• Tidak ada hasil yang ditemukan

مطالعه جدایه بومی نماتود بیمارگر حشرات Heterorabditis bacteriophora و باکتری همزیست آن Photorhabdus luminescens subsp. laumondii

N/A
N/A
Protected

Academic year: 2023

Membagikan "مطالعه جدایه بومی نماتود بیمارگر حشرات Heterorabditis bacteriophora و باکتری همزیست آن Photorhabdus luminescens subsp. laumondii"

Copied!
11
0
0

Teks penuh

(1)

:

*

! " #

$%&' : 1700817 -

E-mail: jkb@um.ac.ir

0911

Heterorabditis bacteriophora

! "#

Photorhabdus luminescens subsp . laumondii

*1

% & ' ( )* +

'- .# / .0 2

3

1 2 3 !

)

# $ % :

15 / 10 / 89 - - .% $ % :

2 / 9 / 90 (

'2 3

0 % 1 2!

3 4

5 2 6 7

3 8 9 : .

7

< = 0

>?%

@ 0 % 1 A

Steinernematidae Heterorhabditidae

B #?5

<

10 0 7

# 7

50 @

.

% B BC %

9 2 6 A

DE% 3 8 7

5< 3 D B <

0 FG H FG H I D 0 % 1 A 7

3 J KL

. M N 0 % 1 C BO

7 BDO 3 4 < 1

P1C N 7 Q C #

Heterorhabditis

C

R @

<

. S B <

J .@ B BC % 7

T U 3

# < V

= P B <

H. bacteriphora

. 4 7

ITS rDNA

T B W % % 1 A

7 U %

<

.

<

X B

MP

0 A

NJ

BU Y P1C

7

# 0 B < B I

H. bacteriphora

# < V .

C

% 1 A 7

J .@ Z Y

7 3

7 [10 7 U U 3 6\M A 4

7

16S rDNA

T B

<

.

= ]

B A B <

Photorhabdus luminescens ssp. laumondii

. U A 7 A

C ^ C X Y<

% 1 A Y10

=8 #5

=

# .

34 5

% 1 : 7

< 1

3 4

Y10

ITS

#5

16S

7

* ' +

" ,

Heterorhabditidae Poinar,

-. "

1976

/#"

+ 0" 12 3

. 5&2 6 '

7 "78 +

"

" 5! 9:" ; : $: < * ' $

"

+

= * 9 >! 3

? # 7"

Photorhabdus

53 @&A>

" ,

Enterobacteriaceae (Boemare,

3

2002)

.

B 3 53 ' 7" ?C

D

* < B 3=

+

9 %E

&: "7

* + >! 3 +

"78 12 -: * "

. >! 3 ' +

= *

F G# B8 9

:

H 12 I

24 ' 48 9E : J K8 7" ?C J

. :

* + ,"

D 7 5# ' +

5AK L 53

* ' + 3D 3 ! M 53 0" 12 J

5 3

* + 3 > ! D N K 9:" O LA P

(Burnell

& Stock, 2000)

.

* ' B "

+ 3D J

- " E B" E 53 0" 12 3D

5QL 53 > !

"

+ R ,

D

&/S 0 ETH" 7 -U B8 6 8 # 7"

: 5 J

* + 3 9:"

(Miller & Barbercheck,

2001)

. M 53 $D V * 5 J 3 ! :

53 5! *

"

U W D L J7 : >63 M 9X8 5QL

YE 3 "

9X8 >63 > !

(Bedding,

(2)

1990)

. 7"

$ "

5 J $>X W " 3 J7 : 3 + *

9:" 9D *" +" " LDU .

]*

" , B !"

Heterorhabditidae

" "

+ 6 '

; 3 ? # P

Heterorhabditis (Stock et

3

al., 2002)

. B ! ' 20 5 J

? # 7"

Heterorhabditis

: B 6#

" 5! "

7 53 7 " A' $

"=X" 2 9:" [

(Edgington et al., 2010; Plichta

et al., 2009; Stock et al., 2002; Saleh, 1995)

.

: 5 J

*

Heterorhabditis

+ 3

\'"

+ 53 O ^

^ _, 53 D

0 9`

: -\1 7" %>:" 9:"

K \K 0 ETH"

K" ' 2"

ITS1

=D

ITS2

"

7 $ D 5 9:" + a

(Nguyen et al., 2006;

Phan et al., 2003)

.

b" * c 8 X J7 :

+

"d +

" 53 * ' W

U D L >! 3 "d [Q R ,

= *

" " B8 9 +

*"

D 9 3

Emelianoff et al., 2008

) .(

, 3

AK L 0

" B 1 QX 5! 9:"

D 7" C 9

>

D ]

* ' + 3D J 0" 12 53 >! 3 P R ,

6 8 .> 3

"

Sicard et al., 2003

) .(

5: B ! '

5 J >! 3 +

? # 7"

Photorhabdus

:

"

* 5!

" " P + e

$ 5 J 7 0 %>

3

Tailliez et al., 2009

) .(

B ! ' 5 J

*

S. carpocapsae

+

S. feltiae

S. bicornutum S. glaseri

S. kraussei

H. bacteriphora

" 7"

f "=J B"

"

(Agazadeh

et al., 2010; Nikdel et al., 2010; Eivazian Kary et

.

al., 2009; Karimi et al., 2009; Parvizi, 2001)

. O *

5 " # : 5AK L $ " 7"

+"

+ * ' 7"

J D3

0" 12 g :" 3 B8 9 = * + >! 3 $D V *

0 _`1 9`

: K" '

3 K \K + *

9:"

.

J D3 + * ' 3 + * "d hD^ '

9 = * >! 3 + * 6 8

5 D 7 + >1D3 0 ETH"

i `> "

QK 3 - " E

5 3 G:

> ! D3 + *

]*" X 8

. 8

: 1387

" A' 50 : ' %^ @ E 7" 5

> : S je k "= 7" X _' 0 _3 l , + >

)

S je DJ 51 53 P =

( 61 O" H"

I # J + 8 .

+ * ' m2 : 3 M 53

5 0" 12 J D3

$: + * < 7" l , + *

Galleria mellonella L. (Lep.: Pyralidae)

,8

" 3 +

5 AH J %>:" + "nJ

(Bedding & Akhurst,

1975)

. 9 " 5&' 53 K8 + * <

White, 1927

) (

7" ?C 91J -Q>

;7< B 7 0 9 nJ + * <

9 %E

"7 I # 3 i8 " 5!

+ 8 +

91*

J + " 6. V` 5#

(Kaya &

Stock, 1997)

.

!"

: :T!

D

' P

X * " X" 7"

9

* < " X" " - +

9 %E

; - "7

A 53 5# ' 3 D

* + 9`

: 9`

Z : o

W: ' "

Stock & Kaya 1996

)

(

%>:"

J . 7" "

DJ +

;7< + * )

# 1 ( 7" %>:" 3

D p \: \ +

K"

D

BH2

g q ) 5K K 53 =6Z

: ' D ] (

; Z "

.

# $% &

ITS

' "(

) * DNA ITS #

" 3 + r" `>:"

N

DNA

f 7"

Subbotin et

al.

(2003)

%>:"

. Z " 96#

[ !" ;

PCR

J7 s8

*

TW81

+ 9X J " S %>:"

AB28

.

"=#"

+ [ !"

-

PCR

<l

5 / 2

PCR

X 3

<l

1

&!

D

=

; )

MgCl2

<l

( 5 /

dNTPs

0

<l DNA1

.K"

<l

1 9X J7 s8

<l

1 91J 3 J7 s8

<l

3 / 0

] = 8

Taq

<l

7 / 17 3 - >:" LQ i8 .

3 [ !"

%>:"

&\ : ' .>: 7"

Biometra

0 ^

nC 9X

Subbotin et al., 2003

) .

(

% +*

% , ( -+

+*

PCR

_U K" ' 96#

9! 53 3

MWG

: " B K8 .

uK , : " 7" -/S

5H 3 3 +7 :

7" %>:" 3 uK , 9D!

+7 :

Bioneer

; Z "

. K" '

5H 3 7" %>:" 3 9X 7" ?C

;

"=X"

BioEdit

7.0.5.3 Hall, 1999

)

( J [ "

.

=DK 8 +" 3

7" \D> N &DX 25

53 v 3 9/w K" ' 15

5 J

' h&>`

)

BN P 3 #

(NCBI

%>:"

(3)

P ! 3 @DQU' $ " 8 9: 3 K" ' " * 53

;

"=X"

2.0.10 Clustal X Thompson et al., 1994

)

(

* h .

Oscheius tipulae

5 J J B" E 53

# , M

5>X J

Edgington et al., 2010

) (.

]:

9,

*

MP

+

(Eck & Dayhoff, 1966) 1 2NJ

Saitou & Nei, 1987

) (

P ! 3

;

"=X"

MEGA4

(Tamura et al., 2007)

9X nC ; Z "

.

NJ

9,

Dj> G a 7" %>:" 3 & \' 5&^ X

Kimura

1. Maximum Parsimony 2. Neighbor-joining

J 5/: U

Kimura, 1980

) .(

p >:" 0 3 B 78

5, 0 /w B"=D $D `' 3 7 " 96#

3 Z + *

100000 ; Z " " \'

Felsenstein, 1985

) .(

(. ' "(

!/ 0

+*

>! 3 r" `>:"

+

Q> f 53

D

" ] 9X J ; Z

Akhurst, 1980

) .(

>:" 7"

w ! -

D KD

" 3 9 + a

%E UL:

B 3 '

%>:"

q: : D

B

>! 3 r" `>:" -2" 7" -^ 2 +

+ U D

91! W

MacConkey

[`C J +

25 5#

g D &:

" " S ' 3 \ "

Akhurst, 1980

) .(

#

1 -

7" "

+ *

5 J + > K8

+ > \D

H. bacteriophora

)

> \D

G 2 3 (

9%^

Hermaphroditic) (

"7 9 %E + * <

%>:" " X" " A' 14

15 14

B 3 H

±18 725

±19 560

±14 532

) 810 - 702 ( )

568 - 540 ( )

541 - 497 (

B 3 [`3 $ ' x E 1

/

±1 5 / 37 6

/

±0 26 2

/

±1 2 / 27

) 5 / 39 - 34 ( )

27 - 22 ( )

29 - 24 (

A 6

/

±0 3 / 23 4

/

±0 3 / 23 7

/

±0 1 / 22

) 2 / 24 - 8 / 19 ( )

1 / 24 - 9 / 23 ( )

7 / 23 - 4 / 21 (

2 B /

±0 2 / 5 3

/

±0 2 / 5 1

/

±0 7 / 5

) 4 / 5 - 7 / 4 ( )

4 / 6 - 97 / 4 ( )

9 / 5 - 23 / 5 (

6 C /

±0 67 / 10 5

/

±0 61 / 5 2

/

±0 21 / 10

) 2 / 11 - 8 / 9 ( )

2 / 6 - 9 / 4 ( )

4 / 10 - 6 / 9 (

c' 1

/

±0 1 / 4 3

/

±0 29 / 6 1

/

±0 96 / 2

) 2 / 4 - 7 / 3 ( )

59 / 6 - 8 / 5 ( )

2 / 3 - 85 / 2 (

5 V /

±0 5 / 77

) 79 - 76

_ (

_

V' 8

/

±0 85

) 88 - 84

_ (

_

AX n%

- U ' 5

/

±2 5 / 117 3

/

±1 3 / 106 5

/

±1 5 / 92

) 121 - 111 ( )

109 - 92 ( )

6 / 94 - 86 (

; H

8 /

±1 68 5

/

±1 5 / 96 3

/

±2 3 / 54

) 73 - 65 ( )

98 - 91 ( )

62 - 2 / 51 (

AX n% 9DAS -

+ H 53 U ' 1

/

±2 93 1

/

±1 4 / 91 2

/

±1 2 / 95

) 97 - 84 ( )

92 - 89 ( )

3 / 97 - 4 / 91 (

AX n% 9DAS -

; H 53 U ' 2

/

±1 2 / 110 3

/

±2 3 / 152

) _

113 - 104 ( )

156 - 7 / 148 (

\Dq:" H 8

/

±0 2 / 35

_

) _

36 - 29 (

; K ! 3 J H 6

/

±0 8 / 15

_

) _

17 - 14 (

5mD3 .>1J 3 H

* 2

/

±1 59

(4)

$*

( , 1 2"3 4 (. 5

!/ 0

+ >! 3 5DK " 7" ?C " # + *

WDU +

MacConkey

>! 3 +

&! P' J

.

"

: 3 W

+ 25 g D &: 5#

3 .

&: -\

l U' *

6 8

Dye

in#

) y , = S (

91! P ! 53 24

J 5AK L 5>E :

Akhurst & Boemare, 1988

) .(

+N K X

&:

* + >! 3 + 7" %>:" 3

D p \: \

Zeiss Axiostar

) J =3 1000

(

: 3 J .

`1' D >! 3 7 X u +

U P ! 3

D W

; Z " 91!

9X nC . [ !" : 3

DNAse

3 5 " . DK ' B" ' =D ? D K D3 g :"

Akhurst & Boemare

f

1988

)

Boemare et al.

(

1997

) (

9X nC 0 ^

.

"

0 ETH" 3 5&^ 2 + *

J 5 Q #

.

>:8 $DDA' ' " 2 5

+ >! 3 ) ] =!

( WDU + >! 3 91! 3

1LB

9S 3 ; J i8 ; 2

2 /

± 0 g D &: 5#

7" "

+ DJ

5 B 7 0 53 * 48

W " 9E :

34 35 36 37 38 39 40 g D &: 5#

" S

>X J .

" 7" A3 7 B 7 0 $ >! 3

+

*

: 3 9X J " S .

# $% &

S rDNA 16

' "(

) * (. + - DNA 16S #

rDNA

0 _`1 D ' 7" ?C + >! 3 &! P'

WDU D D D3 P N K X

)

LB

10

ml

( 91!

0 53 "

24 ' 3 \ " 9E :

" \D

rpm

) 140 ( + 25 g D &: 5#

9X J " S .

r" `>:"

f 53 5# ' 3

DNA Fischer-le Sauxe et

)

al.

(

1999

9X J ; Z "

.

&U B =X" 3 N

DNA

200

µl

LQ i8 X 3

%>:" 96# 8

TE

+ + A3

20 - g D &: 5#

+ " 6.

(Fischer-le Sauxe et al., 1999)

. DZ 7 [ !"

+"

&C ]Z2 7"

100

µl

9, : 0 /D! ' P ! 53

Bioneer

9!

; Z "

. - [ !" v &`

10

µl

PCR

X 3 10

×

8

µl

v &`

dNTPs

5 / 2 ] = 8 2"

&C

Taq

7"

1

µl

J7 s8 * 7"

2

µl

3 .K"

DNA

.

* J7 s8 + 7" 3 0 /E %>:"

16S-F 16S-R

1. Luria-Bertani

" 3 5!

+ 5D2 Dy\' + >! 3

16S

* + * 9 = '

*

Fischer-le Sauxe et al.

W: '

1999

) ( X A

J .

% > ! 5 3 TE

+ >! 3

DNA

Xenorhabdus bovienii

9/y > ! B" E 53

[ !"

%>:"

PCR

. [ !" ; Z " W "

PCR

5AK L 53 1

Fischer-le Sauxe et al.

1999

) ( 3 .

% +* 4 $*

% , -+

(.

PCR

_U K" ' 96#

3 9! 53

MWG

: " B K8 .

K" ' 7" ?C 5H 3

%>:" 3 9X

7"

;

"=X"

Bioedit Hall, 1999

)

( J [ "

.

5 " # $D3 PD N &DX 5L3" 3 7 "

" "

Photorhabdus

5 " # . 3

5 J *

? # $ " + *

K" ' g :" 3 7"

16S

25 5: 53 v 3 9/w K" '

h&>` 5 J

Photorhabdus spp.

)

BN P 3 #

(NCBI

5! %>:"

0 /E 7" 3

AY278641

)

NR_037074 P. luminescens ssp. luminescens

(

AY280574

)

AY280573 P. asymbiotica ssp.

(

australis NR_036851

)

P. asymbiotica ssp.

(

asymbiotica Z76753

)

P. asymbiontica

(

P. luminescens ssp. laumondii AY278650

)

AY278648 AY278649

AY278647 EU250473

EU600195 EU600196

HQ696947

(

P. luminescens ssp. thracensis (EU122952, EU930335, AJ560634) EU930333

)

EU930334

(

P. luminescens ssp. kayaii AY278645

)

AY278643 P. luminescens ssp. akhurstii

(

AY278657

)

AY278652 P. temperate

(

Xenorhabdus nematophila YL001 EU124381

)

(

NR_025336

)

Proteus vulgaris

( .

K" ' 53 v 3

>! 3 +

*

Proteus vulgaris

+

Xenorhabdus

nematophila

# , J B" E 53 5>X J M

Akhurst et al., 2004

) (.

K" '

* + P ! 3 M

;

"=X"

2.0.10 Clustal X Thompson et al., 1994

)

(

* h . j' DD 0"

D

f 53 Z ]: 7

MP

(Eck & Dayhoff, 1966)

)

NJ Saitou & Nei, 1987

(

P ! 3

;

"=X"

MEGA4 Tamura et al., 2007

)

(

; Z "

9X nC .

NJ

9, 7" %>:" 3 & \' 5&^ X

G a Dj>

Kimura

J 5/: U

(Kimura,

1980)

.

$D `' 3 7 " 96# p >:" 0 3 B 78

(5)

0 /w B"=D 5,

3 Z + *

100000 ; Z " " \'

(Felsenstein, 1985)

.

9

+ 8 Heterorhabditis bacteriophora

9 :/ ;+ ! , 0

1! B 3

:

D

]DQ>

\D' ! S X O ^ B 3 D

O ^ : S X

D B 3 7" > *

5! 3

2 ' < 3 9 S +

(Truncate)

9`' J 53 - >

9:"

.

B * 5M%U

5K K

"

+ -\

z" X K " 5K K D 5

"

g ) 5K K w 5

+ ( 5K K

"

+ 1! b >/ -\

D K " 5K K { E 5!

D 5

3D w 5K K 7" >1 5

3 . i /2 D +

; >

* D 5V

"

+ 6> " i /2 +

3TJ ; >

-\

9:"

. /_E 5Q&2

W:

g "

+

" S

"

.

3 5V D $ + u`1

D ! 5 + 9:"

.

.>:

-y DK '

" "

+

# 5K K 9:"

5!

X H D 1! B 3 $ D

"

9:

" " 6> "

+ .>1J 3

\ 9 : 53

3 . 0 ^ 53 r X O \ P

D a E

B 3 W:

3 GK 5!

+" " B8 + *

J 8 3 !

3 . BN"

-\ 53

5VD* ' !

+"

9:"

. + 6> " 3 H ` ; b / Q' B8 H 5! =D' l

9:" r ` 5D2 B 3 { E 3" 3 .

D : X

5

/ * 1 -3 S : 3 + *

) -\

1

A

-

D

.(

H

= :/ ,

:

>

, 0

% !

. 5?+.

*

@ .

= :/ ,

&3 B 3

:

1!

D 7" ?C 5!

! B 9D/y'

J D , ]\ O H 53 5> "

53

KT* 9K 2 9:" u`1

. O ^ b >/ B 3 9: C

D B 3 O ^ : D S X

B 3 7" > * 3

5!

9`' + 2 ' B8 < 3 9 S 3

. bT ! +

5VD*

+"

9:"

+ 5 w 5DK " 5K K 0 _3

5K K +"

D1! b >/ -\

9:" * 1 -3 S .

D i /2

i /2 uD`1' -3 S ; > + 6> "

+

; >

3TJ -\

3 . /_E 5Q&2 5K K ; 5 D

+ 6> " i /2 0 Z + 5 w +

" " S .

u`1 + $D3 5V

53 -\

D ! 5 +

9:"

. .>:

&y DK '

" "

+

# 5K K P 3

5!

" " 6> "

+ .>1J 3

\ 9 : 53

9:"

. q:"

D

9%# 0 ^ 53 \

\ KT*

3 - 5!

J

* + )

; 3 ( Pe ! b >/ B8 9:"

; K ! 3 J

Q' &3 b >/

q:" H h_ 7" " 53 b / D

\

3 . H ` ;

' l -\

D

= 9:"

) -\

1 -

C F

.(

I

! +BC 0 D :/

=

3 &3 B 3

:

P

1!

D

< 5>: C G&s" 5!

+

" " S ; $:

.

K " 5K K D 5 +

* J 5! ; > 0 ^ 53

`1' D 7" B8 u

i /2 D -\1 3

g "

5K K

"

+ -\

1!

D i /2 D + 6> " i /2 ; >

+

3TJ ; >

-\

9:"

. /_E 5Q&2 D

>3" 5

"

w 5K K 5 +

! 5&^ X 3 i /2 53 9/

D

+

" S

"

. 3 5V D $ +

u`1 bT !

3 ) -\

1

B

-

E

.(

G

%+ %+

+*

ITS1-5.8S-ITS2

5D2 ' $ " Dy\'

5ALS +" "

H 53 +"

707 53 K" ' 5! 3 D' &!

8 9:

BN P 3

NCBI

) (

: >: 3

GU362544

J 9/w .

7" \D> N &DX =DK 8 +" 3

f

*

MP

+ )

-^ 2 Z

9:" 1 " B 1 (

5! %>:"

NJ

+N K C ' 9,

5&^ 2 + * 53 1

3 . D 53 3 7 " 7" -^ 2 ;" J T!

-\

NJ

2

9:" " B 1 .

J / $ " 3 5

J 5: + *

bacteriphora

indica

megidis

PD\%' bT !

"

: 3 5K =

: !

A # D 9

* +

H. bacteriphora

5 J 0 3 " Q 3

< 3 p >:"

) 94 (

9X J " S .

$ " 7" 8 9: 53 9, L3 5AK L

\ 8 +

> 53 1

Edgington et al.

|

2010

) ( 3 .

( , (.

>! 3 + 9 = *

}a" 0 _`1 " #

PDqD'

P. luminescens

91! WDU + "

MacConkey

" B 1 .

M 5

"

WDU $

= S 91!

y , in# "

.

&:

7 X + * 1

$ "

+ >! 3

" 5! 9 " r=K / e 9K 2

5_`1 $

&: ~D' w + *

5 .

R" , : 3

] =! 5! " B 1 + >! 3 5 " # $ " D D D3

B8 +

36

°C

) b mA3 2 /

°C ±

0 37 ( 3 . [ !"

DNAse

" #

Mashhad 1

5

P. luminescens

ssp. laumondii

)

~D' $ >:"

105565

T

(

CIP

9/y

3

.

(6)

-\

1

Heterorhabditis bacteriophora-

A . :

'

B - :

<

E 9 %

"7

C- :

'

D- :

'

B 3

&# [`3

E-

:

< B 3 &# [`3

"7 9 %E

F- :

'

:

G - :

< ;

"7 9 %E

H- : ;

I- :

;

-\

2 -

" " 5K = " $D3 N &DX 5L3"

H. bacteriophora

5 J .

*

/

5K = "

Heterorhabditis

+ * 5D2 K" ' g :" 3

3

ITS

f 7"

%>:"

3

NJ

100000

" \'

.

Oscheius tipulae

5 J J ! " E"

5>X J M

# , J B" E 53

O A

*

p >:" 0 3

3

.

(7)

%+ %+

(.

Dy\'

16S

5D2 + >! 3 $ "

5ALS H 53 +"

1499 ' &!

D 8 9: 3 .

K" ' BN P 3 5H 3

: >: 3

NCBI HQ696947

J 9/w .

NJ

9,

"

$ >:

Mashhad 1

: !

$ >:"

+ * 7 53 v 3

P. luminescens ssp.

5 J

laumondii

9X J " S < 3 p >:" 0 3 E 3 )

-\

3 .(

"

$ >:

Mashhad 1

" * 53 A # .

D 9

* +

"

"

s D

"

"

"

\1' 5 J $ D

- M 53 " " 5, P

:

$ >:"

B ! 3

Brecon

) 3 : >:

AY278647

( 3 5, $ " + *" , J .

9, 7" 8 9: 53 0 ETH"

5! " B 1

NJ

"

Mashhad 1

5K =

" * 53

" .

$ >:

+ *

P. luminescens ssp

.

luminescens

5,

"

+

53 9/ 5 J" #

Brecon

J

" S J D .

:;

0" 12 J D3 + * ' 7" " , B ! '

: B 6#

- 5! "

Steinernematidae

Heterorhabditidae

3

Poinar, 1993

) .(

" ,

Steinernematidae

+" "

Steinernema

? # )

3

7" [D3 30 5 J

Neosteinernema

( )

P +" " 6 '

5 J (

" , 3

Heterorhabditidae

+" " 6 '

Heterorhabditis

? #

(Edgington et al.,

3

2010; Plichta et al., 2009; Stock et al., 2002;

.

Saleh, 1995)

.

5 J [ "=X" 3

*

? # + * ' hD^ ' +

Heterorhabditis

f 3 !

5 Q > : + *

9`

" + U %>:" :

Stock, 2002

) .(

f 5A: ' 2 $DE

" K \K + * + * !

9DA # : +" 3 " /:

5 J *

+ *

9:" 8 ]*" X J D3 + * ' .

D3 $ "

$

K" '

DNA

3

" >

5! 9:" $ '

" S $DQQU %>:"

(Stock, 2002; Stock et

DJ

al., 1996)

. 5>X ! 53 K \K + * . 1 5& # 7"

: 3 5 J $ "

N 5D2 *

ITS1

9:"

ITS2

-\

3 -

" " 5K = " $D3 N &DX 5L3"

P. Luminescens

5 J .

*

/

5K = "

Photorhabdus

+ * 5D2 K" ' g :" 3

3

16S

f 7"

%>:"

3

NJ

100000

" \'

.

Proteus vulgaris

5 J J ! " E"

5>X J M

# , J B" E 53

O A

*

p >:" 0 3

3

.

(8)

5!

5 J : +" 3 /: \D> N k ' +" "

* +

Heterorhabditis

5 D 7 : ' ETH" 3

5 J N &DX D %' $DQQU D>," ? # $ " + *

" S

*

Adams et al., 1998

) .(

7"

$ "

5D^ '

5_`1 ? # $ " " X" : J + *

0 %>

9`

: K \K 0 ETH" " * 53

J " S %>:"

D

Stock et al., 2002

) .(

5 J *

3 '

D J 2 D

ITS

5 >3 w 0 D^ _, 3D

$

'

" X"

"

"

K" ' H

3 ITS D

5 J

$

+ *

h&>`

* ' + 3D 0" 12 J DDj>

7" 9:"

$ "

! +

" 3 G:

+

\%' D

' P

= 5 J

*

i U .

" 3

# $

\ + * 9 U 7"

N &DX 0 AK L ! $ " 3 ! 5 J

* 9:"

3 + 7 5&^ X & \' • UK 7" 5!

\ .

"

.

9K 2 $ "

5D2 K" ' % ]* -\1

$D3

ITS

5 J

* h&>` + YE 3

5 Q : 3 | >

+"

!n K" ' 3

$D 5 J

* b mA3 J : 53 D %' -3 S

/ . BN $ " 7" %>:" ]6 0T\1 7" k a $ "

3

Spiridonov et al., 2004

) .(

IS" 5 J $ "

7" %>:"

28S

BN 5 J B8 K" ' 5!

+ * h&>`

3 g DS 6 1DC 9:" " , 3 + >1D3 0 /w 7"

ITS

Stock & Hunt, 2006

) (.

5 " # R _, ' $ " 9 = * + >! 3

[ !"

DNAse

[ !" $ " 5! K 2 3 9/y

P. luminescens ssp. luminescens

)

~D' $ >:"

29999

T

B ! 3 J 9 = *

ATCC

H. bacteriophora

(

$D V *

P. luminescens ssp.

Akhurstii

)

~D' $ >:"

105564

T

9 = *

CIP

H. indica

( 9:" % . 3

; Z " 0 1 78 g :"

5 " # D D D3 0 D^ _, : 3 $ "

Mashhad 1

@3 L " y!"

5 " # 3

P. luminescens ssp. laumondii

T

~D' 105565

CIP

3 .

M 53

5 J 7 > = * • UK 7" :

P. luminescens ssp. laumondii

+ * ' " *

5 J 7

HP 88

>

53 @&A

H. bacteriophora

3

B8 ~D' $ >:"

3

TT01 (Boemare & Akhurst,

2006)

.

N K X ]6 0 %^

3 P

D D D >! 3 +

= *

" 3 @/L 9

* + 53 v 3

P. luminescens ssp. laumondii

5D2 =DK 8 P ! 3 = ' $ " 3

J 0 /w" =D

16S

. K L $ "

N &DX =DK 8 5A

16S

5D2 B 1

* D P'

P.luminescens

B 3

P. asymbiotica

3 .

5 J 7 $D V *

P. luminescens ssp. luminescens

7" + >1D3 5&^ X

5 J 7 :

P. luminescens

+ * 9 "

) -\

3 .(

! D €' $DQQU : 5AK L 7" -^ 2 53 1 | >

$ "

3 0 ETH"

(Agazadeh et al., 2010; An &

Grewal, 2010; Tailliez et la., 2009)

.

f + >! 3 9 * $DDA' PD:T! + *

* +

9 = * WDU + + >! 3 91! 3 >/

+ *

h&>`

3 . B e ' D^ _, D $ "

3 +7" * [ !" 9! 2 B" ' q:" DK ' +7" *

< ' !

$ = 3 7

; E 7 D =! &J D `' 7" D !"

1

3 7 " 91! WDU =! &J 53 7 D J

.

$ "

D

* 5 " # " A' [ "=X" 3

>X • Q' " # + * 5

"

.

7 "

9 = * J $ " 5AK L

\*"

D e

+"

; :

2

3 . qD' N 0 _`1 $DDA'

) 0 D^ _,

DNA

(

RNA

$D__`> ! J $ "

"

B :8 9:" ' .

D e \*"

+"

B" ' 7"

-D/S 7" ' ETH"

5L3"

DNA

+

‚ 0 _`1

DNA

K" '

16S

5D2 ) b mA3

gyr B rop D

( 0 D^ _,

D D D3 qD' X

$D V * 3 ~ ' /

B e *7 &! "

EcoRI

%>:"

.

' K"

5 J PD\%' 3 TE

16S

* / 5 J 7 + *

9DA # 9:" S + >! 3 = > =D " h&>` + *

. K" ' 9:" " B 1 0 QDQU'

16S rDNA

+ >! 3 : 5 D 7 : + "=3"

}L: *

? # 3

Fukushima et al., 2002

) (.

g :" 3

"d ; ' 5D2 $ " K" '

Xenorhabdus

+ * 7"

+ * "d

Photorhabdus

"=Z + \ 8 L3 .

BN 7" 1`3 K" ' 5AK L 5! 9:" !ƒ 53 ;7< 5>/K"

16S rDNA

? # }L: N &DX 5L3" : 3 +" 3

53 5! 9:" $ " 3 5D^ ' # $ " 3 " 9:" X ! 8 9: 53 BN P g :" 3 6 ' 5! N &DX | >

1. Benzidine 2. Polyphasic

(9)

9 . v D>2" 3

Liu et al., 1997

) .(

5D2 5\DK 2

: +" 3 G: 5 =J P B" E 53

16S

+ >! 3 M 53 " 9:" o L ? # }L: * YE 3 -\1 -2 + # 53 N 5D2 $ " b * J :

5 J $D3 W3" J DVDC >! 3 + *

(Peat et

al., 2010)

\' -DK 53 53 S 9:" $\ 5> *8 -

/ . \ 7" P = + * "d PD\%'

(Adams et

al., 2006)

7"

$ "

5D^ ' N 5D2 e 7" ' J

B e .

gyrB

0 AK L 5 . " =D

glnA

5&2 e \ J %>:"

+"

e 53 >:" 3

9:" G&L $D * 3 c N 5D2

(Peat et al.,

2010)

. : U^

D 5 J }

* + '

]6 S

> ! D3 - " E $ " 3 ! 3 W/' -

1. Polyphasic

R _`3 5 J i `> "

*

* "d +

" 3 ' 3 + 3 !

i U

Stock, 2002

) .(

X H 7"

3D >1

: 3

7 *

D

* ' 5

+ 3D b ' E 0" 12 J

:

= * 3 ' ,

9

* +

>! 3 9:" / M B" e

(Emelianoff et

al., 2008)

>! 3 [Q 53 5# ' 3 +

* +

= * 9

, 9 %E 7 3 * '

5AK L 12 F

"

! C 7" J $ 0

*

" '

" 9, 5K =

* +

* ' ' w„

+ 3 - E D 3 1.*" > ! .

e *

"

j' ;=&> " $ DD

" S D

" 53 v 3 $

$

8 X

* + 7

>

9:" 1! 53

"

.

3 5K Q $

%&' D

K \K f 3 ! @

9`

:

> X D

\

5&2 e +"

:

' ?\&q ! -

>! 3 + a ' D A/ B" E 53 ' 9:" " } 3

"

+

8 0 AK L

"

7" J $ J D3

* + 0" 12

QQU W: ' D

J " S %>:" $ D

. REFERENCES

1. Adams, B. J., Burnell, A. M. & Powers, T. O. (1998). A phylogenetic analysis of Heterorhabditis (Nemata: Rhabditidae) based on internal transcribed spacer 1 DNA sequence data. Journal of Nematology, 30, 22-39.

2. Adams, B. J., Fodor, A., Koppenhöfer, H. S., Stackebrandt, E., Stock, S. P. & Klein, M. (2006).

Biodiversity and systematics of nematode-bacterium entomopathogens. Biological Control, 37, 32-49.

3. Agazadeh, M., Mohammadi, D. & Eivazian Kary, N. (2010). Molecular identification of Iranian isolates of the genus Photorhabdus and Xenorhabdus (Entrobacteriaceae) based on 16S rRNA. Munis Entomology & Zoology, 5, 772-779.

4. Akhurst, R. J. (1980). Morphological and functional dimorphism in Xenorhabdus spp., bacteria symbiotically associated with the insect pathogenic nematodes Neoaplectana and Heterorhabditis.

Journal of General Microbiology, 121, 303-309.

5. Akhurst, R. J. & Boemare, N. E. (1988). A numerical taxonomic study of the genus Xenorhabdus (Enterobacteriaceae) and proposed elevation of the subspecies of X. nematophilus to species. Journal of General Microbiology, 134, 1835-1845.

6. Akhurst, R. J., Boemare, N. E., Janssen, P. H., Peel, M. M., Alfredson, D. A. & Beard, C. E. (2004).

Taxonomy of Australian clinical isolates of the genus Photorhabdus and proposal of Photorhabdusasymbiotica subsp asymbiotica subsp nov and P. asymbiotica subsp australis subsp nov.

International Journal of Systematic and Evolutionary Microbiology, 54, 1301-1310.

7. An, R. & Grewal, P. S. (2010). Photorhabdus luminescens subsp. kleinii subsp. nov. (Enterobacteriales:

Enterobacteriaceae). Current Microbiology. DOI 10.1007/s00284-010-9741-z.

8. Bedding, R. A. & Akhurst, R. J. (1975). A simple technique for the detection of insect parasitic rhabditid nematodes in soil. Nematologica, 21, 109-110.

9. Bedding, R. A. (1990) Logistics and strategies for introducing entomopathogenic nematode technology in developing countries. In: R. Gaugler and H. K. Kaya, (Eds), Entomopathogenic Nematodes for Biological Control. (pp. 233-248) CRC Press.

10. Boemare, N. E., Givandan, A., Brehelin, M. & Laumond, M. (1997). Symbiosis and pathogenicity of nematode–bacterium complexes. Symbiosis, 22, 21-24.

11. Boemare, N. E. (2002). Interactions between the partners of the entomopathogenic bacterium nematode complexes, Steinernema-Xenorhabdus and Heterorhabditis-Photorhabdus.Nematology, 4, 601-603.

12. Boemare, N. E. & Akhurst, R. J. (2006). The genera Photorhabdus and Xenorhabdus. In: M. Dworkin et al. (Ed.), The prokaryotes a handbook on the biology of bacteria. (pp. 451-494) Springer.

13. Brunel, B., Givaudan, A., Lanois, A., Akhurst, R. J. & Boemare, N. (1997). Fast and accurate

(10)

identification of Xenorhabdus and Photorhabdus species by restriction analysis of PCR-amplified 16S rRNA genes. Applied and Enviromental Microbiology, 63, 574-580.

14. Burnell, A. M. & Stock, S. P. (2000). Heterorhabditis,Steinernema and their bacterial symbionts - lethal pathogens of insects. Nematology, 2, 31-42.

15. Eck, R. V. & Dayhoff, M. O. (1966). Atlas of Protein Sequence and Structure. National Biomedical Research Foundation, Silver Springs, Maryland.

16. Edgington, S., Buddie, A. G., Moore, D., France, A., Merinoand, L. & Hunt, D. J. (2010).

Heterorhabditis atacamensis n. sp. (Nematoda: Heterorhabditidae), a new entomopathogenic nematode from the Atacama Desert, Chile. Journal of Helminthology, 19, 1-14.

17. Eivazian Kary, N., Niknam, G., Griffin, C. T., Mohammadi, S. A. & Moghaddam, S. A. (2009). A survey of entomopathogenic nematodes of the families Steinernematidae and Heterorhabditidae (Nematoda: Rhabditida) from Northwest of Iran. Nematology, 11, 107-116.

18. Emelianoff, V., Le Brun, N., Pages, S., Stock, P., Taillie, P., Moulia, C. & Sicard, M. (2008). Isolation and identification of entomopathogenic nematodes and their symbiotic bacteria from Hérault and Gard (Southern France). Journal of Invertebrate Pathology, 98, 211-217.

19. Felsenstein, J. (1985). Confidence limits on phylogenies: An approach using the bootstrap. Evolution, 39, 783-791.

20. Fischer-le Sauxe, M., Viallard, V., Brunel, B., Normand, P. & Boemare, N. E. (1999). Polyphasic classification of the genus Photorhabdus and proposal of new taxa: P. luminescens subsp. luminescens subsp. nov., P. luminescens subsp. akhurstii subsp. nov., P. luminescens subsp. Laumondii subsp. nov., P. temperata sp. nov., P. temperata subsp. temperate subsp. nov. and P. asymbiotica sp. nov.

International Journal of Systematic Bacteriology, 49, 1645-1656.

21. Fukushima, M., Kakinuma, K. & Kawaguchi, R. (2002). Phylogenetic analysis of Salmonella,Shigella, and Escherichia coli strains on the basis of the gyrB gene sequence. Journal of Clinical Microbiology, 40, 2779-2785.

22. Hall, T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/. NT. Nucleic Acids Symposium Series, 41, 95-98.

23. Hsieh, F-C., Tzeng, C-Y., Tseng, J-T., Tsai, Y-S., Meng, M. & Kao, S-S. (2009). Isolation and characterization of the native entomopathogenic nematode, Heterorhabditis brevicaudis, and its symbiotic bacteria from Taiwan. Current Microbiology, 58, 564-570.

24. Kaya, H. K. & Stock, S. P. (1997). Techniques in insect nematology. In: Lacey, L.A. (ed.) Techniques in insect pathology. (pp. 281–324). Academic Press, London.

25. Karimi, J., Kharazi-pakdel, A., Yoshiga, T. & Koohi-habibi, M. (2009). Report of entomopathogenic nematode, Steinernema glaseri, from Iran. Russian Journal of Nematology, 17, 83-85.

26. Kimura, M. (1980). A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16,111-120.

27. Liu, J., Berry, R. E., Poinar, G. & Moldenke, A. (1997). Phylogeny of Photorhabdus and Xenorhabdus species and strains as determined by comparison of partial 16s rRNA gene sequences. International Union of Microbiological Societies, 47, 948-951.

28. Liu, J., Berry, R. E. & Blouin, M. S. (2001). Identification of symbiotic bacteria (Photorhabdus and Xenorhabdus) from the Entomopathogenic Nematodes Heterorhabditis marelatus and Steinernema oregonense based on 16S rDNA sequence. Journal of Invertebrate Pathology, 77, 87-91.

29. Miller, L. C. & Barbercheck, M. E. (2001). Interaction between endemic and introduced entomopathogenic nematodes in conventional-till and no-till corn. Biological Control, 22, 235-245.

30. Nguyen, K. B., Gozel, U., Koppenhofer, H. S. & Adams, B. J. (2006). Heterorhabditis floridensis n. sp.

(Rhabditida: Heterorhabditidae) from Florida. Zootaxa, 1177, 1-19.

31. Nikdel, M., Niknam, G., Griffin, C. T. & Eivazian-Kary, N. (2010). Diversity of entomopathogenic nematodes (Nematoda: Steinernematidae, Heterorhabditidae) from Arasbaran forests and rangelands in north-west Iran. Nematology, 12, 767-773.

32. Parvizi, R. (2001). Study infectivity of H. bacteriophora and Steinernema sp. against white grub, Polyphylla olivieri.Journal of Entomological Society of Iran, 21, 63-72. (In Farsi)

33. Peat, S. M., ffrench-Constantb, R. H., Waterfield, N. R., Marokházi, J., Fodor, A. & Adams, B. J.

(2010). A robust phylogenetic framework for the bacterial genus Photorhabdus and its use in studying the evolution and maintenance of bioluminescence: A case for 16S, gyrB, and glnA. Molecular Phylogenetics and Evolution, 57, 728-740.

34. Phan, K. L., Subbotin, S. A., Nguyen, N. C. & Moens, M. (2003). Heterorhabditis baujardi sp. n.

(Rhabditida: Heterorhabditidae) from Vietnam and morphometric data for H. indica populations.

Nematology, 5, 367-382.

35. Plichta, K. L., Joyce, S. A., Clarke, D., Waterfield, N. & Stock, S. P. (2009). Heterorhabditis gerrardi n.

(11)

sp. (Nematoda: Heterorhabditidae): the hidden host of Photorhabdus asymbiontica (Enterobacteriaceae:

g-Proteobacteria). Journal of Helminthology, 83, 309-320.

36. Poinar, G. O. (1993). Origins and phylogenetic relationships of the entomophilic rhabditids, Heterorhabditis and Steinernema.Fundamental Applied nematology, 16, 333-338.

37. Rainey, F. A., Ehlers, R. U. & Stackebrandt, E. (1995). Inability of the polyphasic approach to systematics to determine the relatedness of the genera Xenorhabdus and Photorhabdus.International Journal of Systematic Bacteriology, 45, 379-381.

38. Saitou, N. & Nei, M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4,406-425.

39. Saleh, M. M. E. (1995). Efficiency of the Egyptian entomopathogenic nematode, Heterorhabditis taysearae in controlling the cabbage-worm, Pieris rapae (L.) (Lepidoptera: Pieridae). Egyptian Journal of Biological Pest Control, 5, 99-112.

40. Sicard, M., Le-Brun, N., Pagès, S., Godelle, B., Boemare, N. & Moulia, C. (2003). Effect of native Xenorhabdus on the fitness of their Steinernema hosts: contrasting types of interaction. Parasitology Research, 91, 520-524.

41. Stock, S. P. & Kaya, H. K. (1996). A multivariate analysis of morphometric characters of Heterorhabditis species and the role of morphometrics in the taxonomy of the species of the genus. Journal of Parasitology, 82, 806-813.

42. Stock, S. P., Strong, D. & Gardner, S. L. (1996). Identification of Heterorhabditis (Nenlatoda:

Heterorhabditidae) from California with a new species isolated from the larvae of the ghost moth Hepialis californicus (Lepidoptera: Hepialidae) from the Bodega Bay Natural Reserve. Fundamental and Applied Nematology, 19, 585-592.

43. Stock, S. P. (2002). New trends in entomopathogenic nematodes systematics: impact of molecular biology and phylogenetic reconstruction. In: Monduzzi (Ed.), Proceedings of the 10th International Conference on Parasitology, 4-9 Aug., Vancouer, Canada, p.1.

44. Stock, S. P., Griffin, C. T. & Burnell, A. M. (2002). Morphological characterisation of three isolates of Heterorhabditis Poinar, 1976 from the ‘Irish group’ (Nematoda: Rhabditida: Heterorhabditidae) and additional evidence supporting their recognition as a distinct species, H. downesi n. sp. Systematic Parasitology, 51, 95-106.

45. Subbotin, S. A., Sturhan, D., Rumpenhorst, H. J. & Moens, M. (2003). Molecular and morphological characterisation of the Heterodera avenae complex species (Tylenchida: Heteroderidae). Nematology 5, 515-538.

46. Szállás, E., Koch, C., Fodor, A., Burghardt, J., Buss, O., Szentirmai, A., Nealson, K. H. & Stackebrandt, E. (1997). Phylogenetic evidence for the taxonomic heterogeneity of Photorhabdus luminescens.

International Journal of Systematic Bacteriology, 47, 402-407.

47. Tailliez, P., Laroui, C., Ginibre, N., Paule, A., Pages, S. & Boemare, N. (2009). Phylogeny of Photorhabdus and Xenorhabdus based on universally conserved protein-coding sequences and implications for the taxonomy of these two genera. Proposal of new taxa: X. vietnamensis sp. nov., P.

luminescens subsp. caribbeanensis subsp. nov., P. luminescens subsp. hainanensis subsp. nov., P.

temperata subsp. khanii subsp. nov., P. temperata subsp. tasmaniensis subsp. nov., and the reclassification of P. luminescens subsp. thracensis as P. temperata subsp. thracensis. International Journal of Systematic and Evolutionary Microbiology, 60, 1921-1937.

48. Tamura, K., Dudley, J., Nei, M. & Kumar, S. (2007). MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 24, 1596-1599.

49. Thompson, J. D., Higgins, D. G. & Gibson, T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22, 4673-4680.

50. White, G. F. (1927). A method for obtaining infective nematode larvae from cultures. Science, 66, 302- 303.

Referensi

Dokumen terkait

Analytical solutions describing free transverse vibrations with large amplitude of axially loaded Euler–Bernoulli beams for various end restrains resting on a Winkler one-parameter

11 EFFECTIVE & EFFICIENT AIRPORT OPERATIONS •E-kiosk, Mobile applications, bagagge handling system, advanced technology implementation, old facilities refurbishment ENVIRONMENTAL