53 2
1401 ) 331 - 321
( Vol 53, No 2, Summer 2022 (321-331)
DOI: 10.22059/ijhs.2020.298664.1796
* Corresponding author E-mail: [email protected]
:
! " # $% & ' ( )*"+
,
*)* -
! " #$ %& ' (
) *
:,! ) -) ) 18
/ 2 / 1399 - : )67 -) 12
/ 6 / 1399 (
/
, (
* :;<= #) 6> ? (@ 6=
A "
B
# C ) . :$D E F( : G
A "
C*
,F;>
? (@
#) 6>
H 7 I(D C 7 JC*
:) 7
< D
# ) K L M) " ! ? : C*
. H M @
* OP
QE ) 86 / 0 2 4
6
# T(<)
"
( K M @ A "
U(7 QE ) 50 80 120 160 200
#;
K W A "
K W ; (
.
* ,F;>
) B X)C Y : )
; Y CZ
, <
) ! J
[ Y B : ) .
* 6
#
* : ,%I " T(<) 86
/ 0 ) ! \% \ : 9
5 20 A " .C) W Y ; : ) Y X)C "
G]
# I ,F;>
X)C Y ,* C
* 2 4 6 A " ) ! 50
: 200
#;
K W K W ; \ :
\%
B 19 16 18 ,F;> C?
; Y Y [ ^ (" : C*
117 39 42 .,! ) ) ! C?
* ,F;>
A "
`I!
X "7
? (@
X a b J W
B
#c$
:
"<
CZ :( O C . M A "
%O
d G] e) ,F;>
e)
? (@
,!
#B W ) ! . U) "
f) *
*
# FZg e"! W F
,I)
#E ) A "
h CZ :( O B
G d
* J `"
.
0"
: 2
? (@ ,F;> M ! ; * A "
[ .
The interaction of salinity stress and ammonium sulfate on growth and nutrients concentration in Valencia orange plants grafted on lemon
Majid Rajaei*
Associate Professor, Soil and Water Research Department, Fars Agricultural and Natural Resources Research and Education Center, AREEO, Shiraz, Iran
(Received: May 07, 2020- Accepted: Sep. 02, 2020)
ABSTRACT
Under salinity stress nitrogen and other plant nutrients uptake is reduced. In order to study the effect of nitrogen on growth and nutrient concentrations of Valencia orange grafted on lemon seedlings, a factorial experiment was carried out. The first factor was irrigation water salinity at four levels (0.86, 2, 4 and 6 dS m-1) and the second factor was nitrogen at five levels (50, 80, 120, 160 and 200 mg N kg-1 soil as ammonium sulfate). Salinity increased sodium and chloride ions concentration in plant leaf and roots to toxic levels and reduced the plant leaf and root dry weight. The highest level of salinity increased the sodium content in leaves and roots and also chlorine in leaves by 9, 5 and 20 times compared to salinity of 0.86, respectively. Although nitrogen had no significant effect on sodium concentration in plant leaves, at salinity levels of 2, 4 and 6 dS m-1, increasing the application of nitrogen from 50 to 200 mg kg-1 soil reduced 19, 16 and 18% of leaf chlorine and increased the corresponding dry weight of leaves by 117, 39 and 42%, respectively. Salinity decreased nitrogen, phosphorus, potassium, and micro nutrients concentration in plant leaf and in some cases reached them to sub optimal levels. In contrast, nitrogen alleviated this adverse effect by increasing the concentration of these elements in plant tissues. Based on the results, by taking into account of environmental considerations, nitrogen levels above the optimum limits can be used to reduce the adverse effects of salinity in saline conditions.
Keywords: Chlorophyll, dry weight, elements concentration, nitrogen.
3 $
7 $) 8 9 % :;"*
Rutaceae
<= 8 ) ,>
#
<? @; " * A" B
# CD(
* .!
.
E 2 %F$GC* H " E* 9 % :;"*
* ", *"> < ,) ", *"> IJ !* F$3 <; .
* /?; E ) .)$
Spreen et al., 2020
K 9 ",8 .(
% :;"*
IJ !*
$!
"
<
L M ?*
"N) "
M .:
7.
/(
)
Raiesi et al., 2021
( 7. O P> .
9 ) K 9 H 9 ?Q <; /(
# $ R 8 S+
" ( T "
D,C* .4 * ) ) /(
Khanchezar et al.,
(.2020
% :;"*
9
<1 ,>
U V
<
# $ !
* ..!
% :;"* # $ ! ,> " ( .!)
* . ; W$'$ P,X %FY 8 Z:(
. $
<
# $J '$J . ; [4 # $ ! <;
* A" \D( <?
) $
Khoshbakht et al., 2015
.(
.V M C
% :;"*
<
R 8 # $ .V
8 / 1 (
_! 9
"
" *
* . )
Rajaie & Motieallah, 2018
(
<;
# $
" F 9 4 ( _! 9
"
" * S+
# , +
H,!`
# $ R 8
a
*
$ . b( c
% :;"*
<
!
# $
<
M* $4
# .d * 9
<1 Z,;"
< c
R.)$,c
@ ,(
# , + e$) R 8
@,1f /,dg
< 5h 7 ,>
N )
Al-Yassin, 2004
.(
# $ ",i
* % :;"* "
$ 9 "i * .) $ @ .( 7j $ 8 #
< c ) $ < N $8 < $) < ",i H .. "1;
$ H K k ) 9 #",>$1 < X ; <
R.)$,c <
)
Cedra et al., 1990
< c % :,;" 9 ld .(
.( K k ) . .C* [4 R.)$,c < <? 9 @
* A" <8 @ .( m a H " ! ..)$
/ f
<? M,:f 9 < c n1 Q* # 9 /d) * Z:(
/ f @ .( m a A" Mo* R.)$,c n1 Q* #
<f (
*
<a, ) H,!` 1; $J < . ">
* #",>
$
p : R.)$,c < TkX @ .( K k ) "; .C* <;
< .)
< c < 1 ) .)"i$* "* H P,)
Aboutalebi
et al., 2007
(.
# $ Z $*
9 "
# a! )
#
< 5h
#
n1 Q* ,>
*
$ )
Mohebi et al., 2021
(
<;
/14 + H * /(
p$ "*
<
% "i
&!*
$
#
@ .(
"1;
"
/,1 f S5
"3 !4 52 7 $ p$ "*
<
"i
#P (
# $
"
S5 K k ) m 9$
"3 !4 Q
# n1 Q*
7 ,>
.
)
Khoshgoftarmanesh & Siadat, 2002
.(
T "
$
$ #F /012
#
@ .(
Z:( "1;
<
@
$8 K d )$
*
">
. H,!`
D "
q&V
K d )$
M8 K$1(
<1 k*
?8
W$'$ P,X )
9 PX
?X
#P ( K$1C*
R 8 /,
# 9 )
Zhu, 2001
.(
H " !
,>
.
# "
q&V K d )$
; 9 (
/, (
$
# (
?8 L W$'$ P,X
<1 k*
.!!;
)
Attarzadeh et al., 2014
$8 @ " .(
$ S5 ; Z:( R 8 K$1C* )$ K d #
"3 !4
* 7 ,> T($ 52 . $
Anjum
) (2008
O P>
";
<;
/012
"3 !4 A"
<?
% :;"*
PX
\D(
# $ S+
# , + <
80 1,*
F$*
; /X .
>j
# W$'$ P,X
$` @ mX
@ .(
<? 9 K" !;
P,*
K k )
@ .(
9
<?
<
- .)
$
<
$!4 ,d*
# "
( ! M C
<
# $ ,>
7 & (
* ) .)$
Attarzadeh et al.,
"3 !4 /:o* % "i < kkC* "N #$( 9 .(2017
.) .,; 7 ,> # $ % "i ; " 52
# $D % "i "; @; Z:( "3 !4 8" " ; <;
* # $ ! &!*
) ">
Sadeghi Lotfabadi et al.,
2010;
Zayed et al., 2011
.(
/8 !
$!X 4 9 2
# "
/,:o .
" 1 4
%F$GC*
#9 ?;
T "
$ /,
P )
Zorb et al., 2019
.(
9 M* $4 ;
. /C % :;"*
T "
# $ ! ;
S5
W " ,) "G!4 7j < 52 "3 !4
* . )
Francisco
et al., 2002
.(
H " ! /C !
# $ 9 ,) 7 ,>
<
W " ,) "G!4
" ?, 9 T "
",2
$ ./(
F$ d*
PX S5
m a
"1;
; /012
% " ,)
- .)
$ 7 ,>
7"
/(
.
# , 9 H,kkC*
H
"*
<
",i / .g
" "1;
S5 /: ) % " ,)
* .!
)
Bar et al., 1997; Kafkafi et al., 1982
( ' V
<;
8"
"N H b( c ) 9
",i
# $
"
;
S5 S+
* .!) )
Lea-Cox and Syvertsen, 1993
.(
7 Y4
"
",ir
"1;
"
S5 ld % " ,) H,kkC*
-Y4
7 $ ) .)
<;
PX % " ,) T,C*
. Z $*
; S5 m a
"1;
.d
# 9 9 ,>
2
*
$ . k,kC s )
?)
<;
PX
< % " ,) T,C*
.
" k*
" F 9 /012 S$1D*
# "
. 7 ,>
T,C*
$ [4
@;
. /012
"1;
A"
#
; +
$ ,' M,1k
> c A"
; /d) * 9 . . )
Bar et al., 1997
.(
@
.V 9 " F " k* PX # $ ! /C H,!`
"1; /012 ; Z:( . T,C* < W " ,) <!,E ) . % :;"* ; + 8
Irshad et al., 2002
.(
8 " # $ W " ,) M k * "i "N k,kC s ) ./X"> "f <d' D* $* $ 9 <; ?)
\D( W " ,) PX 200
1,*
K$1C* " ,' -">
. 7 ,> . " # $ t$( % "i ; Z:( 52 )
Tabatabaei, 2006
?Q .(
9
"i W " ,)
$:E
. 7 ,>
<
/14 ",ir +
"
; S5
"1;
#",>$1 9 K k ) H
"G!4 9
<?
<
- .)
$
* . . 7 Y4
"
+ W " ,) Z:(
$:E ",ir
# $
"
; /012
"3 !4
# "g
$*
9 ,) 7 ,>
*
">
/012 H
"3 !4 /X
,>
PX * .
)
Rajaie & Motieallah, 2018
(.
' ?8
# .!`
K (
",8 / "
9 S+
9
7"&(
#
" 9
!,*9
<;
Y,
&!*
S+
<
K :)
<
/(
Z:(
$ . a . m !*
S+
R 8
H IJ !*
7.
/(
. - . H .) ( "
<u
7
# Z( !*
;
% "i t$(
# $
"
%F$GC*
#9 ?;
9
<1
% :;"*
# "g * 9 ( . s )
jc W " ,) " ; <; ?) 7.! $) 1:f #
" k*
t$( % "i ; Z:( <!,E .V 9 " "X
< c # $
. s) ) $ ,' )
Rajaie & Motieallah,
.(2018
< jc H 7. ";v I kV < < $
M f :o* % "i H,!` + <; <,g"X H ( " $0!*
K k ) . * < X .)$,c 7 ,> < < X ; < < c 9
.. "> - a) *9+ H H,!=
n1 Q* " k* "i
% &'$(
-$,)$*+
K k "c # $ t$( % "i ; "
, !' @f . "f 9 $*
4 ("
*9+ H
"8 E )9.)$,c K k "c
@f
, !'
"
< c
#
$ ,' L
<' (
# T "
S$8 w, $!X
- a) . . _c 9 / 5>
L
K ( ) *9
<;
K E)
#
#.)$,c 9 x C' . Z( !*
y,Q?
7 .).
K k ) +
<
.1>
Z,;"
-$(
R 8 d,:J -$( L
$;
*
Y* ; 7.,($c - a)
/X . P;"* jc H
% k,kC
#9 ?;
m !*
d,:J ( - a) U X
..
8"
>j
# P,X , ,
R 8
$*
7 & ( *9+
<
z"
K . 1
* . .
< c z"J Z' f M $ ; X % $3 < *9+ H " <( X G {Y* ; )
.V " "
? *9+
"
.V
? *9+
"
.1>
.d
L 7 ,>
"f / ( d 120 ./X"> - a) .1>
$ ; X M*
E`
\D(
# $ S+
# , + ) 86 / 0
2 4 6 ( _! 9
"
" * ( s!c
\D(
W " ,)
) 50 80 120 160 200 1,*
-">
W " ,)
-">$1,;
R 8 m:!* 9
% &'$(
-$,)$*+
(
$ . _c 9
/ 5>
<(
7 * 9 . K E)
!, J 9
"k (
S$1D*
4 K ,
#
# $ 9 I "J S+
# , +
- a) . .
<
$0!*
4$!G* # $ K 4 -.4
d,:J T " < *9+ T " . L P) S+
+ )$, ; )$,)+ Z,;" x C' 9 <kD!* #
# $ .V 9 ( _! 9
"
" * 9
` mf
<kD!*
S
<,E Z,;"
)$,)+
)$, ; +
79 .)
#",>
..
Z,;"
$ ) H S+
S+
S"
",2
$
<kD!*
)
# $ 86 / 0 ( _! 9
"
" * (
/ .
" '
$*
"0) 7 N ( / . s!(
M:f 9
"
# , +
@,0!
_w(
# , + - a) . .
K . ) 2 (.
K . 1 .
< Pa P,X , , R 8
7 & ( $*
*9+
.
Table 1. Physical and chemical Analysis of the soil used in the experiment.
O.C (%) N
P K Mn Zn
Fe pH Cu
EC (dS/m) Texture
(%) (mg/kg)
0.86 0.08
4.2 173 3.2 0.77 6.2 0.65 8.1 1.09
Silty loam
K . 2 . < Pa s ) *9+ 7 & ( $* $ ",2 $ S+
.
Table 2. Analysis of saline and non saline water used in the experiment.
EC SAR CO32- pH
HCO3-
Cl- SO42- Total anions Ca+Mg
Na+ K+ Total cations Used water
(dS/m) (meq/lit)
16.8 9.29 6.72 Little 8.4
94.5 Little 102.9
30 65.2 8 103.2 Saline
0.86 0.8 7.95 Little 3.8
3.2 Little 7.0
4.5 1.3 2.3 7.1
Non saline
" ' / . # $ ",2 S+ H 86
/ 0 (
.. 7 & ( # $ . , $!4 < " * " _! 9
# ,
W " ,)
<
<(
/ f
# *
@, k
?Q
<
- N!
K 4
# ,
# $ T, k
"N
<
<13 X 7 *
<
; /X . *9+
H X"> "0) 20
.3 9 ,)
$? + PX
S+
<
$J )9 /E
.) ( / $J
<
/,X"~
<4 P*
- a) /X">
. 7 *
_c 9 e "
K 4
# ,
# $
" k*
M,X "1;
A"
K E)
#
$*
*9+
7 N ( M,X "1;
" *
)
SPAD-502
( 79 .)
#",>
. . H,!=
c
*9+
) 6 7 * _c 9 K 4
# ,
# $ ( 9 ,>
<? / " R 8 \D(
.1> R 8 9 .
<)$ ) ..).
S+ '$ d* S+ $? 9 _c "Dk*
%.* <
48 # * /4 ( 60
) ( <
L?8 ">
f" S ,(+ H 9$ 9 _c <13 V L?8 7 * ..).
<)$ ) W " ,) .. "> $c < A" 7. $c #
79 .) K .1a; O 9 -"> L H,!` @ .. #",>
< <) > . $D <? A" 7. L?8 <)$ )
%.*
@,) /4 (
# * 250
<
U$, 1(
_w(
<
%.*
/4 (
# * 550
<
U$, 1(
7 $;
"f 7 . . .d 9 / 5>
24 /4 ( L!8 .
7 $;
<)$ )
• 8 .).
.
<
<)$ ) M3 V 5 1,*
" ,'
.,(
L . "1;
2 K *")
<X g 7.
_c 9
$:4 9
52 ; X 3 7 G4 M3 V S+
"Dk*
<
@aV 50
1,*
" ,' 7.) ( . )
Patterson et al., 1984
.(
7 G4 /(.
A" 7.*+
"1; @ .( "3 !4 /012
< H + P!N!* _* # @,( c "& X W " ,) 79 .) .) ( O 7 G4 H,!= .. #",>
/(.
7.*+
/012 <?
"3 !4 @,( c @ .(
79 .) 7 / E) .. #",>
9 7 & ( PX -")
< k* /X"> "f _) < Pa $* SAS
H,N) ,*
<!* .!` $*9+ O <
H ) # \D(
K V 5 % ..). < k*
56 7* 8
"i
# $ !
"
A" L?8 9
<?
!d*
$
% &3 H H,!=
/C ",ir
@ "
!;
!
# $ W " ,) K V \D(
5
"f .3
/X">
) K . 3 .(
# $ PX T($ * $J <
9 # , + S+
86 / 0 <
6 9 " * " _! 9 (
Z, " < <? A" L?8 63
45 ; .3
H,N) ,* ..! X 9
L?8 A"
# $ 2 4 6
( _! 9
"
" * PX
;
"
W " ,) 9
50
<
200 1,*
-">
-">$1,;
R 8
<
Z, "
117
39 42 .3 PX /X . ' V
<;
z$D(
# $ 2 4 ( _! 9
"
PX " *
" ;
W " ,) 9
50
<
200 1,*
-">
-">$1,;
R 8
<
PX Z, "
21 17 L?8 9 #.3
# $ . Z:( <?
6 H " * " _! 9 (
W " ,) PX .k*
36 <? L?8 9 .3
; )
K . 4 ( kkC* . O P>
.) ";
<;
PX
\D(
# $ 9
",ir W " ,)
$:E
. 7 ,>
s) )
< ( ; . .
# $D
<;
\D(
250
1,*
-">
. "1;
@ .(
-">$1,;
R 8 PX
W " ,) X"G*
9
"&3
<
100 1,*
-">
-">$1,;
R 8 9 7 * L?8 26 .3 PX
?)
*
\D(
1000 1,*
-">
. "1;
@ .(
-">$1,;
R 8 H PX
"&3 .3
$
)
Rajaie & Motieallah, 2018
.(
PX .
7 ,>
"i
" ; W " ,)
#"*
9 0 ) / ,) .
" 9
"o;
R 8 '+ $* $: ; M,' < " #
$: ;
%9
<
$!4 M* 4
< 5h
# .C*
7.!!;
. z"D*
/(
. H " !
‚"3
"0) 9
$
$
$:) R 8
‚"G*
%9 [4
<d($
. 7 ,>
PX K$GC*
*
$ .
" ; W " ,) 9
",ir
t$(
# $
"
; 9 A"
<?
7 ,>
< ( ;
. .
<
$!4 K o*
\D(
50 1,*
-">
-">$1,;
W " ,) PX
# $ 9 .k*
.
<
4 ( _! 9
"
" * Z:(
; 9
A"
7 ,>
<
P,*
40 .3 . ' V
<;
H
; H " F
\D(
W " ,) 30
.3 $
K . ) 4 ( . .) E ?*
P,)
$*
9
<?
7 ,>
7. ?*
. . .3
# 7.
# "
9
<?
7 ,>
<
Z, "
43 22 .3
$ . O P>
7.
/(
<;
- b( c
#
? 7 ,>
9
<1
e &
7 ,>
.d A"
9
"
L?8
<?
- .)
$
"i !
# $ ;
* .!
)
Rajaie & Motieallah, 2018
.(
@ ( " H,!`
m !*
?)
* .
<;
PX W " ,)
\D(
200 1,*
-">
" ,' Z:(
;
% "i t$(
# $
"
. P !($ X 7 ,>
$ 9 .
)
Tabatabaei, 2006
.(
! " #$%
"i !
# $
"
# $
!d* R 8
$
*
# $ R 8 /C
@ " ",ir !;
!
# $
W " ,)
"f /X"N) ) K . 3 .(
! H,!=
# $
# $ C* /&3 / ) $ ) W " ,) /C M,X "1;
, .. "f ",ir H "
.k*
/ .
" '
H " F
\D(
# $ S+
# , +
<
/(
.*+
M k*
@;
H "
P,*
# $ R 8
@;
H "
\D(
# $ S+
# , + M3 V . .
K . 3 . ) s Pa
<
_) # $ "i # , + S+
.$ ,' # 7. .)$,c , !' K k "c % &3 8" " W " ,)
Table 3. Results of variance analysis effect of irrigation water salinity and nitrogen on some traits of Valencia orange grafted on lemon.
Mean of squares
Source of variation
Leafchloride
Root sodium
Leafchloride
Leaf sodium
Soil salinity
Chlorophyll content
Root weight
Leaf weight
df
2.53**
7.48**
4.031**
0.218**
10317715**
198.42 ns 7.29 **
25.33 **
3 Salinity
0.024 ns 0.092 ns
0.039**
0.0026**
255825 ns 594.81 ns
0.025 ns 1.77 ns
4 Nitrogen
0.049 ns 0.067 ns
0.008**
0.0009**
256734 ns 43.39 ns
1.96 * 5.52 *
12 Salinity × Nitrogen
0.433 0.2056
0.002 0.0002
495524 301.35
0.80 2.74
40 Error
11.8 9.7
14.3 11.8
18.3 15.3
11.5 12.9
_ C.V. (%)
* ns
**
<
"
, Z
$:) % &
!d*
!d* % &
K V \D(
5 1 ..3
ns, *, **: Non-significantly difference and significantly difference at p≤0.05 and p≤0.01, respectively.
K . 4
# $ ! " H,N) ,* < k* .
# , + S+
" W " ,) 8"
% &3
$ ,' # 7. .)$,c , !' K k "c .
Table 4. Mean comparison interaction effect of irrigation water salinity and nitrogen on some traits ofValencia orange grafted on lemon.
Leafpotassium Leafnitrogen
Leafchloride Leaf sodium
Root weight Leaf weight
Nitrogen Salinity
(dS/m) (mg/kgsoil) (g) (%)
1.67 b 1.97 fg
0.07 h 0.04 h
4.10 a 4.23 ab
50 0.86
1.87 a 2.13 d-f
0.07 h 0.03 h
3.90 ab 4.57 ab
80
1.67 ab 2.42 bc
0.05 h 0.03 h
3.97 a 4.93 a
120
1.40 cd 2.55 b
0.06 h 0.03 h
2.73 bc 3.43 bc
160
1.30 c-e 3.00 a
0.05 h 0.03 h
3.53 bc 4.30 ab
200
1.07 fg 1.17 i
0.32 g 0.09 g
2.33 cd 2.13 cd
50 2
1.20 d-f 1.43 h
0.31 g 0.09 g
2.43 bcd 2.87 c
80
1.50 bc 1.93 g
0.26 g 0.08 g
2.73 bc 3.93 bc
120
1.40 cd 2.30 cd
0.25 g 0.07 g
2.23 cd 3.80 bc
160
1.30 c-e 2.47 bc
0.26 g 0.09 g
2.83 bc 4.63 ab
200
0.99 fg 0.93 j
0.67 d 0.16 e
2.33 cd 2.53 c
50 4
1.17 ef 1.37 h
0.61 de 0.17 e
2.53 bcd 2.00 cd
80
1.30 c-e 2.03 e-g
0.45 f 0.13 e
2.23 cd 1.47 d
120
1.17 ef 2.01 e-g
0.47 f 0.16 e
2.50 bcd 2.50 c
160
1.20 d-f 2.17 de
0.56 e 0.17 e
2.73 bc 3.50 c
200
0.93 mg 0.53 m
1.43 a 0.33 b
3.13 cd 1.17 d
50
6 80 1.93 cd 2.03 de 0.31 d 1.27 b 0.70 k-m 0.87 g
1.07 fg 0.77 j-i
1.17 c 0.26 c
2.07 de 1.47 d
120
0.92 g 0.65 lm
1.23 bc 0.29 c
2.27 cd 1.63 d
160
0.87 g 0.86 jk
1.17 c 0.36 a
1.99 e 1.67 d
200
$ ( "
H,N) ,*
!d* % & R" ?* ‚"V L Mf .V # K V \D( #
5 ..) .) .3
In each column, means with similar letters are not significantly difference at 5% probability level.
O P>
7.
/(
<;
@E*
H "
!;
7 ,>
<
# $ S+
R 8 ; .
/(
.
">
/012 L )
<
, 9
<) (+
M C 7 ,>
.("
<
% 9 $*
PX
/012 L )
# K$1C*
)
# $ ( . 7 ,>
;
* .
<;
< :'
„! + ; .
,>
n1 Q*
% & * /(
)
Mass & Hoffman, 1977
.(
O P>
7.
/(
<;
# $ R 8 [4 KY 8 .! +"X
#
W$'$ P,X 7 ,>
*
$
<;
.* ,c + ; .
" 1 4 /(
. ; 9 L?8
"i
# $
% :;"*
?) 7 7.
/(
)
Adams et al., 2019
.(
" & '(
"i
# $ !
" W " ,)
@ .(
A" "1;
!d*
$
% &3 H H,!=
/C
@ " ",ir !;
!
# $ W " ,)
"f /X">
) K . 3 .(
PX z$D(
# $ S+
# , + H,N) ,*
/012
@ .(
A"
PX
!d*
# 7 "
K . ) $ 4
( .
# $D
<;
H " F
/012
@ .(
p$ "*
<
H " F
\D(
# $
@;
H "
/012 + p$ "*
<
.
$ . /012 ) "C
# "
9 "
/, ( ) 9
"G!4
@ .(
1 / 0 25 / 0 .3 O P>
7.
/(
)
Syvertsen et al., 1988
.(
s )
<u 7.
K . 4
?) * .
<;
/012
# ) "C
# "
9 "
/, (
@ .(
z$D(
# $ 4 6 ( _! 9
"
" * S+
# , +
… &
7 X /(
. W " ,) ",ir H,!=
"
/012
@ .(
A"
9 .) 3 8
# ",c )
";
# $D
<;
H,N) ,*
/012
@ .(
\D(
120 1,*
-">
-">$1,;
R 8 ; _c
9 + .a*
PX
/X . H
<D s ) E ?*
P,) T($
Garcia-
Sanchez et al.
(2002)
O P>
7.
/(
.
PX
# $ S+
# , + H,N) ,*
/012
"1;
A"
$D
!d*
# PX .,c
";
. F$ d*
@uY4 /, (
"1;
) *9
" ~
*
$
<;
/012 H
$
<
.V 1
.3 9 L?8 A"
K . ) .("
4 ( . H ' V
/(
<;
* ;
" 1 4 /012
" F 9 2 / 0
.3
$ . s )
<u 7.
K . 4
?) *
.
<;
‚"3
"0) 9 W " ,) X"G*
-
# ,
# $ /012
"1;
- .)
$ 7 ,>
" ?, 9 2 / 0 .3
* . . H " ! /, ( ) 9
"1;
;
" 1 4 7 ,>
9 0 ) / ,) .
"
\D(
9
# $
PX z$D(
W " ,) /012
"1;
A"
; /X .
< :' -9F
<
";v /(
<;
; /012
"1;
H " F
\D(
# $ U$ C*
"
$ . <; .) "; O P> kkC*
PX z$D(
W " ,) 9
"&3
<
100 1,*
-">
-">$1,;
R 8 /012
"1;
<
m:
+ S5 M;
"1;
- .)
$ s) ) ; /X . H,!=
; /012
"1;
\D(
1000 1,*
-">
. "1;
@ .(
-">$1,;
R 8 U$ C*
"
$ )
Rajaie & Motieallah, 2018
.(
Bar et al.
(1977)
O P>
.) ";
<;
PX
" k*
" F
9 .V
<!,E
% " ,)
<
T,C*
! T " .
# $ Z:(
; /012
"1;
8
; +
% :;"*
. .
% . ?*
E ?*
P,) T($
kkC*
"N
O P>
7.
/(
)
Tabatabaei, 2006; Irshad et al.,
.(2002
H " !
*
$ /&>
<;
I,kC
"g V P,)
W " ,)
<X g 7.
<
% $3
% &'$(
-$,)$*+
R 8
<
% " ,) ., ; 7.
% " ,) / f )$,)+
9 S5
"1;
#",>$1 7 ";
/(
.
& ( # & '(
"i
# $ !
"
@ .(
<? @,( c
!d*
$ *
% &3 H /C
@ " W " ,) z$D( ",ir !;
!
# $ W " ,)
"f .! X"N) ) K . 3 .(
PX
z$D(
# $ S+
# , + H,N) ,*
/012
@ .(
<?
PX
!d*
# 7 "
K . ) $ 5
( .
< k*
@ .(
PX
# $ S+
# , + Z:(
; H,N) ,*
/012
@,( c
<?
7 ,>
K . ) . 5
( . PX
/012
@ .(
<?
PX z$D(
# $ S+
# , +
#"*
9 0 ) / ,) .
* H,!` @
<; /&> $
PX
# $
<
/14 PX /012
@ .(
"i f
H,
@,( c
@ .(
@ .(
9 S5
@,( c
#",>$1
7 ";
/(
. T "
# $ .(
N :)
@ .(
.k*
9
@ .(
<) E!
S5
@,( c T($
<?
KY 8 a
* .!;
< 1 t ?2
<?
P,) a
KY 8 7 $ )
% .f S Q ) + M Q*
* .!;
)
Attarzadeh et al., 2017
.(
K . 5 H,N) ,* < k* . "i
# $
# , + S+
$ ,' # 7. .)$,c , !' K k "c A" <? "3 !4 8" R 8 # $ "
.
Table 5. Mean comparison effect of irrigation water salinity on soil salinity and root and leaf elements of Valencia orange grafted on lemon.
Leaf copper Leaf
zinc Leaf
manganese Leaf
iron Leaf
phosphorus Root
potassium Root
sodium Soil
salinity Salinity
(mg/kg)
% (dS/m)
(dS/m)
0.04 h 41.6 a
74.5 a 152 a
0.21 a 1.26 a
0.31 b 1.06 b
0.86
0.03 h 33.8 b
72.2 ab 121 b
0.15 b 0.87 b
0.53 b 1.31 b
2
0.03 h 31.9 b
68.0 b 113 c
0.13 c 0.46 c
0.50 b 2.32 a
4
0.03 h 23.4 c
57.1 b 50 d
0.10 c 0.36 c
1.85 a 2.82 a
6
H,N) ,* $ ( "
!d* % & R" ?* ‚"V L Mf .V # K V \D( #
5 ..) .) .3
In each column, means with similar letters are not significantly difference at 5% probability level.
! T " /C @,( c ; # $
* < .) $
* "( " @ .( / f M,' G #
K Mf ) <
% :i -.4 M,' < @,( c /?) (Yc t ?2 t ?2 ) .
Ferreira-Silva et al., 2008
.(
s ) /(.
7.*+
T($
kkC*
; V 9 H /(
<;
!
# $
Z:(
KY 8 S5
$*
52
$*
9 ,) .
*
$ ,>
L T,C*
$ .k*
# 9
$
@ .(
S5
* .!!;
)
Deinlein et al., 2014
.(
) #
*+!
"i !
# $
" W " ,) A" W " ,)
!d*
$ W " ,) H,!=
A"
/C
",ir
@ "
!;
!
# $ W " ,)
"f /X">
) K . 6 .(
#$( 9
! ",i "N
# $ W " ,)
"
"& X A"
!d*
@ " * $ !;
!
# $ W " ,)
"& X / ) $ ) "f $8 ",ir /C A"
.
K . ) 6 W " ,) /012 W " ,) z$D( PX .(
PX # !d* $J < 7 ,> $ - .) K . ) 4 S+ # $ PX <; $ ' V H .(
; X"G* W " ,) 9 \D( " # , + ./ 7 " < 7 ,> $ - .) W " ,) /012 .V kkC*
<!,E W " ,) A"
% :;"*
H,
2 / 2 4 / 2 .3 ,
* .!!;
)
Malakuti &
Tabatabaie, 2005
.(
*9+
"g V
<0VY*
.
<;
H,!`
012 9 W " ,) S ,2
# $ S+
# , +
" ; 80 1,*
-">
W " ,) -">$1,;
R 8 z$D(
# $ S+
# , + 2 4
( _! 9
"
" *
<
Z, "
z$D(
160 200
1,*
-">
W " ,) -">$1,;
R 8
… &
X . H
' V
$
<;
,
# $ S+
# , + 6 (
_! 9
"
" *
†, L 9 z$D(
W " ,)
X"G*
f
<
.) ( /012 H
"G!4
<
.V
<!,E
A"
7 ,>
.) $:) ) K . 4 .(
H " !
*
$
<a, ) /X">
<;
PX !
# $ 9 ,)
<)W " ,)
7 ,>
P,) PX
< X /(
. ; /012 S5
W " ,) 7 ,>
T "
$
*
$
<
",i
7.) 9
"1;
"
S5 -P,'$ *
% " ,) /: ) .
8"
H kkC*
b( c ) 9
# $ ",ir
"
; S5
S+
* .!)
<;
<
< $)
$8 Z:(
; S5 S+
…"d
@;
. S5
",2 K dX
% " ,)
* $ )
Rajaie and Motieallah, 2018
.(
PX
# $ S+
# , + Z:(
;
!d*
/012
"& X K . ) . 5
( . .V
<!,E
"& X
A"
% :;"*
.V 2 / 0 .3 /(
.
$D)
<;
s ) K . 5
?)
* .
"o;
# ,
# $ /012
"& X A"
7 ,>
" ; 9 .V
<!,E
/(
TkX ,
.
# $ H,!`
/012
# "
7 ,>
@ "X 7.
/(
. H,!=
"& X P,* ; Z:( W " ,) /012 PX K . ) . 7
.(
W " ,) ",ir $ .
"
; /012
"& X A"
) 9 PX .
M3 V 9
" ; H
"G!4
"i /f / ) .
; /,1 f (" (
% & X R 8
$
<)
E!
<
M,'
",ir
% .f )$
/(
<;
[4
; /,' dX
% & X
* ) $
Chandel et al.,
(2010
< 1
<
M,' K" !;
/012
% & X
K$1C*
R 8
<1,($
7. .c S5 CD(
H,u c
$ KYC)
* Ca-P
. . H " ! 9
0 )
/ ,)
<;
/012
% & X PX
# $ ;
. )
Zorb et al., 2019
.(
K . 6 . ) s Pa
<
_) .$ ,' # 7. .)$,c , !' K k "c % &3 8" " W " ,) # , + S+ # $ "i
Table 6. Results of variance analysis effect of irrigation water salinity and nitrogen on some traits of Valencia orange grafted on lemon.
Mean of squares Source of variation
Leafcopper
Leafzinc
Leafmanganese
Leafiron
Leafpotassium
Leafphosphorus
Leafnitrogen
df
38.106**
838.24**
894.88**
27597 **
1.1008**
0.0308**
7.631**
3 Salinity
1.641 ns 59.69**
80.20 ns 101 ns
0.0989**
0.0018**
1.805 **
4 Nitrogen
1.114 ns 8.091ns
23.43 ns 99.355 ns
0.0661**
0.0003 ns 0.161**
12 Salinity × Nitrogen
1.033 9.75
38.28 64.35
0.0138 0.00020
0.0105 40
Error
9.9 8.1
22.4 16.7
45.7 11.9
10.3 _
C.V. (%)
* ns
< **
"
, Z
$:) % &
!d*
!d* % &
K V \D(
5 1 ..3
ns, *, **: Non-significantly difference and significantly difference at p≤0.05 and p≤0.01, respectively.
K . 7 H,N) ,* < k* . "i
" W " ,) A" # "& X
.$ ,' # 7. .)$,c , !' K k "c
Table 7. Mean comparison effect of nitrogen on leaf phosphorus and zink of Valencia orange grafted on
lemon.
Leafzinc Leafphosphorus
Nitrogen
(mg/kg soil) (%) mg/kg
30.6 b 0.14 b
50
30.6 b 0.16 a
80
35.4 a 0.16 a
120
34.6 a 0.14 b
160
32.0 b 0.13 b
200
H,N) ,* $ ( "
% & R" ?* ‚"V L Mf .V #
!d*
K V \D( # 5
..) .) .3
In each column, means with similar letters are not significantly difference at 5% probability level.
& ( # , -
"i
# $ !
" W " ,) A" @,( c
!d*
$
@,( c H,!=
A"
/C
@ " ",ir !;
!
# $ W " ,)
"f /X">
) K . 6 .(
#$( 9 "i "N
!
# $
"
H + A"
!d*
@ " * $ !;
!
# $ W " ,) H + / ) $ ) ",ir /C A"
K . ) . "f $8 6
PX .(
z$D(
W " ,) 120
1,*
-">
-">$1,;
H,N) ,*
/012
@,( c A"
7 ,>
<
$J
!d*
# PX
" ?, 9 H .k*
/012
@,( c A"
7 ,>
; /X . PX
# $ /012
@,( c A"
7 ,>
; K . ) /X
4 H .(
"*
* .) $
"N) , H /k,kV .
<;
PX
# $
<
/14 PX /012
@ .(
"i f H,
@,( c
@ .(
@ .(
9 S5
@,( c
#",>$1 7 ";
/(
. .V
<!,E
@,( c
% :;"*
.V 7 / 1 .3
/(
. s ) U ( "
K . 4
"o;
# ,
# $ /012
@,( c 7 ,>
" ; 9
<!,E /(
TkX
, .
# $ H,!`
/012
# "
7 ,>
@ "X
7.
./(
T "
# $ .(
N :)
@ .(
.k*
9
@ .(
<) E!
S5
@,( c T($
<?
KY 8 a
* .!;
< 1 t ?2
<?
P,) a
KY 8 7 $ )
% .f S Q ) + M Q*
* .!;
.
% .f S Q )
<?
# "
S5
@,( c
$*
9 ,)
# "
/,' dX
# /8$(
9 ( K k )
$
@,0!
?X
#P (
# "g
* ) .
Zorb et al., 2019
(.
z$D(
# $ S+
# , + /012 H + A"
;
K . ) 5 ( . s )
?)
<;
/012 H + ,
.
# $ , H "
\D(
# $ 6 (
_! 9
"
" *
@;
H "
.V ./(
<!,E H +
% :;"*
.V 100 1,*
-">
-">$1,;
7 * L?8
O P>
.) ";
)
Malakuti & Tabatabaie, 2005
.(
s )
K . 5
?)
<;
TkX H " F
\D(
# $ S+
# , + /012 H +
" 9 .V
<!,E 7 $ /(
.
<
:4
*
$ /&>
<;
PX
# $ 9 ,) 7 ,>
<
H +
PX * . .
# $ ! <; .) "; O P> kkC*
/012 S5
M;
H + - .)
$ s) ) ;
)
Rajaie & Motieallah, 2018
.(
./0/%
"i
# $ !
"
A" P!N!*
!d*
$ P!N!* *
A"
/C
@ " ",ir !;
!
# $ W " ,)
"f
/X"N) ) K . 6 .(
! "i "N #$( 9 # $
W " ,)
"
# A"
!d*
@ " * $ !;
!
# $ W " ,)
# / ) $ ) $8 ",ir /C A"
K . ) . "f 6
! .(
# $ Z:(
; /012
P!N!*
A"
K . ) . 5
( .
" ?,
% d' D*
- a)
< X">
"
#
%F$GC*
) :2
‚"3
"0) 9
< !
O "c 7 ,>
R 8 K$1C*
/?;
- a)
< X">
.
?)
* .
<;
9 D,C* # ! ! <1
Z $* ?8 # $
; /012 P!N!*
7 8 7 ,>
*
$ )
Attarzadeh et al., 2019
.(
.V
<!,E P!N!*
% :;"*
H, 100 - 25 1,*
-">
-">$1,;
7 * L?8 O P>
.) ";
)
Malakuti &
Tabatabaie, 2005
.(
s ) K . 5
?) * .
<;
* , /012 P!N!*
.V
<!,E 7 $ /(
.
!
# $ Z:(
; /012
# K . ) .
5 ( .
# $D
<;
/012
# A"
, .
# $
S+
# , + , H "
\D(
# $ 6 ( _! 9
"
" *
@;
H "
$ . .V
<!,E
#
% :;"*
H,
40 - 25 1,*
-">
-">$1,;
7 * L?8 O P>
* .!!;
)
Malakuti & Tabatabaie, 2005
.(
-
,
# $
<
P H " F
\D(
+ /012
# A"
.V
<!,E 7 $ K . ) /(
5 (.
/012 H,!=
#
A"
7 ,>
\D(
120 1,*
-">
W " ,) -">$1,;
R 8 PX
*
‚"G*
" ?, W " ,) ; P
K :).
K . ) / 7
.(
* F V
$ PX
/012
#
"i
‚"G*
W " ,) #.,( !; <
<)W " ,) # $;
;
‡ - O R 8 /: )
)
Chandel et al., 2010
( . s ) E ?*
@ T($
kkC*
# $D /( 7.*+ /(.
O P> kkC* <;
; <; .) ";
/012
# z$D(
" F W " ,)
* ) $ . ) 9
"i /f ) .
Rajaie & Motieallah,
(2018
.
1%
"i
# $ !
"
A" _*
!d*
$ _* * A"
/C
",ir
@ "
!;
!
# $ W " ,)
"f /X"N)
) K . 6 .(
# $ Z:(
; /012 _*
- .)
$ 7 ,>
. .
<
# $J
<;
/012 _*
- .)
$
7 ,>
, .
# $ S+
# , + , H "
\D(
# $ 6 ( _! 9
"
" *
@;
H "
$ . ; /012
_*
PX
# $ T($
)
Zorb et al.,
(2019
P,) O P>
7.
/(
.
"
.!`
# $ Z:(
; /012 _*
A"
.
*
"o;
, /012
_*
" F 9 .V
<!,E 7. O P>
# "
H
"G!4
) 16 - 6 1,*
-">
$1,;
-">
7 * L?8 ( . $ kkC*
W " ,) ",ir PX
/012 S5
M;
_*
-.!>
) 9 ; R 8pH
PX /,'YV _*
9
@aV
<d($
<?
P,)
\ "
.) N,'
* .!)
<;
f
<
.,'$
%Y;
# K$1C*
d,:J
_*
) .!
Singh & Swarup, 1982
(.
2 # 3
"
s )
?)
<;
PX z$D(
# $ S+
# , +
/012
$
#
@ .(
A"
<?
"1;
A"
7 ,>
.V /, ( PX /X
<;
<
< $)
$8 ;
!d*
9 7 * L?8 A"
<?
K :).
./
' V
<;
W " ,) ($ C* ",ir
"
/012
@ .(
A"
/ .)
* Z:(
; /012
"1;
A"
. .
H " !
*
$
<a, ) /X">
<;
?Q 9
"i W " ,)
$:E . 7 ,>
<
/14 + ",ir
"
; S5
"1;
#",>$1 9 K k ) H
"G!4 9
<?
<
- .)
$
*
# $ H,!= ..
/012
"& X W " ,)
@,( c
"3 !4
@;
‚"G*
H + P!N!*
# _*
7 ,>
; 7 c
# 9
$*
<
" ; 9
.V
<!,E .) ( . t$( ",ir
# $
"
. 7 ,>
7 Y4
"
PX /012
$
# (
@ .(
"1;
#.V
P,) p$ "*
<
; /012
"3 !4
$*
9 ,) 7 ,>
<
" ; .V
<!,E /(
. W " ,) "N #$( 9 Z:(
$:E
# $ ",ir
"
; /012
"3 !4
# "g
$*
9 ,) 7 ,>
. /012 H
"3 !4 /X
,>
PX .
H " !
*
$
<a, ) /X">
<;
",ir
W " ,)
$:E
% "i t$(
# $
#.V T: "*
q&V /012
"3 !4
# "g 7 ,>
T "
$
* . .
<,3$
*
$ kJ !*
<;
M ?*
# $ R 8
< $*
.!
.k*
W " ,) X"G*
.V K$kd*
PX .
< :' - a)
< Pa A"
"0) H X">
.V
<!,E /012 W " ,) 7 ,>
*
$
9
‚"G*
, 9 .V W " ,)
#",>$1
";
.
REFERENCES
1. Aboutalebi, A., Tafazoly, E., Kholdebarin, B., & Karimian, N. (2007). Effect of salinity on concetration and distribution of potassium, sodium and chloride ions in sweet lime scion on five rootstocks. Journal of Water and Soil Science, 11 (1), 69-78.
2. Adams, S. N., Ac-Pangan, W. O., & Rossi, L. (2019). Effects of soil Salinity on citrus rootstock 'US- 942'. HortScience, 54, 787-792.
3. Al-Yassin, A. (2004). Influence of salinity on citrus: A review paper. Journal of Central European Agriculture, 5, 263-731.
4. Anjum, M. A. (2008). Effect of NaCl concentrations in irrigation water on growth and polyamine metabolism in two citrus rootstocks with different levels of salinity tolerance. Acta Physiology Plant, 30, 43-52.
5. Attarzadeh, M., Balouchi, H., Rajaie, M., Movahhedi Dehnavi, M., & Salehi, A. (2019). Growth and nutrient content of Echinacea purpurea as affected by the combination of phosphorus with arbuscular mycorrhizal fungus and Pseudomonas florescent bacterium under different irrigation regimes.
Journal of Environment Management, 231, 182-188.
6. Attarzadeh, M., Movahhedi Dehnavi, D.M., & Ghaffarian, H.M. (2017). Comparison of the effect of water deficit and salt stresses on the growth, sodium and potassium content of wheat (Triticum aestivum L.). Cereal Research, 6(4), 465-476. (In Farsi).
7. Attarzadeh, M., Rahimi, A., Torabi, B., & Dashti, H. (2014). Effect of Ca(NO3)2, KH2PO4, and MnSO4 foliar application on ion accumulation and physiological traits of safower under salt stress.
Agronomy Journal (Pajouhesh and Sazandegi), 107, 133-142. (In Farsi).
8. Bar, Y., Apelbaum, A., Kafkafi, U., & Goren, R. (1997). Relationship between chloride and nitrate and its effect on growth and mineral composition of avocado and citrus plants. Journal of Plant Nutrition, 20, 715-731.
9. Cedra, A. M., Nieves, M., & Guillen, M. G. (1990). Salt tolerance of lemon trees as affected by rootstock. Irrigation Science, 11, 245-249.
10. Chandel, G., Banerjee, S, See, S., Meena, R, Sharma, D.J., & Verulkar, S.B. (2010). Effects of different nitrogen fertilizer levels and native soil properties on rice grain Fe, Zn and protein contents.
Rice Science, 17, 213-227.
11. Deinlein, U., Stephan, A.B., Horie, T., Luo, W., Xu G., & Schroeder, J.I. (2014). Plant salt-tolerance mechanisms. Trends in Plant Science, 19, 371-379.
12. Ferreira-Silva, S. L., Silveira, J., Voigt, E., Soares, L., & Viegas, R. (2008). Changes in physiological indicators associated with salt tolerance in two contrasting cashew rootstocks. Brazilian Journal of Plant Physiology, 20, 51-59.
13. Francisco, G., Jhon, L., Jifon, S., Micacle, C., & Tames, P. S. (2002). Gas exchange chlorophyll and nuntrient content in relation to Na+ and Cl- accumulation in "sunburst" mandarine grafted on different root stocks. Plant Science, 35, 314-320.
14. Garcia-Sanchez, F., Botia, P., Fernandez-Ballester, G., Cerda, A., & Lopez, V. M. (2005). Uptake, transport, and concentration of chloride and sodium in three citrus rootstock seedlings. Journal of Plant Nutrition, 28, 1933-1945.
15. Irshad, M., Honna, T., Eneji, A. E., & Yamamoto, S. (2002). Wheat response to nitrogen source under saline conditions. Journal of Plant Nutrition, 25, 2603-2612.
16. Kafkafi, U., Valoras, N., & Letey, J. (1982). Chloride interaction with nitrate and phosphate nutrition in tomato (Lycopersicon esculentum L.). Journal of Plant Nutrition, 5, 1369-1385.
17. Khanchezar, A., Izadpanah, K., & Mirtalebi, M. (2020). Biotic and abiotic factors associated with citrus progressive decline in Fars Province, Iran. Journal of Phytopathology, 168, 460-468.
18. Khoshbakht, D., Mirzaei, M., & Ramin, A.A. (2015). Effects of salinity stress on gas exchange, growth, and nutrient concentrations of two citrus rootstocks. Journal of Crop Production and Processing, 4 (14), 35-47.
19. Khoshgoftarmanesh, A. H., & Siadat, H. (2002). Mineral nutrition of horticultural crops and vegetables in saline conditions. Tehran: Agricultural Education Publishing. (In Farsi).
20. Lea-Cox, J.D., & Syvertsen, J.P. (1993). Salinity reduces water use and nitrate-N-use efficiency of citrus. Annals of Botany, 72, 47-54.
21. Malakuti, M. J., & Tabatabaie, J. (2005). Proper nutrition of fruit trees in calcareous soils of Iran.
Sana Publication, Iran. (In Farsi).
22. Mass, E. V., & Hoffman, G. J. (1977). Crop salt tolerance-current assessment. Journal of Irrigation and Drainage Engineering, 103, 115-134.
23. Mohebi, M., Babalar, M., Fattahi Moghadam, M.R., & Askary, M. A. (2021). Effects of potassium and calcium on vegetative growth and mineral balance of apple tree grafted on dwarfing rootstocks, under salinity stress. Iranian Journal of Horticultural Science, 52(2), 429-446. (in Farsi)
24. Patterson, B., Macrae, E., & Ferguson, I. (1984). Estimation of hydrogen peroxide in plant extracts using titanium (IV). Annual Biochemica, 139, 487-492.
25. Raiesi, T., Golmohammadi, M., & Asadi Kangarshahi, A. (2021). Evaluation of leaf nutrient changes in Mexican lime (Citrus aurantifolia Swingle) during the progression of witches’ broom disease of lime (WBDL). Iranian Journal of Horticultural Science, 53(3), 731-741. (in Farsi).
26. Rajaie, M., & Motieallah, M. E. (2018). Effect of ammonium sulfate on growth, ion accumulation in soure orange (Citrus aurantium) seedlings under salinity stress condition. Journal of Plant Process and Function, 6(19), 117-128. (In Farsi).
27. Rajaie, M., & Motieallah, M.E. (2018). Ameliorative effect of ammonium sulfate on salt tolerance and ion homeostasis in lemon (C. limon) seedlings. International Journal of Horticultural Science and Technology, 5(1), 111-122.
28. Sadeghi Lotfabadi, S., Kafi, M., & Khazaei, H. R. (2010). Effects of calcium, potassium and method of application on sorghum (Sorghum bicolor L.) morphological and physiological traits in the presence of salinity. Journal of Soil and Water Conservation, 24, 385-393.
29. Singh, D. V., & Swarup, C. (1982). Copper nutrition of wheat in relation to nitrogen and phosphorous fertilization. Plant and Soil, 65, 433-436.
30. Spreen, T.H., Gao, Z., Fernandes, Jr, W., & Zansler, M.L. (2020). Global economics and marketing of citrus products. The genus citrus. Elsevier, pp. 471-493.
31. Syvertsen, J. P., Lloyd, J., & Kriedemann, E. (1988). Salinity and drought effects on foliar ion concentration, water relations, and photosynthetic characteristics of orchard citrus. Australian Journal of Agricultural Research, 39, 619-627.
32. Tabatabaei, S. J. (2006). Effects of salinity and N on the growth, photosynthesis and N status of olive (Olea europaea L.) trees. Scientia Horticulturae, 108, 432-438.
33. Zayed, B. A., Salem, A. K. M., & El-Sharkawy, H. M. (2011). Effect of different micronutrient treatments on rice (Oriza sativa L.) growth and yield under saline soil conditions. World Journal of Agricultural Sciences, 7, 179-184.
34. Zhu, J. K. (2001). Plant salt tolerance. Trends in Plant Science, 6, 66-71.
35. Zorb, C., Geilfus, C‐M., & Dietz, K‐J. (2019). Salinity and crop yield. Plant Biology, 21, 31-38.