• Tidak ada hasil yang ditemukan

View of SEMI-SYMMETRIC NON-METRIC CONNECTION IN AN LSP - SASAKIAN MANIFOLDS

N/A
N/A
Protected

Academic year: 2023

Membagikan "View of SEMI-SYMMETRIC NON-METRIC CONNECTION IN AN LSP - SASAKIAN MANIFOLDS"

Copied!
6
0
0

Teks penuh

(1)

1

SEMI-SYMMETRIC NON-METRIC CONNECTION IN AN LSP - SASAKIAN MANIFOLDS B. Prasad and Ramashrai Singh Yadav

Dept of Mathematic, G.S. Rai Girls P.G. College Karnai Ballia (U.P.)

Abstract - In a recent paper De and Sengupta (2000) have studied a semi- symmetric non- metric connection on a Riemannian manifold which generalizes the notion of semi- symmetric non- metric connection introduced by Agashe and Chafle in 1992.

In this paper we have studied the properties of curvature tensors of a semi- symmetric non- metric connection in LSP- Sasakian manifold. An expression for the curvature tensor, the Ricci tensor of the connection have been obtain. Further it is also shown that different curvature tensors such as conformal curvature tensor, Projective curvature tensor.

1 INTRODUCTION

Let us consider an n-dimensional differentiable manifold mn endowed with a tensor field

of the type (1, 1), a vector field

, a 1- form and a lorentzian metric g satisfying

2

X X ( ) , ( ) X 1

         ( , ) ( )

g X    X

... (1.1)

( , ) ( , ) ( ) ( )

g   X Yg X Y   XY

... (1.2)

An LP- contact manifold is called a Lorentzian Para- Sasakian manifold if (Matsumoto and Mihai, 1988)

X

  ( ) X

 

( 

X

 )( ) Yg X Y ( , )    ( ) Y X  2 ( ) ( )  XY

... (1.3)

An LP- -Sasakian Manifold

M

n is said to be Lorentzian Para- Sasakian (LSP-Sasakian Manifold) if it satisfy [Matsumoto and Mihai, 1988]

' ( , ) F X Y  { ( , ) g X Y   ( ) ( )}, XY  

2

1

... (1.4) The confromal curvature tensor 'V' of the type (0,4), (n>3) is defined as

' ( , , , ) ' ( , , , ) 1 { ( , ) ( , ) ( 2)

V X Y Z W R X Y Z W Ric Y Z g X W

  n

( , ) ( , ) ( , ) ( , ) ( , ) ( , )}

Ric X Z g Y W Ric X W g Y Z Ric Y W g X Z

  

{ ( , ) ( , ) ( , ) ( , )}

( 1)( 2)

r g Y Z g X W g X Z g Y W

n n

 

 

... (1.5)

The projective curvature tensor 'P' of the type (0,4) (m>2) is defined by

' ( , , , P X Y Z W )  ' ( , , , R X Y Z W )

1 { ( , ) ( , ) ( , ) ( , ) 1 Ric Y Z g X W Ric X Z g Y W

n

... (1.6)

A Semi -Symmetric non metric connection

in an almost LP-contact metric manifold

M

ncan be defined as in [De and Sengupta, 2000].

It is given by

( ) ( , ) ( , ) ,

X

Y

X

YY X g X Yg X Y A

     

... (1.7)

where

and

a

are 1-form associated with the vector field

and A an

M

n given by

( , ) ( )

g X    X

... (1.8)

and

g(X,A) = a(X).

…... (1.9)

(2)

2

Remark: If in particular, we take

a = 

i.e.

A   ,

then (1.7) reduces in following form.

_

( ) ,

X

Y

X

YY X

   

... (1.10)

Where

g X ( , )    ( ). X

Thus we see that the connection defined by De and Sengupta in 2000 is the generalization of a semi-symmetric non- metric connection which is defined by Agashe and Chafle in 1992.

2. CURVATURE TENSOR OF

M

nWITH RESPECT TO SEMI SYMMETRIC NON- METRIC CONNECTION IN AN LSP- SASAKIAN MANIFOLD

The curvature tensor R of

M

n with respect to the semi- symmetric non- metric connection is giving by [De and Sengupta, 2000]

( , ) ( , ) (

Y

)( ) ( ) ( ) (

x

)( ) R X Y ZR X Y Z    Z X    Y Z X    Z Y

( ) ( ) X Z Y g Y Z ( , )[{

X

A ( ) A X g X A ( , )

   

    

( , ) {

X

( ) ( , ) ( , , ) }]

g X A A    X g X   g XA

     

( , )[{

Y

( ) ( , ) ( , ) } g X Z AA Y g Y Ag Y A A

    

{

Y

   ( ) Y g Y ( , )   g Y ( , ) }].  A

    

... (2.1)

Using (1.1)(1.3) and (1.4) in (2.1) we get

( , ) ( ,. ) ( , ) ( , ) ( , ) ( , ) R X Y ZR X Y Zg Y ZXg X ZYg Y ZX A

( , ) ( , ).

g X ZY A

--- (2.2)

Where

 ( , ) X A  

X

A   ( ) A Xg X A ( , )   g X A A ( , ) .

Contracting (2.2), w. r. to X, we get.

( , ) ( , ) ( , ) ( , ){ ( ) ( )

Ric Y ZRic Y Zg Y Z   g Y Z divA n   Aa  ( )} ( ( , ), ).

a A gY A Z

 

... (2.3)

From (2,3) , we get

{ ( ) ( ) ( )} ( , ).

RYRY   YY divA n   Aa   a A   Y A

... (2.4) Againg contracting (2.4), we get

( 1){ ( ) ( ) ( )}.

r    r n divA n   Aa   a A

... (2.5)

Remark (1) : If in particular, we take

a  

i.e. A

 

, then from (2.2),(2.3) and (2.5), we get

( , ) ( , ) ( , ) ( , ) , R X Y ZR X Y Zg X Z Yg Y Z X

( , ) ( , ) ( 1) ( , ), Ric Y ZRic Y Z   n g Y Z

( 1).

r   r n n

This is the same expression for the curvature tensor

R

, Ricci tensor

Ric

and the scalar curvature

r

as were obtained by Jaiswal, Ojha and Prasad in their paper in 2001.

From (2.2), we get

' ( , , , R X Y Z W )  ' ( , , , R X Y Z W )  g Y Z g ( , , ) (  X W , ) ( , ) ( , ) ( , ) ( ( , ), ) g X Z g Y Wg Y Z gX A W

 

( , ) ( ( , ), ).

g X Z gY A W

... (2.6)

(3)

3 Where

' ( , , , R X Y Z W )  g R X Y Z W ( ( , ) , )

' ( , , , R X Y Z W )  g R X Y Z W ( ( , ) , )

Theorem (2.1): If the LSP-Sasakian manifold

M

nadmits a semi-symmetric non-metric connection, we have.

' ( , , , R X Y Z W ) ' ( , ,  R Y Z X W , ) ' ( ,  R Z X Y W , , )  0

... (2.7)

( , , , ) ( , , , ) 0

R X Y Z WR Y X Z W

... (2.8)

' ( , , , R X Y Z W ) ' ( , ,  R X Y W Z , )  g X Z g Y W ( , )[ (  , )  g ( ( , ),  Y A W )]

( , )[ ( , ) ( ( , ), )]

g X W g Y ZgY A Z

 

( , )[ ( , ) ( ( , ), )]

g Y Z gX W gX A W

 

( , )[ ( , ) ( ( , ), )].

g Y W gX Z gX A Z

 

... (2.9) In particularly,

' ( , , , R X Y Z W )  R X Y W Z ( , , , )  0,

iff

{ ( g Y W  , )  g ( ( , ) )} 0  Y A W

' ( , , , R X Y Z W ) ' ( ,  R Z W X Y , , )  g X Z g ( , )[ ( ( , , ),  W A Y ( ( , , ), )] ( , )[ ( , )

gY A W g Y Z gX W

 

( ( , , ), )] ( , )[ ( , ) gX A W g X W gZ Y

 

( ( , , ), )]

gZ A Y

... (2.10)

Proof: Taking cyclic sum of (2.6) and using Bianchi's first identity we get (2.7). Similarly other results can also be proved.

Remark 2: If we take

a  

i.e.

A   ,

then from (2, 9)

R X Y Z W ( , , , )

+

' ( , , R X Y W Z , )  0

and (2.10)

' ( , , R X Y W Z , ) ' ( ,  R Z W X Y , , )  0.

This is the same expression as was proved by Jaiswal, Ojha and Prasad in their paper in 2001.

3. SYMMETRIC CONDITION OF THE RICCI TENSOR

:

Theorem (3.1): If the LSP-Sasakian manifold (

M

n) admits a semi symmetric non-metric connection

, then a necessary and sufficient condition for the Ricci tensor of

to be

symmetry is that.

( ( , ), ) ( ( , ), ).

gY A ZgZ A Y

Proof: By virtue of (2.3), we get

( , ) ( , ) ( , ) ( , ){ ( ) ( )

Ric Z YRiic Z YgZ Yg Z Y divA n   Aa  ( )} ( ( , ), ).

a A gZ A Y

 

... (3.1)

From (2.3) and (3.1), we get

( , ) ( , ) ( ( , ), ) ( ( , ), ).

Ric Y ZRic Z YgZ A YgY A Z

... (3.2) If

Ric X Y ( , )

is symmetric the left hand side of (3.2) vanishes and we get.

( ( , , ), ) ( ( , ), ).

gY A ZgZ A Y

... (3.3)

(4)

4 Hence proves the theorem.

4. SKEW-SYMMETRIC CONDITION OF THE RICCI TENSOR

:

Theorem (4.1): If the LSP- Sasakian manifod

( M

n

)

admits a semi-symmetric non-metric connection

, then a necessary and sufficient condition for the Ricci tensors of

to be

skew-symmetric is that the Ricci tensor of the Riemannian connection

is given by.

( , ) ( , ) ( , ){ ( ) ( ) ( )}

Ric Y Z   g Y Z   g Y Z divA n   Aa   a A 1 { ( ( , , ) ) ( ( , ), )}

2 gY A Z gZ A Y

 

Proof: From (2.3) and (3.1), we get

( , ) ( , ) 2 ( , ) 2 ( ) 2 ( , ){

Ric Y ZRic Z YRic Y Zg YZ   g Y Z divA ( ) ( ) ( )} ( ( , ),

nA aa A gY A Z

   

( ( , ), ).

gZ A Y

... (4.1)

If

Ric X Y ( , )

is skew-symmetric the left side of (4.1) vanishes and we get

( , ) ( , ) ( , ){ ( ) ( ) ( )}

Ric Y Z   g Y Z   g Y Z divA n   Aa   a A 1 { ( ( , ), ) ( ( , ), )}

2 gY A Z gZ A Y

 

... (4.2)

On the other hand, if Ric (Y, Z) is given by (4.2) then from (4.1), we get

( , ) ( , ) 0 Ric Y ZRic Z Y

Hence proves the theorem.

Also, if Ric (Y,Z)=0 , then from (4.2), we get

1 { ( ( , ), ) ( ( , ), )} ( , ) ( , ) 2

{ ( ) ( ) ( )}

g Y Z Z g Z Z Y g Y Z g Y Z

divA n A a a A

  

 

 

   

Which is not possible? Hence we can write.

Corollary: If the LSP- Sasakian manifold

( M

n

)

admits a semi-symmetric non-metric connection whose Ricci-tensor is skew- symmetric, then the manifold cannot be Ricci flat.

5. CONFORMAL CURVATURE TENSOR OF SEMI SYMMETRIC NON-METRIC CONNECTION IN AN LSP- SASAKIAN MANIFOLD

Theorem (5.1): In an LSP-Sasakian manifold the conformal curvature tensor of the semi- symmetric non- metric connection and the Riemannian connection are not equal i.e.

' ( , , , V X Y Z W )  ' ( , , , V X Y Z W ).

Proof: Analogous to the definition (1.5), we define conformal curvature tensor of

M

n with respect to the semi-symmetric non-metric connection in an LSP -Sasakian manifold by

' ( , , , ) ' ( , , , ) 1 { ( , ) ( , ) V X Y Z W R X Y Z W 2 Ric Y Z g X W

  n

( , ) ( , ) ( , ) ( , ) Ric X Z g Y W g X Z Ric Y W

 

( , ) ( , ) { ( , ) ( , )

( 1)( 2)

g Y Z Ric X W r g Y Z g X W

n n

 

 

( , ) ( , } g X Z g Y W

... (5.1)

(5)

5

In consequences of (1.5), (2.3),(2.5), (2.6) and (5.1), we get

1

' ( , , , ) ' ( , , , ) [ ( , ){ ( , ) 2

V X Y Z W V X Y Z W n g X Z g Y W

n

 

 ( ( , ), )} ( , ){ ( , ) gY A W g Y Z g Y W

 

( ( , ), )}] 1 [ ( , ) ( , ) g X A W 2 g Y W g X Z

n

 

( ( , ), )} ( , ){ ( , ) gX A Z g X W g Y Z

 

( ( , ), )}] 1 [ ( , ) ( , ) g Y A Z 2 g Y W g X Z

n

 

, ) ( , )][ ( ) ( ) ( )].

gY Z g X W divA nA aa A

   

... (5.2) Hence prove the theorem.

Theorem (5.2): The conformal curvature tensor

' ( , , , V X Y Z W )

of the semi-symmetric non-metric connection in an LSP -Sasakian manifold satisfies the following algebraic properties.

' ( , , , V X Y Z W ) ' ( ,  V Y X Z W , , )  0

... (5.3)

( , ) ( , ) ( , ) 1 [{ ( ( , ), ) V X Y Z V Y Z X V Z X Y 2 g Y A Z

n

  

g ( ( , ) )}  Z A Y X  { ( ( , ), gZ A X )

g ( ( , ) )}  X A Z Y  { ( ( , ), ) gX A Y

g ( ( , ),  Y A X )} ]. Z

... (5.4) In particular

( , ) ( , ) ( , ) 0

V X Y Z V Y Z X   V Z X Y

If

{ ( ( , ), gY A Zg ( ( , ), )} 0  Z A Y

Remark: If

a  

i.e

A  

, then from (5.2), we get

' ( , , , V X Y Z W )  ' ( , , , V X Y Z W ).

Hence, in an LSP-Sasakian manifold the conformal curvature tensors of semi- symmetric non-metric connection and Riemannian connection are equal. This theorem was obtained by Jaiswal, Ojha and Prasad in their paper in 2001.

6. PROJECTIVE CURVATURE TENSOR OF SEMI SYMMETRIC NON-METRIC CONNECTION IN AN LSP -SASAKIAN MANIFOLD

Theorem (6.1): In an LSP-Sasakian manifold the projective curvature tensor of the semi- symetric non-metric connection and the Riemannian connection are not equal.

i.e.

P X Y Z ( , , )  P X Y Z ( , ) .

Proof: Analogous to the definition (1.6) we define projective curvature tensors of

M

nwith respect to the semi-symmetric non-metric connection in an LSP- Sasakian manifold by

( , ) ( , , ) 1 [ ( , ) ( , ) ].

P X Y Z R X Y Z 1 Ric Y Z X Ric X Z Y

  n

... (6.1) By using (2.2), (2.3),(1.6)and (6.1), we get

P X Y Z ( , )  P X Y Z ( , )  [ ( , ){ g Y ZX   ( , )} X Ag X Z ( , ){  Y

(6)

6

) , )}] 1 [{ ( , ) ( ( , ), ) Y A 1 g Y Z g Y A Z

n  

  

( , )( ( ) ( ) ( )} {( , ) g Y Z divA nA aa A XX Z

    

( ( , ) ) ( , )( ( ) ( ) gX A Z g X Z divA nA a

   

( ) }].

a A Y

... (6.2)

Hence prove the theorem.

Theorem (6.2): The projective curvature tensor

P X Y Z ( , )

of the semi symmetric non- metric connection in an LSP-Sasakian manifold satisfies the following algebraic properties

( , ) ( , ) 0 P X Y ZP Y X Z

( , , ) ( , ) ( , ) 1 [{ ( ( , ), ) P X Y Z P Y Z X P Z X Y 1 g Y A Z

n

  

( ( , ), )} { ( ( , ), ) gZ A Y X gZ A X

 

( ( , ) )} { ( ( , ), ) gX A Z Y gX A Y

 

( ( , ), )} ].

gY A X Z

... (6.3)

REFERENCES

1. Chaki, M.C, and Trafdar, M. (1988): On conformally flat pseudo Ricci-Symmetric manifold, period Math.

Hung. Vol 19, PP.209-215.

2. Chaki, M.C, (1988) on pseudo Ricci, symmetric manifolds, Bulg. J. Phys, 15, 526-530.

3. De, U.C. and Sengupta, J. (2000): On a type of semi-symmetric non- metric connection, Bull cal. Math.

Soc. 92(5), 375-384.

4. Adati, T. and Matsumoto, K. (1977) : On conformally, recurrent and conformally symmetric P- sasakiam manifolds, T.R.U, Maths. Vol. 13, 25-32

5. Nirmala, S Agashe and Mangla, R. Chafle (1992); A semi-symmetric non- metric connection on a Riemannian manifold. Indian J.Pure App, Math, 23(6), 399-409.

.

Referensi

Dokumen terkait

The result of the extraction of such features are used in the classification process using the K-Nearest Neighbor (K-NN).. The system produced output in the form of happy,