24 2
1401
479 - 465
DOI:10.22059/jci.2021.322146.2537
: ! " #$
8
( # # $ %# : '( )
1
* 2
3 3
1 . ! "
#
!
$%&' ( ) * +,- .. ,& ' / (. ' ) . ,23 4 4 3 + ) * 5 + # 6 ' 78
2 8 . +,- 9 ,:
+ ,;
<=&
<,2!
78 2!
. , >
' / ' / .. ,&
3 . ! "
#
! +,- ,; + 9 ,:
<=&
<,2!
.. ,& ' / ' / . , > 2! 78
: @ 4 $9 & A& 3 27
/ 01 / 1400 : @ 4 F,&GH A& 3
27 / 05 / 1400
. ! " # $% &' () * +&' % ! , # +-. ) # +/0# 1 % $ () * +&' %
% ! 23 # 3 4 3 - ! 5 6 +
8 8 ! ! 1398
< # . #
=>8 $ 4 >/3&? ! # / @3A B' A $ #
% ! 23 ! C ! /D E"
() * F ! ! C !NDVI G %
! H03I JA #
. # K = G % 4,
&=
$ L
+&' () *
= 3 L . +-.
# +*M N 3
&=
$ /
! ! #
$ O.
#!
1 +P D .
% ,
! -.
$% &'
4 3 4 3 % "
! 1398 Q/
$ #
# % N 3
! 23 . N 3 4 &
! ! 5 R '
? ' +*M 0' !
<
B' A
@3A # 5/
90 80
# 4 >/3&? ! # / < ! M ! 5/
92 90 E" % ! 23 < ! M !
# NDVI 5/
95 93 N 3 V # . > * M !
+&' %
! -. , # = ! @3A B' A < ! ( W N # . F D
# $% &' 5/
# # "
6 / 12 4 / 16 7 / 8 6 / 6 ! M !
# 4 >/3&? ! # / <
# # " 5/
1 / 10 3 / 8 1 / 5 2 / 7 M ! 3 ! + . E" % ! 23 #NDVI
! , # < 3-# 4 G
# $% &' ! -. , # = ! = ! +&' %
# # " $ ! 5/
4 / 2 5 / 1 3 / 4 6 / 4
! # M ! 4 & '
E" $) # +/0# 1 ! $
4, $\ P 0A # . # () * +&' % ! , # ! /D . #
$ L : +&'
=>8 3 $ $ #
.NDVI
Estimation of Agricultural Cultivation Area by Landsat 8 Satellite Images (Case study: Shushtar Province)
Mohammad Abiyat1*, Saeid Amanpour2, Mahmud Abiyat3, Majedeh Abiyat3
1. Former M.Sc. Student, Department of Environmental Sciences, Islamic Azad University, Tehran (Khuzestan) Science and Research Branch, Ahvaz, Iran.
2.Associate Professor, Department of Geography and Urban Planning, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
3. Former M.Sc. Student, Department of Geography and Urban Planning, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
Received: April 16, 2021 Accepted: August 18, 2021 Abstract
Satellite images have a high capability to estimate the area under agricultural crops. This study aims at identifying the area under dominant crops such as in Shushtar Province, using Landsat 8 satellite images during the growing season during 2019. With Maximum Probability technique and Support Vector Machine in the first approach and using NDVI index in the second one, crops in different growing seasons and according to their calendar, a cropping pattern map has been drawn. In order to evaluate the results’ accuracy, the generated maps have been examined with the reference data.
Agricultural Jihad statistics of Khuzestan are also used with the results showing that Kappa coefficient and overall accuracy are calculated as 90% and 80% in the Maximum Probability technique, 92% and 90% in the Support Vector Machine, and 95% and 93% in the NDVI, respectively. Based on the results, the cultivation area of wheat, barley, rice, and corn, in the Maximum Probability technique, in comparison with the statistics of Agricultural Jihad, has had an error of 12.6%, 16.4%, 8.7%, and 6.6%, respectively and in case of the Support Vector Machine, an error of 10.1%, 8.3%, 5.1%, and 7.2%, respectively. However, using the NDVI index as the best approach to estimate the cultivation area in this region, in comparison with the statistics of Agricultural Jihad, has had an error of 2.4%, 1.5%, 4.3%, and 4.6%, respectively, which indicates the high capability of vegetation indices to estimate the Cultivation Area, in accordance with their phenological stage.
Keywords: Classification, cultivation pattern, NDVI, satellite imagery, Shushtar.
1 .
$% &' #
4 G 0M '
/ ]
^6 $ % /
_ . .
4 + / 4 ^D
! " #
! ' + . H/ `
$% &'
! + ! % 3P
aI#
@-
% /"W
$
^6 +/
3 ! #
^6
+ .
$% &' ?
G % () * 6 #
4, !
/
^6 +/
^6
! +/ @.
A a=
$ /0'
) ! !
Mushtaq & Asima, 2014; Gumma et al., 2016
.(
a QP +/ @.
$ d#
/>8 J/ C&"
#
$% &' e8 /f]
3 ^D #
8 F gG # //h
$ L +&' , i # # 4, ) +
Kumar &
Jeganathan, 2017
+&' $ L .(
JM A j/3 a '
J# =3 4
k/*
/>8 + j ' # JC
$ /D
K&l /P h. % ) !
Riahi et al., 2019
.(
! , # +&' %
() * K- $% &'
% / # a ?
* ) +
Gallego et al., 2008
.(
D,
% m () * +/ R
+&' % 4,
# 4 G / F D !
$ L +&' n
!
)
Sadoghi & Rouhani, 2021
$ , .(
e/1!
$% &'
Q#
@-
$ # o ! /
^6 + /
$ ^D
#
$Q
$! 31 $ ) +
Jain et al., 2017
a ? .(
! k $
* # / /-#
#
$Q
$ #
O % /- ( ! M
_@' ) '
Yadav et al., 2002
.(
%
$ L !
! !
$ aj
% ! 3 # ( 1 #
_/C2 C
$ 3 ! 2/8
% ( Gd8
# F L /*M 1
% +&' %
m
() * K P
) '
Nguyen & Wagner, 2017;
King et al., 2017
.(
! ! % ! 23 # ! % aj $
4 # 4
Q 4 % M # $% &' m Q # @3 . K'
< # +> $ +&' % @ $
) ! ' ! , # > +1! # R
Mousavi et al.,
K .(2021
/ l
! 23
%
% l ! 8 !
() *
$% &' 4 C
! 23
%
* 2/8
(! ! i > * G % K = # ') % ! # Qj p > = * $ # 2/8 * . !
) # H03I () * /# Q @ +/0# 1 ! #
)
Rahimzadegan & Pourgholam, 2017
# .(
+-# & +0G
8
# _ % ! 23 4 C () * 4 / 2/
q
) ! ! . +&' % r I3
Caren et al., 2001
.(
D 4 / _ \ P $) # d3" D _/C2 #
D 5 ) +
Sadoghi & Rouhani, 2021
# .(
/@
J/!
$ # _/C2 /#
$% &' () * H03I
#
! 23
% 2/8 l
506 %
% l
! 23 ) !
Joshi et al., 2006
.(
a s? 4 '
! $! 3 $
# # ! , #
+&' % () *
H03I # m
<
! !
$
aj
% ! / F j # .+
Huang et al.
) (2002
+1! 4 Q/
=>8
#
$ / 4 >/3&? ! # '
# J '
$
H03I F j ! #
#
<
$ C>
> G B' A
@3A +" !
K/@
$ /D
=
! ' .
# . #
N 3
<
/
! # 4 >/3&?
= ! #
<
$ L ! a/#
+1!
B' A <
@3A
K' +1!
+ !
. Lobell et al.
) _ QC ! (2003
+ * $\ P 5/' #
2000 / j/3 # ! ' ! , # * 4 Q/
a/? N 3 ' 0* V /= ! () * /#
20 M !
K .+ /h3 E" / l
a ? $ /q /D
NDVI
. 3 5 * // $ #
Rahimzadegan & Pourgholam
) // +-. (2017
+&' % /D
4 2G%
+# 4 3 - % /A
<
=>8 $
E" + $ #
$ /D
! ! r L Q>
4 2G%
# # K = G % 4,
4, N 3 . ! ' ! 23 ! ! 4 &
+&' % !
<
/
! # 0' +*M # 4 >/3&?
95 5 R M !
$ ? ' 90
# M ! ! ! C < 3-# 4 G
! A " $% &' ! -. , # = 18
M !
E" % ! 23 .+ ! #NDVI
< 3-# 4 G
4 & F ! ! C !
! 7118
! # 3C ! '
) $% &' ! -. , # = 7550
! A " ( 3C
7 / 5
# # .! ! 4 & $ M ! N 3
a s?
4 &
!
' 5
E"
$ 4 % /D !
! , #
+&' % 4 2G%
# . #
$\ P 4,
! # .
Riahi et al.
) () * +&' $ L &= (2019
G % 5 6 /A ( j 4 -2M #
! 23
%
+ 8
=>8 B' A $ #
@3A E"
#NDVI
. # K = G % 4, /-
! ' . N 3 4 &
! ! '
+&' % F D
. 5/ N # / %
P 0G !
<
B' A
@3A !
= #
! -. ,
$% &'
# 5/
"
# # # 2 / 10 6 / 18 8 / 1 .+ !
E" % ! 23 !NDVI
= # ,
$% &' ! -.
# 5/
$ !
"
# # # 6 / 6 5 / 6 2 / 3 ! # M !
4 & ' ! , # ! /D E" 5 ' !
4, $\ P # . # () * +&' % .! #
Mousavi et al.
)
# (2021
+&' % ! , # q
% 4 j % ! ! V j = K ! F D $
J /3 2 @3A B' A 4 >/3&? ! # / < ! +1! # 4 >/3&? ! # / ! ! 4 & N 3 . ! ' ! 23
0' 89 $ ? ' 5 R M ! 88
# +> M ! <
+-. + ! " # $ ) # +1! % @3A B' A 4 >/3&? ! # / < +&' % r I3 ! -. , # +&' % N 3 = . ! - &/?
* $% &' 18
* 4 Q/ .! ! 4 & M !
# +&' % % ! 23 # Q/ F D
>3 ! + ! % ,
=>8 <
= 3 4 % , # $ #
* 4 Q/ ' 17
.! ! 4 & M !
a s?
R A # Q/L 3P O
@ # 31!
J# 1
>1
$ #
! , # +&' %
() *
$% &'
# 4 3 % " 4 3 ! 3 4 3 -
$ P
% aj
! F j $
+ . 3 4 3 -
C
% Q' K-
$% &' 4 &' !
#
@ !
() * +&' % +/ R % D, # # 4 3 - ! $% &' // ! _@'
( / ! % ! >@' 4 Q/ E " / 4 Q/
# $% &'
# ( >f q R A a s? . # 3 ! %
t . e8 # Q' @ # ! ! q ! 4 / ! &' # 6
K3 L
=>8 H03I $ $ #
$
E"
a ? $
# < 3-# /D ! , # q
3 4 3 - ! $% &' () * +&' % ^ . ' P aj _/ C % ! 23
+ ! %
8 $ # ! 8 !
.! # $% &' () * +&' %
2 .
2 . 1 .
4 3 - 3
# +A 15 / 243282 3C
m 2
150 3
% t,
! %, $ ! /P h. +/ 1 48
. ! 33
=/1!
49 . ! 12
=/1!
8 1
31 . ! 36
=/1!
32 . ! 8
=/1!
u G
@
!
@ 1 L0.
4 3 % "
O1 +
) JC 1 .(
4 3 -
$ ! 4 3 #
$ F D 4 3 %
$ 3
3
$ + . % a/# 3 4 3 - ! 75
Q
&' / % 3C ! ! ! . K ! #, $%
) 550
/ 4 3 - ! * Q .!
+" 5$ -$ #5<$ 8(+C-$ .1 AB
2 . 2 .
( Gd8
! 23 ! ! a s?
J
$ ( Gd8 K = # i #
G % () *
= # s () *
@G e#
I #
$% &' () * +
. K / l
% , 4 %
! -.
$% &'
! 4 3 % " 4 3 1398
+-.
! . ! 23 N 3 # % a s?
/0' R A
<% ! ? $ # F%) $
1OLI
+ 8 ( M
! ! .+P ^?
+ %
USGS
)
www.earthexplorer.usgs.gov
<% ! ? . /- (
F%) #
$ t I3 4 %
# 5
$ /-
V #
m () * N # . F D) @G
F j (( W
+P D . K / l
m $ #
() * G %
//
&=
L
$ +&'
V #
K = G % JA
\ P
$ () * % $ # K' a ? #
! P -
1398 # 8 _ !Q
# 4 % .) /- $% &' () *
1 .(
1. Operational Land Imager
E %1 1 %<F<, 60 ,0 -$ 37 ; . 8,%<"OLI
8
@
@ v
$!d/ v
1 14 ! P 1398 3 J , 2019
*2 17 +&-> ! 1398 7 2019
3 16
! ! "
1398 6
w \ 2019
*4 16
/ 1398 7
/w \ 2019
5 14
! ! 1398 5
( 2019
*6 15 - 1398 6 > 3x 2019
* 0- $ 37 ; HI <$ 0
_/C2 $ # R
= +&' %
! %
17 +&-> ! 1398
16 / 1398 15
- 1398
j . ! . ! 23 OLI
) 2 ( () * G % K = = H03I
$ # //
4 % 5
/- 4 &
! ! +
.
2 . 3
" # .
$% &' ( $#
# J/!
4, ' +
8 ! ! # O. / %
# -. ( 3I +1!
5 R G
&3
%
4 @ ( Gd8 / % O.
! . !
! 23 .
E %1 2 7 #$ . J7-#
'0 6
*:-; $ H" K
#5<$
* m ! & +/ R
5I3 $
17 +&-> ! 1398
16
/ 1398 15
- 1398
F D L Q> r % J>1 @'
L Q> r
! % +&'
&
. + ! #
& +&'
N #
& +&'
" % 6,
! J ' D /
( W
& +&'
+ 5 6 o " t % # a J *
L Q> r % J>1 @'
* L M 45, (N -1 O%' A("
+-.
a QP 4 Q/
( Gd8 J# 1
r I3
%
( */*
C 3 !
$ 2 @ #
$
! # % / .
# J/ ! ( f . #
$
$\ 4 Q/
+>f k
j
$ # J/0*
! !
$ #
f . ( M ! 4 C
J
! .
# J/ ! % ! 23
<
$
=>8 E" $ # . ( f 2/8 $
#
$ N 3 4, /f]
+ $! % .
# # < %
e 2 J C/?
1_
! . ! 23 + A
,
? / $
$ ! a#
2M !
@ 8 r
3 . !
<
u P
! ' ! #
%
J C/? 4 t,
+P '
! =
D # % # 4,
2M _ !Q
# 2M # .
#
5/
f
$ . aI?
# ( M
= +# f # J C/?
! # P R
! .
# /@
+-.
$ #
^A
_ 2 @ $ "
3 #
= 3# f
%
<%
J C/?
$ # K' ) !
Bagan & Yamagata,
j .(2012
k OLI
+' / ] '
/* ! C 3 !
1 3P D #
8 ' $
$ / #
%
$ "
C/ C / C/ 3C #
$ 4,
ndM
! + j/3
% / # /*
C 3 ! . 3
1. Dark-Object Subtraction
2 . 4
*+ . $% &' ,
# q
=>8
#
$ ( ! C )
3#
F 1 #
+ ! #
@
$ @/0
# 4 G L
$ ( I&
8 /2
% ( =>8
= .
&I#
%
! ! +-.
<% ,
&I#
% 4, #
$
! , # +*M N 3
=>8
#
$ # ' 3P D +
. C $ # #
=
< /# 3 !
=>8 $ i = ! F j $ #
% ,
& %, C
#
$
< F @ $
=>8
! $ # 3P D q
.
? ! C/
J
$
@
$
% ,
%,
&
! . ) 3 ( .+ ! ,
E %1 3 0%+ . A B(!
/- / 6-$2
7 $62
Vd'
! J C/?
$
@
$
% ,
! J C/?
$
@
$
& %,
F D 137
122
. 141
103
N # 155
145
( W 215
226
2 . 5 .% $/ 01 2 .
#
$ t I3 ( >/'
#
$ 5 #
$
=>8
#
$
4 Q/
_/C2
^?
$ d'
$ H03I # ? /
_/C2
^?
$ D E"
+> . # 2
2. Divergence index
_/C2 % E" ! $ ^?
2M 2
4 /#
+ 2M '
! F G 2 _/C
^?
$ ! ' Vd 2
4 &
Vd' J ' _/C2 ! $ . $ # . #
=>8 _/C2 4 Q/ # +1! # 5 $ # % $ ^?
8 / 1 ) # ) #
Jeffreys, 1946
. ! .(
) 4 ( N 3
@' _/C2
$ ^?
( =>8 !
@
$ ! 23 # @/0
.+ ! , '^ E" %
E %1 4 Q7 / .
&, $ RM
703N0 03 /- /
(S+
(" 0
2 . 6
*+ . 4 5 6 $7 6 ,
<
B' A
@3A C
% N
<
$
=>8
$ # B' ! a s?
( ) #
Hopkins
et al., 2005
V # .(
u P
! F @
@ $
@/0
% O % $ /?
' .
! +=/=A
@
$
Vd'
$
% , # ) # Vd' 4,
Alipour et
al., 2014
# # .(
A 4 C #
%
!
@
$
a/#
! 23 $
! ( //h
$ / #
% Ds
$
2/8 ! 3 D 3 /?
1
! /D .
!
=>8
$ # B' A
J C/? @3A q !
#
=>8
$ +>
! !
! '
B' A
@3A e0
J C/?
# 4,
=>8
! . ! !
)
Ahmadi Naddoshan et al., 2010
.(
2 . 7
*+ . 9 * :# $, ; 2 ,
/
! # 3&?
/ 4 >
_
<
=>8
#
$ #
$ + '
# //
_ #
*2M 2 _/C ' -#
/ !
`P
$ Ds
! !
$
% , ' Vd
$ H03I # A 'B
. # / 4, 2 _/C
@ .
#
*2M
$ '
A 'B A / # /
! ' Vd K P
@ #
*2M -#
/
! !
$
!Q _
# #
*2M
! #
$
4 >/3&?
/ 1
)
Kavzoglu & Colkesen, 2009
.(
! aI#
=>8
#
$ i # # / 3&? ! # / 4 >
-l
m '
2J F #
" $ 0@. l 3
4$
5 G
&y/?
) + H J# 16 Dixon & Candade, 2008
.(
K- J ' t I3 ]
! . 0@G
C
!
=>8 #
$ ' /
! # 3&?
/ 4 >
# . ' J
$
3 J
? /
&y G
# .
! a s?
' J G # . 0@G # C
! +> 3-#
# ' J
$
! L
! 23 )
Petropoulos et al., 2011; Knorn et
al., 2009; Keuchel et al., 2003
dG .(
# ' J
G k=P # _ 3 ?
% ? / a H /
%
! !
' ! ? /
!
%
$ 4, !
= # ' J
$ ! L
' ) !%
Huang, 2002
.(
2 . 8 => ., %( .
*+
,
%) m
=>8
#
$ D,
% 4 Q/
+*M
4, ) #
Nateghi et al., 2018
(.
# q
%
#
+1!
<
$
=>8
#
$ 0' +*M 3 ? ! %
7
? ' 5 R +*M . ! 23 8
' 0 C
! %
3 ?
$ +1!
+ ' /
% # 0@G / ( ? / y /
$ #
$
> * 3
! , #
$ ' 0
% +1!
=>8
#
$
#
nd M 1!
/ e / L /
% +1!
=>8
#
$ + . +1!
1. Support Vector
2. Kernel 3. Linear 4. Polynomial
5. Radial Basic Function 6. Sigmoid
7. Overall ccuracy 8. Kappa Coefficient
Vd' F D . N # ( W
F D 0
97 / 1 99 / 1 99 / 1
. 97 / 1 0 99 / 1 99 / 1
N # 99 / 1 99 / 1 0 2
( W 99 / 1 99 / 1 2 0
'0
% M G O@.
1 0M z
"
= / K #
! ' J ? C/
J e>8
# ) 1 (
> * .
)
# 1 (
ΣPij OA = 1/N
# ! { 0' +1! OA
J C/? ! N
$
& %,
ΣPij
" z 0M 1 M G O@.
) #
Moradi et al., 2016
.(
Chuanga et al.
) (2011
4 /#
! ' ' 4 l l +1!
0' !
&=
$
#
>3 ! + ! , a/#
% 70 M ! # +1!
&=
$ #
>3 ! + ! , J# 1
! @3G + . C
%
3 ?
$ +1!
'
% z "
# + ! ,
R 5 '
? + ' +1!
=>8
#
$ +>
#
_
=>8
#
$ ' pd P!
> * '
! . 5 R
? ' /#
2M 1
# '
! G _ L /#
eP M
M !
=>8
# $ # +/ 1
/ % ) #
Mather &
Tso, 2009
E" .(
'
?
%
# ) 2 (
> * .
)
# 2 (
Kappa = [(P0-Pc) / (1-Pc)] ×100
# !
P0
& 3 !
Pc
eP
q3 ! ) #
Moradi et al., 2016
.(
2 . 9 01 2 .
. /
E"
$ /D
%
! # ' ?
@
$ ( > *
#
$ 3 ' # q
> * M ! a ? /D
# a ? m
/D +/ R
L Q>
_
= 8 !
$ H03I # ' ) !
Sadoghi &
Rouhani, 2021
% ! 23 ! C ! .(
E"
$
+-. /D
! , # +&' %
() *
E" % $% &' E" . ! 23 NDVI
/D
1 0R 2 ) (NDVI
!
$! # ' E"
$ 3" /D
#
)
Rahimzadegan & Pourgholam, 2017
! .(
1. Normalized Difference Vegetation Index
E"
+>
/
%
$ #
Q 1 4 ! _ !Q
Q 1
$ #
&=
$ a ? /D #
k 4,
! 23 ! 1
! /D .
%
! # 3 # # 4 Q/
4 /D # 5/
t^.
t % # .
! . _ +>
) # 4 &
! a ? /D K
+ A ! ' _
+>
/ ? />
a ? /D K
l!
V 3
4 # a ? /D ) +
Schowengerdt, 2007
E" .(
a ? /D ) # e 8 % NDVI
3 > * ( :!
)
# 3 (
NDVI = (NIR-RED) / (NIR+RED)
E"
!
$ ! = !
! /#
1 -
1 + + ' # a @
! = #
3A
4 C
^?
) !%
Entezari et al., 2019
! = .(
2
! E"
' A
% F G
`A a ? /D
! = +>B
=8 # a ? /D 4 &
!
)
Feizizadeh et al., 2016
+-. .(
! , # +&' %
() *
= #
! 23
% ! C ) E"
(F ! 3#
# # K =
G %
@G () *
= 4, # L ! () *
$% &'
% #
$
%
# a/#
L Q>
i # # () *
! 23 #
%
( Gd8 G % Q/
$
( M ! ( 23
4! #
% #
% 4 % # r
L Q>
() *
$% &' E"
/D
$ i #
#
% #
%
@G q !
e8 #
= ) # ! E"
.
4 @ D ' a/?
32D 4 % !
17
+&-> ! 1398
16 / 1398 15
-
1398 () *
@G
% q 4 ! r
L Q>
# L C 4 /D
= Q @3 3
# # E"
# '^
$
! /?
$%
# @G E"
#
$ 5I3
e8 +&' %
! D .
3
@A, B% C .
3 . 1
*+ ( DE 6 B% C . ,
=>8 F j $ # $ #
$ H03I t % #
$
() * !
$
= H03I #
# K =
G % +&'
$
@G
% 4 / + ! #
%
= ! + -
% $ 17
+&-> ! 1398
16
/ 1398 15
- 1398
# 3-# 4 G
$
$
2 +-. %
H03I () * _/C
=>8 < % ! 23 # . t I3 = a ? $ #
J $% &' @G () * R = R H &= $ # ( W N # . F D
z? .
% 4 ?
=>8
$ # N 3 JM A
%
=>8
$ #
%
= e 8
&=
$
=>8
$ # # +/ 1 / % #
$ / _@' //
+*M # ( M
@'
! , # .
< +1! 0' N 3
=>8 $ 0' +*M V # $ #
$ 3 ? ? ' 5 R +1!
# ' . ! ' /
) 5 .+ ! , (
4 >/3&? ! # / < j >3G N 3 V # 0' +*M # 90
$ ? ' 5 R M ! 92
+1! M !
=>8 ! @3A B' A < # +> $ ) # $ #
_/C2 ! < .+ 3 ! ?
'
3P 2/8 _ !Q K # ! / # eP J@G ! '
$% &' () * $ > _/C2 # #
#!
.+ ! ! 4 &
. ( Gd8 V # )
5 (
=>8 <
$ #
0' +*M # @3A B' A 80
$ ? ' 5 R M !
90 / ? +1! M ! < ! .+ 3 ! $
!
` #
% +@ 1
$ 4 /D = #
# "
% K
_/C2
&
! # ! 4 C
J C/?
!
' i # # /D _
! # !
=>8
4 /D ' # /D K K- %
% ! 3 !
! q 3P D JC .! #
) 2 (
&=
( =>8
() *
$% &' ! =
1398 < ! #
=>8 4 & 4 >/3&? ! # / @3A B' A $ #
$ # . ! #
3-#
$ L +&'
= ! JC
) 2 (
$ # ' L ! $
# ( M ! ! 4 & /2
D ' ? () *
@G J
F D N # .
$ # ( W
&=
EI&
+ .
E %1
5 Q7 / . S9 8C T
#&U 0- $ 37 ; %<
0
Vd' $
@G () *
@3A B' A
4 >/3&? ! # /
' / +1!
) (%
# ' +1!
) (% ' / +1!
) (%
# ' +1!
) (%
F D 96
95
85
97
. 91
88
99
71
N # 80
89
96
91
( W 68
67
97
100
() *
76 77
89
90
0' +*M ( M !)
80
90
? ' 5 R ( M !)
90
92
%< #&U T 60 ,0 6 9 *:-; $ %< #&U .2 AB
$ # //
+&' % () *
= @G
# _@'
&=
$
=>8
$ #
%
&=
=>8 $
$ #
<
$ @3A B' A 4 >/3&? ! # /
! 23
. + - ! / % +A
> * $
&= % $
=>8
$ #
< # ( Gd8 , # '^ $
+A
$!
% / % ' +A
$ 4, k
G % ! 4 3 % " 4 3 $% &' ! -. 4 % 1398 w
! #
= .)
6 .(
=>8 N 3 V # R +A m @j $ #
B' A < ! $% &' @3A
77 / 89091 3C
4 Q/ $% &' ! -. 4 % , # = ! ' ! # $ "
7 / 13 4 & $ M ! < ! . !
G % R J' +A 4 >/3&? ! # /
08 / 89609
% , # = ! ' ! , # 3C ! -. 4
$ " 4 Q/ $% &' 1
/ 6 4 & $ M ! ! . !
=>8 < ! $ #
+&' %
! ( W N #
= # , ( Gd8
! -.
$% &' a/#
! #
A ! , # = ! . F D +&' % '
'^
K' H/8 + > d3" +0G .+ ! #
_/C2 +/0# 1 # ' ! # i = " # ! C
? E/I&
! " a QP gG # 3 ^D /f]
H03I () * +&' % ! , # N 3 .!
< =
=>8 $ ' ! ! 4 & ! C ! $ #
4 >/3&? ! # / <
B' A < # +>
R _/C2 ! $ ) # +1! @3A B' ! .+ 3 ! = () * +&' %
a s?
K3 L = / % ! '
=>8 $ $ #
$ 4 >/3&? ! # / < #
# 4 G
&' R r I3 / % ! eP $%
N 3 # m R .+ P a s?
$
Huang et al.
) (2002 Rahimzadegan et al.
) (2017
Mousavi et al.
) B' A < ! .! ! I@ (2021
. ( W +&' % R @3A
# 5/
a/#
K' .+ 3 ! $% &' ! -. , # +=#
! N # +&' % 4 >/3&? ! # / <
F D
# 5/
a/#
K' , # +=#
3 ! '^
( 2 ! .
4 / +A
$
#
>3 ! + ! , # +&' %
! -. 4 %
$% &' + C@
%
! : # %
1 - ( 2 v
+&' J G
$ #
% 4, '
! "
gG # # dC& 4 ,! .
% 0@.
t % # ( 23
m Q () * H03I
! _ +
.
2 - / % = !
$
$% &' _l '
3
+A 506 4,
% _ 3C + . K / l
() *
$% &' !
= / # m 3 3 .
3 - _l ' 3 D
! 23 ' $ !
! A ' _/C2 + ! 1 R A a s?
900 O# 3
! G #! ! * $% &' R $ # ' + " gG # + D Q#
.!
# /f]
4 Q/
_/C2
$ ^?
! !
@/0 $
! 23 ! # N 3
=>8 < ' ! ! 4 & $ # B' A
! ! O % m /f] +* $! % A @3A @/0 $
4, C !Q
# # ' l .+ O % # 8
! ! P!
@ % @/0 $ ! . @/0 $
t I3 .
% '
!
! !
$
# @/0
@/
% KjA
! "
_ !Q
`A
! !
$ /f] .
K'
$ ! + A 0' O %
! !
! ^D gG #
! +1!
<
!
!
$ +# f /?
! . '
@3A B' A <
A 4 C #
%
@
$
a/#
! 23 $
! ( //h
$ / #
% Ds
$
2/8 ! 3 D 3 /?
1 / < ! .! /D
! ! % @/ % ! 23 # 4 >/3&? ! # Q/ @/0 $
@ J' % ! 23 ! 31! # 4 / @/0 $
a/# +1!
.! @ w @3A B' A < # +> $
! M '
!
! !
$
@/0 _/C2
^?
K' #
a ' _/C2
$ ^?
# K' J/!
4! #
@
$ @/0
>
<
+1!
$ 3-#
+>
#
% '
_/C2
@ $ ^?
$
@/0 ) # +
%
! "
4 &
! .
# V #
$
Arekhi & Adibnejad
) ( 2011
! 5 J ' t I3 # 4 >/3&? ! # / +1!
@ @3A B' A <
! ! $! % +/@ @/0 $
@ D ) # +1! 4 Q/ + ! # +1! #
% .!
'
! !
$
@/0 #
• * 2/8 + >
a/#
_/C2 q % # 3 ! K # $
^?
2/8 $
K' _/C2 ! # / < ! 4 & ! " % $
a/# 4 >/3&?
_/C2 @3A B' A < %
.+ ! "
3 . 2
# . 01 2 ( NDVI
+-. F ! ! C !
=
<
$
=>8
$ # B' A
4 >/3&? ! # / @3A #
<
$
! 23
%
E"
$ /D
$ # //
() * +&' %
E" % G %
# . ! 23 NDVI
! q
0A # . K = # G %
() * 5 6
=
@
$
% , !
$ 0/P 5I3
! 17
+&-> ! 1398
16 / 1398 15 - 1398
E" ( //h r I3
% % # !NDVI
) JC ! 4, N 3 ' K/ q ! 3
! ! 4 & (
4 @ .+
D ' N 3 JC
4 &
! 4 % r
L Q>
! ! E/I&
#
<
# G % K =
r I3
% O.
a ?
$ 2 Q/
/ ]
!.
# ! !
! 23
% F QP E" ENVI
NDVI
#
$ 5I3
! /?
# . # ( 2
! () *
5 6 r
L Q>
4, F 1
# _/C2
e8 +&' % () *
! @ JC )
4 { . 6 . # . # .(
) 6 (
d3"
@' / # 4 /
N 3 JM A %
<
# ,
$% &' ! -. 4 % ! 4 3 % " 4 3
1398
0' +*M ? ' 5 R .! ! ! .
#
>3 ! + ! ,
E" +&' $ L &= $ # # NDVI
5/
95
M ! 93
* M ! >
R +A m @j .
E" % ! 23 < ! $% &' ! A NDVI
70 / 93828 ! -. 4 % , # = ! ' ! # 3C
$ " 4 Q/ $% &' 2
/ 1 4 & $ M ! . !
#5<$ H" K *:-; $NDVI RM *03((W %/ .3 AB
E" 2/8 J/0* # #NDVI
$ () *
G %
= • * % . F D () * ! ! 4 &
! * ! ! # K /> p > = 2/8 3P ! = -l 3 ! ) #NDVI
% # .
-l
K 4 % + ! # m #
! = () * 4, NDVI
a ' ! . #
! = -l ! Q/ ( W N # * # 4 / & ! % 6, # 3 ! / ? NDVI
! = F ! -l ! L Q> r JA 4,NDVI
$! M 4 @ . # #
D '
&
3P 2/8 _
% G % () * !
8
! ( 23
+ ! _
€ " 4 %
@ 4
@ () * !
+/ R 4 • C
! %
!
&
! ' 4 % r L Q>
*
# () *
= ( 23 +
. K / l N 3
! @ 2/8 J/0*
4 & NDVI
! !
•' 4 % r
E/I& L Q>
! !
%
<
A 3 ,
$
E"
#NDVI
K = G %
" l
\ P
$ 4,
Q/
/ ]
!.
E" N 3 V # F ! ! C !NDVI
! ( W F D * ! +&' %
= # ,
! -. 4 % $% &'
a/#
A ! ! # '
'^ , # = ! N # . +&' % K'
! #
+*M # % N 3 V # .+
K / l
=
! -. 4 % , # G % () * +&' % E" % ! 23 $% &' % ! , # 3-# NDVI
= () * +&' % +A w
' !
E" 5 ' L /#
! , # ! /D $
4, $\ P # . # +&' %
m R . #
( N 3 #
Lobell et al.
) (2003 Riahi et al.
) E" ) # +/0# 1 ' (2019
#!
!
! ! 4 & * +&' % ! , # .! ! +=#
E"
3-# E/I& 3 , A 3 ! #NDVI
a ? K'
=>8 +1! /D ! ! a QP $ #
$% &' R H03I ( =>8 _/C2 ! " 4 Q/
> * .+ J1 A # E"
#
3 V +
' D/
4 K !
! * w
8 / H C 8 h 3 / z !
$ D # % # '
K 3 '
! # J/ ! t^.
k ' P 0 / J ! L L
$
! . D ! /
# . K / l !
! * Q 1 4 !
0 0.1 0.2 0.3 0.4 0.5
1398/01/14 1398/02/17 1398/03/16 1398/04/16 1398/05/14 1398/06/15
O%<N -1 Q/3 * X
!Q _ # J/ ! 3"
0
‚ # !
$ D # % # ) #
) #
Arekhi & Fathizad, 2015
.(
N 3 %
#
>3 ! + ! , # ' +P ! 4
_ !Q E" i > 4 Q/ J P $ -3 # 4
r I3 %
K' /D $ /h3 # $
F . Q @ 5> a# % # 4 Q/ ! ( 2 .!
L C # +>
! 4 Q/ ! +# 8 t, ! .
N 3 .! ! f /8 h 3C H/8 t % #
#
E"
! () * F @ 2/8 3P ! ! 4 & NDVI
! * ! ! # K /> p > = L Q> r ! ! * ! $Q/l 4 Q/ # #, a2 # $ 2/8 K = # . # . ! ( 2 K # / Q 1 4 !
KI ! . F D * ! = G % + ' ! 23 L Q> r ! 4 C
# F G gG # /@
t % # /q dC& 4 ,! .
_ ! H03I () * m Q ( 23 J# 1 K- 3C .+
E" ! 'W 3-# _/C2 NDVI
! # +> o 3& 2/8 ( /M " $ ! ( =>8 %
=>8 <
@3A B' A $ # 4 >/3&? ! # /
.! #
# 4 G +@ 1 ` # ! B H03I () *
+ > $ !
# < ' ! # 2/8 $ # "
.+" %
NDVI RM 60 ,0 6 9 *:-; $ %< #&U .4 AB
E %1 6 45, 23 . 8 9376
T 2 Q7 / 7 #$ YS I$
E , 6 9 ?1 $6 , $2 1398
m
* $% &' ! -. ,
) (ha
@3A B' A
) (ha
" 4 Q/
) (% 4 >/3&? ! # /
) (ha
" 4 Q/
) (% E"
NDVI ) (ha
" 4 Q/
) (%
F D 56792
20
/ 49636 6 / 12 - 00
/ 51056 1
/ 10 - 00 / 58155 4 / 2 +
. 3400
40
/ 2842 4 / 16 - 80
/ 3117 3
/ 8 - 00 / 3349 5 / 1 -
N # 32859
73
/ 35717 7 / 8 + 80
/ 34534 1
/ 5 + 06 / 31446 3 / 4 -
( W 840
44
/ 895 6
/ 6 + 48
/ 900 2
/ 7 + 64
/ 878 6
/ 4 +
m @j 93891
77
/ 89091 7 / 13 - 08
/ 89609 1
/ 6 - 70 / 93828 2 / 1 +
4 F C .
$ /
! a s?
+&' % +-.
( W N # . F D () *
# 4 G () *
!
$
! 31 <%
$ 4 3 - ! 5 1 ! 3
< l % $ $ # ! C
#!
3 .+P D 1 N
# 2
_/C
?
^
$
( =>8 # / 0M P D
! ! 4 &
' / 4 Q
2 _/C
^?
$ G % () * ( =>8 #
C L t "
! # + .
< ! C !
=>8 3 $ $ #
! /?
N 3 . $%
a s?
4 / % ! ! 4 &
<
=>8 $ / < # i # +1! 3-# $ #
! # # = ! < > $ " .! # 4 >/3&?
B' A) L ! < # +> $% &' ! -. $ , / ? ! = ( @3A d3" .! ! 4 & $
=>8 ! G % () * +&' % @3A B' A $ #
=>8 # +>
4 >/3&? ! # / $ #
# J/ ! ( f
! # 2/8 J"
_ +A % &I# gG # '
. # € 3" () * # * K
/ l
3 N C ! # ' 8 0 e ' (
? /
&
/
# ' 4, ! L
K3 /
! # 3&?
/ 4 >
1!
/ e
% A <
'B
@3A ! L L K3
$ # '
! #
+ .
! C !
= F ! +A
#
>3 ! + ! ,
#
! 23
% E"
, # 5I3 ! NDVI
K $% &' ! -. 4 % +1! # % / l
4 & <
! '^ E" 5 ' !
! , # +&' %
() * = $% &'
< # +>
=>8 $ @3A B' A $ # /
m R .+ 4 >/3&? ! # J/ ! #
a ? 4 l ' # # ! /D
4 ! % V C
# ! 3 K' V C ! % t^. (Q 1) ! ! $
E"
a ? L ! o " f NDVI
/ % $
a '
# . ! a ? E" 0' 8
/D
/ % 3-# ! NDVI
_/C2 $% &' $
/ %
$ G %
% a ? #
! 23
% A
3 ,
$ H 5 ' ( Gd8
! i >
#
( //h K'
a ? < ! # +> /D
=>8 4 >/3&? ! # / @3A B' A $ #
! - &/? ^ .! ! +/*.
# !
$ //
+&' % () *
3 4 3 -
! /? %
$%
E"
$ /D
! 23
!.
R A a s?
4 &
! ! '
$
%
+/0# 1 ) # $ # m
() * #
( //h +&' %
4, # +1!
5
! V /=
) #
! " # +
.
$ % L !
$
$ ! # '
$ L ! G % aI# !
% 0@.
a/?
/#
! , # ( "
a /D $ 3 !
# .
# . # N 3 JM A
! - &/?
! #
#
$ /D '
<
$ L !
> G C>
# /-
&=
() * +&' % H03I
#
$ j
$ F 1 H03I
! . K / l
$ # //
+&' % () *
=
%
! /?
$%
E"
$ /D 0@.%
EVI
.! ! 23
5 .C > $ :' .
4 3 .! # # 4 % ( Gd8 , aI# %
# 4 3 % "
K P 8 "
! ! 4! , % / ! $
! 1 C& a s?
.!! D
6 GH I ' .
ƒ/
D u
OP k 4 D
! .
!.
7 G, .
Aszadeh Tehrani, N., Seyed Ahmad, M., &
Janalipour, M. (2020). Estimation of wheat area cultivation using Sentinel 2 satellite images (Case study: Sojasroud region, Khodabandeh city, Zanjan province) .Journal of Environmental Research and Technology, 5(7), 77-90. (In Persian).
Ahmadi Naddoshan, M., Soffianian, A., &
Khajedin, S. (2010). Land Cover Mapping of Arak City Using Artificial Neural Network and Maximum Likelihood Classifiers. Physical Geography Research Quarterly, 41(69), 83-98.
(In Persian).
Alipour, F., Aghkhani, M., Abasspour-Fard, M., &
Sepehr, A. (2014). Demarcation and Estimation of Agricultural Lands Using ETM+ Imagery Data (Case study: Astan Ghods Razavi Great Farm). Journal of Agricultural Machinery, 4(2), 244-254. (In Persian).
Arekhi, S., & Fathizad, H. (2015). Evaluating the Efficiency of Four Artificial Neural Network Methods in Preparing Land Cover/Land Use Map Using ETM+ Data. Geography and Development Iranian Journal, 12(37), 133-146.
Arekhi, S., & Adibnejad, M. (2011). Efficiency assessment of the Support Vector Machines for land use classification using Landsat ETM+
data (Case study: Ilam Dam Catchment).
Iranian Journal of Rangeland and Desert Research, 18(3), 420-440.
Bagan, H., & Yamagata, Y. (2012). Landsat analysis of urban growth: How Tokyo became the world's largest megacity during the last 40years. Remote sensing of Environment, 12:ﻭ 210-222.
Caren, C.D., David, J.M., & Volker, C.R. (2001).
Phonological difference in tasseled cap indices improves deciduous forest classification.
Remotesensing of Environment, 80, 460-472.
Chuanga, W.C., Lina, C.Y., Chiena, C.H., &
Choub, W.C. (2011). Application of Markov- chain model for vegetation restoration assessment at landslide areas caused by a catastrophic earthquake in Central Taiwan.
Ecological Modelling, 222, 835-845.
Dixon, B., & Candade, N. (2018). Multispectral landuse classification using neural networks and support vector machines: one or the other, or both? International Journal of Remote Sensing, 29(4), 1185-1206.
Entezari, A., Zandi, R., & Khosravian, M. (2019).
Evaluation of spatial variations of vegetation and surface temperature using Landsat and
midsize images, case study: Fars Province, 1967-2017. Watershed Engineering and Management, 11(4), 929-940. (In Persian).
Feizizadeh, B., Didehban, K., & Gholamnia, K.
(2016). Extraction of Land Surface Temperature (LST) based on Landsat Satellite Images and Split Window Algorithm Study area: Mahabad Catchment. Scientific- Research Quarterly of Geographical Data (SEPEHR), 25(98), 171- 181. (In Persian).
Gallego, F.J., Kussul, N., Skakun, S., Kravchenko, O., Shelestov, A., & Kussul, O. (2014).
Efficiency assessment of using satellite data for crop area estimation in Ukraine, International Journal of Applied Earth Observation and Geoinformation, 29, 22-30.
Gumma, M.K., Thenkabail, P.S., Teluguntla, P., Rao, M.N., Mohammed, I.A., & Whitbread, A.M. (2016). Mapping rice-fallow cropland areas for short-season grain legumes intensification in South Asia using MODIS 250m time-series data, International Journal of Digital Earth, 9(10), 981-1003.
Hopkins, P.F., Maclean, A.L., & Lillesand, T.M.
(2005). Assessment of thematic mapper imagery for forestry applications under Lake States conditions. Photogrammetric Engineering and Remote Sensing, 54(1), 61-68.
Huang, C. L., Davis, S., & Townshend, J.R.G.
(2002). An assessment of support vector machines for land cover classification, International Journal of Remote Sensing, 23(4), 725-749.
Jain, M., Mondal, P., Galford, G.L., Fiske, G., &
Fries, R.S. (2017). An approach to map winter cropped area of smallholder farms across large scales using MODIS imagery. Remote Sensing, 9(6), 566.
Jeffreys, H. (1946). An invariant form for the prior probability in estimation problems. In:
Proceedings of the Royal Society of London a:
mathematical, physical and engineering sciences, The Royal Society, 1007, 453-461.
Joshi, PK., Roy, P., Singh, S., Agrawal, S., &
Yadav, D. (2006). Vegetation cover mapping in India using multi-temporal IRS Wide Field Sensor (WiFS) data. Remote Sensing of Environment, 103(2), 190-202.
Kavzoglu, T., & Colkesen, I. (2009). A kernel functions analysis for support vector machines for land cover classification. International Journal of Applied Earth Observation and Geoinformation, 11(5), 352-359.