• Tidak ada hasil yang ditemukan

Using the Laplace transform show that (a) Z ∞ 0 sint t dt= π 2, (b) Z ∞ 0 te−3tsintdt= 3 50

N/A
N/A
Protected

Academic year: 2025

Membagikan "Using the Laplace transform show that (a) Z ∞ 0 sint t dt= π 2, (b) Z ∞ 0 te−3tsintdt= 3 50"

Copied!
3
0
0

Teks penuh

(1)

MA102 : Linear algebra and Integral Transforms Tutorial Sheet-12

Second semester of academic year 2018-19

1. Find the Laplace transform of the function, f(t) = etd2019

dt2019(e−tt2019).

2. Find the Laplace transform of the following functions:

(a) f(t) =eatcoshbt, (b) f(t) = cosatcoshbt,

(c) f(t) =te−4tsin 3t.

3. Find the Laplace transform of the function {sin√

t} and hence deduce that L(g(t)) =π

s 12

e4s1 , whereg(t) = cos√

√ t t . 4. Using the Laplace transform show that

(a) Z

0

sint

t dt= π 2, (b)

Z

0

te−3tsintdt= 3 50.

5. If L{f(t)}=F(s) and a >0, then show that L−1{F(as+b)}= 1 ae−bta f

t a

.

6. If f(t) is a periodic function with period T then, show thatL[f(t)] = RT

0 e−stf(t)dt 1−e−sT and find the Laplace transform of the following function

f(t) =

(1, 0≤t <2

−1, 2≤t <4, wheref(t+ 4) =f(t).

7. Find the Laplace transform of f(t) where f(t) defined as f(t) =

(t

T, 0< t < T 1, t > T.

8. If L−1[F(s)] = f(t) then, show that L−1[F(as)] = 1 af

t a

. 9. Find inverse Laplace transform of following functions:

(a) log(1 + s12), (b) (s+1)(s12+1),

(c) (s−1)(s5s+32+2s+5).

10. Show that L−1{tan−1 2s2}= 2t(sint)(sinht).

(2)

11. Using convolution find (a) L−1[s2(s+1)1 2], (b) L−1[(s+2)12(s−2)].

12. If erf(t) = 2π Rt

0 e−x2dx, then show that L{erf(√

t)}= 1

s√ s+ 1. 13. Evaluate the following. Use Γ(1/2) =√

π, where necessary, a)Γ(3/2) b) Γ(8/3)Γ(3/2) c)Γ(−9/2) d) B(3/4,1/4).

14. Evaluate the following integrals:

(a) R π2

0

√tanx dx,

(b) Z 1

−1

1 +x 1−x

12 dx.

15. Show that Γ(2x) = 22x−1π Γ(x)Γ(x+12).

16. Show that R

0 xme−xn dx= 1 nΓ

m+ 1 n

, (m >−1, n >0).

17. Show that R

0 cosx2 dx=R

0 sinx2 dx= 12pπ

2. 18. Verify the given integral formulas

(a) Γ(x) =pxR

0 e−pt tx−1dt, x >0, p >0, (b) Γ(x) =R

−∞ext−etdt, x >0, (c) Γ(x) = (logb)xR

0 tx−1dt b−t, x >0, b >1.

19. Using properties of Γ function, prove the following (a) R

a e2ax−x2 dx= 12√ πea2, (b) R

0

√xe−x3 dx = 1

π 3 .

20. Prove that the relation B(x, y) = Γ(x)Γ(y)

Γ(x+y) and the following results:

(a) Γ(1) = 1, (b) Γ(12) =√

π.

21. Show that Z π/2

0

sin2n+1θ dθ= Z π/2

0

cos2n+1θ dθ = 22n(n!)2

(2n+ 1)!, n= 0,1,2, . . . . 22. Show that

Γ(x)Γ(x)

2Γ(2x) = 21−2x Z π/2

0

sin2x−1φ dφ.

23. Derive the relation

Γ(n+ 1/2) = (2n)!

22nn!

√π, where n= 0, 1, 2, . . . .

(3)

24. Verify the gamma function relation (n+ν 6=−1, −2, −3, . . .) Γ(2n+ 2ν+ 1)

Γ(n+ν+ 1) = 1

√π22n+2vΓ(n+ν+ 1/2).

25. Show that

(a) dzderf(z) = 2πe−z2, (b) R

0 e−pxerf(x)dx= 1pep2/4erfc(p/2), p >0, (c) R

0 e−px−x2/4 dx=√

πep2erfc(p), p≥0.

26. Use integration by parts to show that (a) R

erfz dz =z erf(z) + 1πe−z2 +C, where C is the constant of integration, (b) R

z e−t2 dt= e−z

2

2z12R z

e−t2 t2 dt.

27. For any complex number a show thatR

0 e−a2x2 dx=

π 2a.

Referensi

Dokumen terkait