• Tidak ada hasil yang ditemukan

View of DIFFERENT FUNCTION AND REGULARIZATION FOR POLYHARMONIC FUNCTIONS FOR SOME REGIONS IN Rm

N/A
N/A
Protected

Academic year: 2024

Membagikan "View of DIFFERENT FUNCTION AND REGULARIZATION FOR POLYHARMONIC FUNCTIONS FOR SOME REGIONS IN Rm"

Copied!
5
0
0

Teks penuh

(1)

DIFFERENT FUNCTION AND REGULARIZATION FOR POLYHARMONIC FUNCTIONS FOR SOME REGIONS IN .π‘Ήπ’Ž

Sotimboeva Zarifakhon

Senior Lecturer of the Department of Higher Mathematics at Namangan State University

ANNOTATION

In this work, some properties and regulation of the Carlemann function are studied to determine the integral formula of n-th order polygarmonic functions (D ^ n u (y) = 0) and their properties that satisfy the condition 2nβ‰₯m in certain unbounded areas of real m-dimensional Euclidean space.

Keywords: real m-dimensional Euclidean, region lying in a layer.

Based on these studies, M.M. Lavrentyev introduced an important concept- the Carleman function and with its help built a regularization of the problem. With the help of the method of M.M. Lavrentyev, Sh. Yarmukhamedov obtained the regularization and solvability of the Cauchy problem for the Laplace equation in bounded areas [3]. In 2009, Juraeva N (second author) of the article obtained the regularization and solvability of the Cauchy problem for polyharmonic equations of order in some unlimited regions (with arbitrary odd odd regions).

and even when ) [4] - [8]. π‘›π‘šπ‘š 2𝑛 < π‘š

Let's assume that the solution of the problem (1) - (2) exists and is continuously differentiable, up to the end points of the boundary and satisfies a certain growth condition (correctness class), which ensures the uniqueness of the solution.𝑒(𝑦)2𝑛 βˆ’ 1

Having solved the problem (1),(2) with the help of its solution we obtain theorems of the Fragman-Lindelof type. Fragman-Lindelof type theorems were the subject of research on the works of M.A. Evgrafov, I.A. Chegis and A.F. Lavrentyev,I.S. Arshon and others.

In 1960, M.A. Evgrafov and I.A. Chegis in the article - Generalization of the Fragman-Lindelof type theorem for analytic functions to harmonic functions in space - (DAN USSR, volume 134, number 2, 252-262) proved

Theorem 1. Let be the harmonic function in the cylinder , , . If the conditions are met 𝑒(π‘Ÿ, πœ™, π‘₯)0 ≀ π‘Ÿ ≀ Π°0 ≀ πœ™ < 2πœ‹ βˆ’ ∞ < Ρ… < ∞

𝑒(Π°, πœ™, Ρ…) = 0,

, ) , ,

(a x c

r

u ο€Ό

ο‚Ά

ο‚Ά οͺ

π‘šπ‘Žπ‘₯(π‘Ÿ,πœ™) |𝑒(π‘Ÿ, πœ™, π‘₯)| < 𝑐 𝑒π‘₯𝑝 𝑒

πœ‹|π‘₯|

2(π‘Ž+πœ€), πœ€ > 0 then 𝑒(π‘Ÿ, πœ™, Ρ…) ≑ 0

Theorem 2. Let the harmonic function in the cone , ,. If the conditions are met 𝑒(π‘Ÿ, πœƒ, πœ™)0 < π‘Ÿ <

∞0 ≀ πœ™ < 2πœ‹0 ≀ πœƒ ≀ πœƒ0 < πœ‹ 𝑒(π‘Ÿ, πœƒ0, πœ™) = 0, (r, 0, ) c,

u ο€Ό

ο‚Ά

ο‚Ά  οͺ

 π‘šπ‘Žπ‘₯

(πœƒ,πœ™) |𝑒(π‘Ÿ, πœƒ, πœ™)| < 𝑐 𝑒π‘₯𝑝( π‘Ÿ +1

π‘Ÿ)

πœ‹ 2πœƒ0βˆ’πœ€

, πœ€ > 0 then 𝑒(π‘Ÿ, πœƒ, πœ™) ≑ 0

In 1961, I.A. Chegis in the article - The theorem of the Fragman-Lindelof type for harmonic functions in a rectangular cylinder - (Dokl. AS USSR, volume 136, number 3, 556-9) proved

(2)

Theorem 1. - Harmonic function in a cylinder over a rectangle , ; . If the conditions are met 𝑒(π‘₯, 𝑦, 𝑑)0 ≀ Ρ… ≀ Π°0 ≀ Ρƒ ≀ 𝑏 βˆ’ ∞ ≀ 𝑑 ≀ ∞

𝑒(π‘₯, 𝑦, 𝑑)|Π“= 0, where is the G-surface of the cylinder;

|πœ•π‘’(π‘₯,0,𝑑)

πœ•π‘¦ | < 𝑐, |πœ•π‘’(π‘₯,𝑏,𝑑)

πœ•π‘¦ | < 𝑐 , π‘šπ‘Žπ‘₯

(π‘₯,𝑦) 𝑒(π‘₯, 𝑦, 𝑑) < 𝑐 𝑒π‘₯𝑝 π‘’πœ‹|𝑑|⁄𝑏+πœ€, πœ€ > 0 then.𝑒(π‘₯, 𝑦, 𝑑) ≑ 0

It should be noted that the theorem uses the condition of bounding the normal derivativeof tolk 'o on two opposite faces of a rectangular cylinder. For an infinite layer, i.e., a region of view, the statement of the theorem remains valid.βˆ’βˆž < π‘₯ < ∞, 0 ≀ 𝑦 ≀ 𝑏, βˆ’βˆž < 𝑑 < ∞

E.M. Landis in the book -Equations of the second order of elliptical and parabolic types.

Moscow, 1971 g.55 p.) - set the problem in the form - Let the cylinder contain an area that goes to infinity (in one or both directions - all the same) in the boundary of G of this region as smooth as you like 0 ≀ βˆ‘π‘›βˆ’1π‘˜=0х𝑙2 < 1

Let the solution and equation be defined in the region as smooth as possible up to the boundary and . Does it follow from this that unlimited (exponentially grows when going to infinity).)

π›₯π›₯𝑒 = 0𝑒|Π“= 0, πœ•π‘’

πœ•π‘›|

Π“= 0

Defining the functions and the following equals: πœ™πœŽ(𝑦, π‘₯) π›·πœŽ(𝑦, π‘₯)(𝑠 > 0, 𝜎 β‰₯ 0, π‘š βˆ’ Ρ€Π°Π·ΠΌΠ΅Ρ€Π½ΠΎΡΡ‚ΡŒ пространство)

if π‘š = 2π‘˜ + 1, π‘˜ = 2,3, . ..

πœ™πœŽ(𝑦, π‘₯) = 𝑐1πœ•π‘ πœ•π‘˜βˆ’1π‘˜βˆ’1∫ πΌπ‘š 𝜍(π‘–βˆšπ‘ +𝑒2+π‘¦π‘š)

π‘–βˆšπ‘ +𝑒2+π‘¦π‘šβˆ’π‘₯π‘š 𝑑𝑒

βˆšπ‘’2+𝑠

∞

0 ,  (3)

if then π‘š = 2π‘˜, π‘˜ = 2,3, . ..

πœ™πœŽ(𝑦, π‘₯) = 𝑐1πœ•π‘ πœ•π‘˜βˆ’2π‘˜βˆ’2πΌπ‘š ( 𝜁(π‘–βˆšπ‘ +π‘¦π‘š)

βˆšπ‘ (π‘–βˆšπ‘ +π‘¦π‘šβˆ’π‘₯π‘š), ) (4)

Where is𝜍(πœ”) = 𝑒π‘₯𝑝(πœŽπœ”2βˆ’ π‘Žπ‘β„Žπ‘–πœŒ1(πœ” βˆ’ β„Ž 2⁄ ) βˆ’ π‘π‘β„Žπ‘–πœŒ0(πœ” βˆ’ β„Ž 2⁄ )), 𝑐1 = 𝑐0𝑒π‘₯𝑝 (βˆ’πœŽπ‘₯π‘š2 + π‘Žπ‘β„Žπ‘–πœŒ1(π‘₯π‘šβˆ’β„Ž

2) + π‘π‘β„Žπ‘–πœŒ0(π‘₯π‘šβˆ’β„Ž

2)) , 𝑏 > 𝑏0(π‘π‘œπ‘ πœŒ0β„Ž 2 )

βˆ’1

For all odd , as well as even with the condition we assume π‘š β‰₯ 3π‘š2𝑛 < π‘š ,

) , ( )

,

(y x Cn,mr2(n 1)  y x

 = βˆ’ οͺ

 𝐢𝑛,π‘š = (βˆ’1)π‘š2βˆ’1(Π“(𝑛 βˆ’π‘š

2 + 1)22π‘›βˆ’1πœ‹π‘š2Π“(𝑛))βˆ’1 (5)

And for even with the condition defining the function at , : π‘š2𝑛 β‰₯ π‘šΠ€πœŽ(𝑦, π‘₯)𝑠 > 0, 𝜎 β‰₯ 0, π‘Ž β‰₯ 02𝑛 β‰₯ π‘š

Ѐ𝜎(𝑦, π‘₯) = 𝐢𝑛,π‘šβˆ« πΌπ‘š [𝑒π‘₯𝑝(πœŽπ‘€+𝑀

2)βˆ’π‘Žπ‘β„Žπ‘–πœŒ1(π‘€βˆ’β„Ž2)

] (𝑒2βˆ’ 𝑠)π‘›βˆ’π‘˜π‘‘π‘’

∞

βˆšπ‘  , β€„πœ” = 𝑖𝑒 + 𝑦1 (6)

(3)

π›·πœŽ(𝑦, π‘₯) = {𝐢𝑛,π‘šπ‘Ÿ2π‘›βˆ’π‘šπ‘™π‘› π‘Ÿ + 𝐺𝜎(𝑦, π‘₯), 2𝑛 β‰₯ π‘š, π‘š βˆ’ Ρ‡Ρ‘Ρ‚Π½ΠΎΠ΅ число, 𝐢𝑛,π‘šπ‘Ÿ2π‘›βˆ’π‘š+ 𝐺𝜎(𝑦, π‘₯), Π² ΠΎΡΡ‚Π°Π»ΡŒΠ½Ρ‹Ρ… случаях, Where is

𝐢𝑛,π‘š = (βˆ’1)π‘š2βˆ’1(Π“(𝑛 βˆ’π‘š

2 + 1)22π‘›βˆ’1πœ‹π‘š2Π“(𝑛))

βˆ’1

where regular by variable y and continuously differentiated by .𝐺𝜎(𝑦, π‘₯)𝐷 βˆͺ πœ•π· = 𝐷

Theorem 2. The function , defined by formula (3) is a polyharmonic function of order n po at π›·πœŽ(𝑦, π‘₯)𝑦s > 0.

Theorem 3. With a fixed function, satisfiesπ‘₯ ∈ π·π›·πœŽ(𝑦, π‘₯)

βˆ‘ ∫ [|π›₯π‘˜π›·πœŽ(𝑦, π‘₯)| βˆ’ |πœ•π›₯π‘˜π›·πœŽ(𝑦, π‘₯)

πœ•π‘› |]

πœ•π·\𝑆 π‘›βˆ’1

π‘˜=0

𝑑𝑠𝑦 ≀ 𝐢(π‘₯)πœ€(𝜎),

where the constant depends on 𝐢(π‘₯)x and the -external normal k when .π‘›Μ„πœ•π·πœ€(𝜎) β†’ 0𝜎 β†’ ∞ Consequence 3. The function , defined by formula (3) is a Carlemann function for the point and part of .π›·πœŽ(𝑦, π‘₯)π‘₯ ∈ π·πœ•π·\𝑆

Theorem 4. Let the solution of problems and , having continuous partial derivatives of order up to the end points of the boundary. If the growth condition is met for anyone 𝑒(π‘₯)(1) βˆ’ (2)2𝑛 βˆ’ 1πœ•π·π‘¦ ∈ 𝐷

βˆ‘|π›₯π‘˜π‘’(𝑦)|

π‘›βˆ’1

π‘˜=0

+ |π‘”π‘Ÿπ‘Žπ‘‘π›₯π‘›βˆ’π‘˜βˆ’1𝑒(𝑦)| ≀ 𝑐0𝑒π‘₯𝑝(𝑒π‘₯𝑝(𝜌1|𝑦′|)) and for any fulfilled the condition of growth𝑦 ∈ πœ•π·

βˆ‘ |π›₯π‘˜π‘’(𝑦)| + |πœ•

πœ•π‘›π›₯π‘›βˆ’π‘˜βˆ’1𝑒(𝑦)| ≀ 𝑐0𝑒π‘₯𝑝 (π‘Ž π‘π‘œπ‘  𝜌2(𝑦1βˆ’β„Ž

2) 𝑒π‘₯𝑝(𝜌2|𝑦′|))

π‘›βˆ’1π‘˜=0 Where is 𝜌1 < 𝜌2 <

𝜌3 < 𝜌

Then for anyone the integral representation is true.π‘₯ ∈ 𝐷 𝑒(π‘₯) = βˆ‘ ∫ [π›₯π‘˜π›·πœŽ(𝑦, π‘₯)πœ•π›₯π‘›βˆ’π‘˜βˆ’1𝑒(𝑦)

πœ•π‘› βˆ’ π›₯π‘›βˆ’π‘˜βˆ’1𝑒(𝑦)πœ•π›₯π‘˜π›·πœŽ(𝑦, π‘₯)

πœ•π‘› ]

πœ•π· π‘›βˆ’1

π‘˜=0

𝑑𝑠. π‘₯ ∈ 𝐷

Theorem 5. Let the solution of the problem , having continuous partial derivatives of order up to the end points of the boundary . If the growth condition is met for any 𝑒(π‘₯)(1) βˆ’ (2)2𝑛 βˆ’ 1πœ•π·π‘¦ ∈ 𝐷

βˆ‘|π›₯π‘˜π‘’(𝑦)|

π‘›βˆ’1

π‘˜=0

+ |π‘”π‘Ÿπ‘Žπ‘‘π›₯π‘›βˆ’π‘˜βˆ’1𝑒(𝑦)| ≀ 𝑐0𝑒π‘₯𝑝(𝑒π‘₯𝑝(𝜌1|𝑦′|))

and if the growth condition is metο€’yοƒŽο‚ΆD

(4)

where .

Then the integral representation is true.

Theorem 6. Let the solution of the problem , having continuous partial derivatives of order up to the end points of the boundary . If the growth condition is met for any 𝑒(π‘₯)(1) βˆ’ (2)2𝑛 βˆ’ 1πœ•π·π‘¦ ∈ 𝐷

βˆ‘|π›₯π‘˜π‘’(𝑦)|

π‘›βˆ’1

π‘˜=0

+ |π‘”π‘Ÿπ‘Žπ‘‘π›₯π‘›βˆ’π‘˜βˆ’1𝑒(𝑦)| ≀ 𝑐0𝑒π‘₯𝑝(𝑒π‘₯𝑝(𝜌1|𝑦′|))

And if the growth condition is met

where .

then the integral representation is fair

Consequence. Let the solution of the problem , having continuous partial derivatives of order up to the end points of the boundary . If the growth condition is met for any 𝑒(π‘₯)(1) βˆ’ (2)2𝑛 βˆ’ 1πœ•π·π‘¦ ∈ 𝐷

βˆ‘|π›₯π‘˜π‘’(𝑦)|

π‘›βˆ’1

π‘˜=0

+ |π‘”π‘Ÿπ‘Žπ‘‘π›₯π‘›βˆ’π‘˜βˆ’1𝑒(𝑦)| ≀ 𝑐0𝑒π‘₯𝑝(𝑒π‘₯𝑝(𝜌1|𝑦′|)) If the growth condition is met

βˆ‘π‘›βˆ’1π‘˜=0|π›₯π‘˜π‘’(𝑦)|+ |πœ•π›₯π‘›βˆ’π‘˜βˆ’1𝑒(𝑦)

πœ•π‘¦ | ≀ с0 where . Π’ΠΎΠ³Π΄Π° справСдливо in (x)=0

Consequence. Let the solution of the problem , having continuous partial derivatives of order up to the end points of the boundary . If the growth condition is met for any𝑒(π‘₯)(1) βˆ’ (2)2𝑛 βˆ’ 1πœ•π·π‘¦ ∈ 𝐷

βˆ‘|π›₯π‘˜π‘’(𝑦)|

π‘›βˆ’1

π‘˜=0

+ |π‘”π‘Ÿπ‘Žπ‘‘π›₯π‘›βˆ’π‘˜βˆ’1𝑒(𝑦)| ≀ 𝑐0𝑒π‘₯𝑝(𝑒π‘₯𝑝(𝜌1|𝑦′|)) If the growth condition is met

( )

(

βˆ’ ο‚’

)

ο€Όο‚₯

ο‚Ά οƒ—



ο‚Ά

ο‚₯

ο‚’ ο€Ό

βˆ’

οƒ—



οƒ₯

οƒ₯ 

βˆ’

=

βˆ’

= ο‚Ά

ds n y

u

ds y u

n

k k n

k Π’

k

2 1

0 1

0

2

exp

, exp









2 ο€Ό 1ο€Ό

D xοƒŽ

ο€’

( ) ( ) ( ) ( ) ( )

, . ,

1

0

1 1

n ds x y y

n u y x u

y x

u

n

k

k k

n k

n k

D

οƒ₯ 

=βˆ’ βˆ’ βˆ’ βˆ’ βˆ’

ο‚Ά



οƒͺ οƒΉ





ο‚Ά





 ο‚Ά

ο‚Ά βˆ’



 ο‚Ά



=  

D yοƒŽο‚Ά

ο€’

 

( )

, ,

exp

, ,

1 , 0 ,

0

2 1

0

D y ds

n y u

D y n

k u

n

k k k

ο‚Ά

οƒŽ

ο€’

ο‚₯

ο‚’ ο€Ό

βˆ’

ο‚Ά οƒ—



ο‚Ά

ο‚Ά

οƒŽ

ο€’

βˆ’

οƒŽ

ο€’

=



οƒ₯

βˆ’

=

 2 ο€Ό 1

D xοƒŽ

ο€’

( ) ( ) ( )

. ,

1

0

1 ds

n y x u

y x

u

n

k D

k k

οƒ₯ 

βˆ’ n

= ο‚Ά

βˆ’

βˆ’

ο‚Ά



 ο‚Ά



= 

D yοƒŽο‚Ά

ο€’





2 ο€Ό 1ο€Ό D

xοƒŽ

ο€’

D yοƒŽο‚Ά

ο€’

 

(5)

Then u(x)=0 is true

These results are in a sense a response to the problems posed by E.M. Landis for polyharmonic functions of order . 𝑛

Theorem 7. Let be a solution to the problem having continuous partial derivatives of order up to the endpoints of the boundary . If the growth condition is met for anyone 𝑒(π‘₯)(1) βˆ’ (2)2𝑛 βˆ’ 1πœ•π·π‘¦ ∈ 𝐷

βˆ‘|π›₯π‘˜π‘’(𝑦)|

π‘›βˆ’1

π‘˜=0

+ |π‘”π‘Ÿπ‘Žπ‘‘π›₯π‘›βˆ’π‘˜βˆ’1𝑒(𝑦) ≀ 𝑐0𝑒π‘₯𝑝(𝑒π‘₯𝑝(𝜌1|𝑦′|))|

and

βˆ€π‘¦ ∈ πœ•π·\𝑆 |πœ•π›₯π‘›βˆ’1βˆ’π‘˜π‘’(𝑦)

πœ•π‘› | + |π›₯π‘›βˆ’1βˆ’π‘˜π‘’(𝑦)| ≀ 1 , then fair

|𝑒(π‘₯) βˆ’ π‘’πœŽ(π‘₯)| ≀ 𝑀𝐢(𝜎) 𝑒π‘₯𝑝(βˆ’πœŽπ‘₯π‘š) , 𝜎 β‰₯ 𝜎0 > 0, π‘₯ ∈ 𝐷.

Where is π‘’πœŽ(π‘₯) = βˆ‘ ∫ [πΊπ‘›βˆ’π‘˜βˆ’1(𝑦)π›₯π‘˜π›·πœŽ(𝑦, π‘₯) βˆ’ πΉπ‘›βˆ’π‘˜βˆ’1(𝑦)πœ•π›₯π‘˜π›·πœŽ(𝑦,π‘₯)

πœ•π‘› ]

𝑆

π‘›βˆ’1π‘˜=0 𝑑𝑠

𝐢(𝜎)- A polygamy with well-defined coefficients.

REFERENCES

1. Sobolev S.L. Introduction to the theory of cubatureformulas. M. Nauka 1974. ct 514-673.

2. Lavrentyev M.M.. About some incorrect problems of mathematical physics. Novosibirsk, 1962, p. 243.

3. Sh. Yarmukhamedov. Cauchy's problem for a polyharmonic equation. Reports of the Russian Academy of Sciences 2003 Volume 388 Of Articles 162-165.

D xοƒŽ

ο€’

Referensi

Dokumen terkait

The work of the Samiran Reservoir according to the criteria for the value of the function and condition of the building using the AHP method, in Pamekasan Regency based on the

The Role of Civil Servant Investigators PPNS in the Implementation of the Director General of Sea Transportation Regulations No: KP.222/DJPL/2019 concerning SOPs for handling shipping

RESULTS Structure-activity relationship of pyrethroids to larvae of susceptible strains a IND-S strain Deltamethrin was by far the most toxic pyrethroid with LC50 value of 0.025