Sciences(BRNS),GovernmentofIndia(Ref.
Number:58/14/15/2021- BRNS/37220).
References
[1]T.Aaltonen,etal.,CDF,Science376(2022)170.
[2]J.Fan,L.Li,T.Liu,K.-F.Lyu,arXiv:2204.04805,2022.
[3]E.Bagnaschi, J.Ellis, M.Madigan, K. Mimasu,V.Sanz,T.You,arXiv:2204. 05260,2022.
[4]J.deBlas,M.Pierini,L.Reina,L.Silvestrini,arXiv:2204.04204,2022.
[5]A.Strumia,arXiv:2204.04191,2022.
[6]P.Asadi,C.Cesarotti,K.Fraser,S.Homiller,A.Parikh,arXiv:2204.05283,2022.
[7]C.-T.Lu,L.Wu,Y.Wu,B.Zhu,arXiv:2204.03796,2022.
[8]Y.-Z.Fan,T.-P.Tang,Y.-L.S.Tsai,L.Wu,arXiv:2204.03693,2022.
[9]C.-R.Zhu,M.-Y.Cui,Z.-Q.Xia,Z.-H.Yu,X.Huang,Q.Yuan,Y.Z.Fan, arXiv:
2204.03767,2022.
[10]B.-Y.Zhu,S.Li,J.-G.Cheng,R.-L.Li,Y.-F.Liang,arXiv:2204.04688,2022.
[11]J.Kawamura,S.Okawa,Y.Omura,arXiv:2204.07022,2022.
[12]K.I.Nagao,T.Nomura,H.Okada,arXiv:2204.07411,2022.
[13]X.Liu,S.-Y.Guo,B.Zhu,Y.Li,arXiv:2204.04834,2022.
[14]K.Sakurai,F.Takahashi,W.Yin,arXiv:2204.04770,2022.
[15]G.Cacciapaglia,F.Sannino,arXiv:2204.04514,2022.
[16]H.Song,W.Su,M.Zhang,arXiv:2204.05085,2022.
[17]H.Bahl,J.Braathen,G.Weiglein,arXiv:2204.05269,2022.
[18]Y.Cheng,X.-G.He,Z.-L.Huang,M.-W.Li,arXiv:2204.05031,2022.
[19]K.S.Babu,S.Jana,V.P.K.,arXiv:2204.05303,2022.
[20]Y.Heo,D.-W.Jung,J.S.Lee,arXiv:2204.05728,2022.
[21]Y.H.Ahn,S.K.Kang,R.Ramos,arXiv:2204.06485,2022.
[22]M.-D.Zheng,F.-Z.Chen,H.-H.Zhang,arXiv:2204.06541,2022.
[23]P.F.Perez,H.H.Patel,A.D.Plascencia,arXiv:2204.07144,2022.
[24]S.Kanemura,K.Yagyu,arXiv:2204.07511,2022.
[25]X.K.Du,Z.Li,F.Wang,Y.K.Zhang,arXiv:2204.04286,2022.
[26]T.-P.Tang, M.Abdughani, L. Feng,Y.-L.S.Tsai, Y.-Z.Fan, arXiv:2204.04356, 2022.
[27]J.M.Yang,Y.Zhang,arXiv:2204.04202,2022.
[28]P.Athron,M.Bach,D.H.J.Jacob,W.Kotlarski,D.Stöckinger,A.Voigt,arXiv:
2204.05285,2022.
[29]A.Ghoshal,N.Okada,S.Okada,D.Raut,Q.Shafi,A.Thapa,arXiv:2204.07138, 2022.
[30]G.-W.Yuan,L.Zu,L.Feng,Y.-F.Cai,Y.-Z.Fan,arXiv:2204.04183,2022.
[31]P.Athron,A.Fowlie,C.-T.Lu,L.Wu,Y.Wu,B.Zhu,arXiv:2204.03996,2022.
[32]M. Blennow, P. Coloma, E.Fernández-Martínez, M. González-López, arXiv:
2204.04559,2022.
[33]J.J.Heckman,arXiv:2204.05302,2022.
[34]H.M.Lee,K.Yamashita,arXiv:2204.05024,2022.
[35]L.DiLuzio,R.Gröber,P.Paradisi,arXiv:2204.05284,2022.
[36]A.Paul,M.Valli,arXiv:2204.05267,2022.
[37]T.Biekötter,S.Heinemeyer,G.Weiglein,arXiv:2204.05975,2022.
[38]R.Balkin,E.Madge,T.Menzo,G.Perez,Y.Soreq,J.Zupan,arXiv:2204.05992, 2022.
[39]K.Cheung,W.-Y.Keung,P.-Y.Tseng,arXiv:2204.05942,2022.
[40]X.K.Du,Z.Li,F.Wang,Y.K.Zhang,arXiv:2204.05760,2022.
[41]M.Endo,S.Mishima,arXiv:2204.05965,2022.
[42]A.Crivellin,M.Kirk,T.Kitahara,F.Mescia,arXiv:2204.05962,2022.
[43]K.S.Babu,X.G.He,Mod.Phys.Lett.A4(1989)61.
[44]J.T.Peltoniemi,D.Tommasini,J.W.F.Valle,Phys.Lett.B298(1993)383.
[45]Y.Farzan,E.Ma,Phys.Rev.D86(2012)033007,arXiv:1204.4890.
[46]S.CentellesChuliá,E.Ma,R.Srivastava,J.W.F.Valle,Phys.Lett.B767(2017) 209,arXiv:1606.04543.
[47]E.Ma,N.Pollard,R.Srivastava,M.Zakeri,Phys.Lett.B750(2015)135,arXiv:
1507.03943.
[48]M. Reig,J.W.F. Valle,C.A.Vaquera-Araujo, Phys. Rev.D94(2016) 033012, arXiv:1606.08499.
[49]C.Bonilla,J.W.F.Valle,Phys.Lett.B762(2016)162,arXiv:1605.08362.
[50]C.Bonilla,E.Ma,E.Peinado,J.W.F.Valle,Phys.Lett.B762(2016)214,arXiv:
1607.03931.
[51]E.Ma,O.Popov,Phys.Lett.B764(2017)142,arXiv:1609.02538.
[52]E.Ma,U.Sarkar,Phys.Lett.B776(2018)54,arXiv:1707.07698.
[53]D.Borah,Phys.Rev.D94(2016)075024,arXiv:1607.00244.
[54]D.Borah,A.Dasgupta,J.Cosmol.Astropart.Phys.1612(2016)034,arXiv:1608. 03872.
[55]D.Borah,A.Dasgupta,J.HighEnergyPhys.01(2017)072,arXiv:1609.04236.
[56]D.Borah,A.Dasgupta,J.Cosmol.Astropart.Phys.1706(2017)003,arXiv:1702. 02877.
[57]S.CentellesChuliá, R.Srivastava, J.W.F.Valle, Phys. Lett.B773(2017)26, arXiv:1706.00210.
[58]C.Bonilla,J.M.Lamprea,E.Peinado,J.W.F.Valle,Phys.Lett.B779(2018)257, arXiv:1710.06498.
[59]D.Borah,B.Karmakar,Phys.Lett.B780(2018)461,arXiv:1712.06407.
[60]S.CentellesChuliá,R.Srivastava,J.W.F. Valle,Phys.Lett.B781(2018)122, arXiv:1802.05722.
[61]S.CentellesChuliá,R.Srivastava,J.W.F.Valle,arXiv:1804.03181,2018.
[62]D.Borah,B.Karmakar,D.Nanda,J.Cosmol.Astropart.Phys.1807(2018)039, arXiv:1805.11115.
[63]D.Borah,B.Karmakar,Phys.Lett.B789(2019)59,arXiv:1806.10685.
[64]S.CentellesChuliá,R.Cepedello,E.Peinado,R.Srivastava,J.HighEnergyPhys.
10(2019)093,arXiv:1907.08630.
[65]S.Jana,V.P.K.,S.Saad,arXiv:1910.09537,2019.
[66]D.Borah,D.Nanda,A.K.Saha,arXiv:1904.04840,2019.
[67]A.Dasgupta,S.K.Kang,O.Popov,Phys.Rev.D100(2019)075030,arXiv:1903. 12558.
[68]E.Ma,arXiv:1907.04665,2019.
[69]E.Ma,arXiv:arXiv:1905.01535,2019.
[70]S.Saad,Nucl.Phys.B943(2019)114636,arXiv:1902.07259.
[71]S.Jana,V.P.K.,S.Saad,Eur.Phys.J.C79(2019)916,arXiv:1904.07407.
[72]D.Nanda,D.Borah,arXiv:1911.04703,2019.
[73]T.A.Chowdhury,M.Ehsanuzzaman,S.Saad,arXiv:2203.14983,2022.
[74]N.Narendra, N. Sahoo,N. Sahu,Nucl.Phys. B936(2018) 76, arXiv:1712. 02960.
[75]M.E.Peskin,T.Takeuchi,Phys.Rev.Lett.65(1990)964.
[76]M.E.Peskin,T.Takeuchi,Phys.Rev.D46(1992)381.
[77]K.S.Kumar,S.Mantry,W.J.Marciano,P.A.Souder,Annu.Rev.Nucl.Part.Sci.
63(2013)237,arXiv:1302.6263.
[78]J.R.Forshaw,D.A.Ross,B.E.White,J.HighEnergyPhys.10(2001)007,arXiv:
hep-ph/0107232.
[79]G.Mangano,G.Miele,S.Pastor,T.Pinto,O.Pisanti,P.D.Serpico,Nucl.Phys.B 729(2005)221,arXiv:hep-ph/0506164.
[80]N.Aghanim,etal.,Planck,arXiv:1807.06209,2018.
[81]E.Grohs,G.M.Fuller,C.T.Kishimoto,M.W.Paris,A.Vlasenko,Phys.Rev.D93 (2016)083522,arXiv:1512.02205.
[82]P.F.deSalas,S.Pastor,J.Cosmol.Astropart.Phys.1607(2016)051,arXiv:1606. 06986.
[83]J.Avva, etal., SPT-3G,J. Phys. Conf.Ser.1468 (2020)012008, arXiv:1911.
08047.
[84]K.N.Abazajian,etal.,CMB-S4,arXiv:1610.02743,2016.
[85]K.N.Abazajian,J.Heeck,Phys.Rev.D100(2019)075027,arXiv:1908.03286.
[86]P.FileviezPérez,C.Murgui,A.D.Plascencia,Phys.Rev.D100(2019)035041, arXiv:1905.06344.
[87]C.Han,M.López-Ibáñez,B.Peng,J.M.Yang,arXiv:2001.04078,2020.
[88]X.Luo,W.Rodejohann,X.-J.Xu,J.Cosmol.Astropart.Phys. 06(2020)058, arXiv:2001.04078.
[89]D. Borah, A. Dasgupta, C. Majumdar, D. Nanda, Phys. Rev. D 102(2020) 035025,arXiv:2005.02343.
[90]P.Adshead,Y.Cui,A.J.Long,M.Shamma,arXiv:2009.07852,2020.
[91]X.Luo,W.Rodejohann,X.-J.Xu,arXiv:2011.13059,2020.
[92]D.Mahanta,D.Borah,arXiv:2101.02092,2021.
[93]Y.Du,J.-H.Yu,arXiv:2101.10475,2021.
[94]A.Biswas,D.Borah,D.Nanda,J.Cosmol.Astropart.Phys.10(2021)002,arXiv:
2103.05648.
[95]R.Mahbubani, L. Senatore,Phys. Rev.D73 (2006) 043510, arXiv:hep-ph/ 0510064.
[96]F.D’Eramo,Phys.Rev.D76(2007)083522,arXiv:0705.4493.
[97]R.Enberg,P.J.Fox,L.J.Hall,A.Y.Papaioannou,M.Papucci,J.HighEnergyPhys.
11(2007)014,arXiv:0706.0918.
[98]T. Cohen, J. Kearney, A. Pierce, D. Tucker-Smith, Phys. Rev. D 85 (2012) 075003,arXiv:1109.2604.
[99]C.Cheung,D.Sanford,J.Cosmol.Astropart.Phys.1402(2014)011,arXiv:1311.
5896.
[100]D.Restrepo,A.Rivera,M.Sánchez-Peláez,O.Zapata,W.Tangarife,Phys.Rev.
D92(2015)013005,arXiv:1504.07892.
[101]L.Calibbi,A.Mariotti, P.Tziveloglou, J. HighEnergy Phys. 10(2015) 116, arXiv:1505.03867.
[102]G.Cynolter,J.Kovács,E.Lendvai,Mod.Phys.Lett.A31(2016)1650013,arXiv:
1509.05323.
[103]S.Bhattacharya,N.Sahoo,N.Sahu,Phys.Rev.D93(2016)115040,arXiv:1510. 02760.