• Tidak ada hasil yang ditemukan

پایداری مخمر Pichia guilliermondii در فرمولاسیون پودری و بررسی قابلیت کنترل-کنندگی فرمولاسیون‌ها علیه کپک آبی سیب

N/A
N/A
Protected

Academic year: 2023

Membagikan "پایداری مخمر Pichia guilliermondii در فرمولاسیون پودری و بررسی قابلیت کنترل-کنندگی فرمولاسیون‌ها علیه کپک آبی سیب"

Copied!
11
0
0

Teks penuh

(1)

, ) (

*

:

:

!"

E-mail: etebar@ut.ac.ir

يراﺪﻳﺎﭘ ﺮﻤﺨﻣ

Pichia guilliermondii

رد نﻮﻴﺳﻻﻮﻣﺮﻓ يردﻮﭘ

و ﺳرﺮﺑ ﻲ

ﺖﻴﻠﺑﺎﻗ لﺮﺘﻨﻛ

ﻲﮔﺪﻨﻨﻛ ﻻﻮﻣﺮﻓ

نﻮﻴﺳ ﺎﻫ ﻪﻴﻠﻋ ﻚﭙﻛ ﻲﺑآ ﺐﻴﺳ

ﭼﻻ داﮋﻧرﺎﺘﺨﻣ

، 1

ﻦﺴﺣ ﺎﺿر رﺎﺒﺘﻋا

2نﺎ و* ﺎﺿرﺪﻤﺤﻣ ﻠﺿﺎﻓ

3

!

"

#

$

%

&' ( )

*+, (-

!

) /!

01 : 2 / 4 / 55 6 /!

78!

: 9 / / 55 (

هﺪﻴﻜﭼ

Pichia guilliermondii

!

"#

.

$ %

&

' ( )*+

,-

"/0 12

34 5

678 '9 :; + :< 0 1=

>7?#

1=

@3 A 78 .

7 % B 6 C8

%

!

"#

. 6 C8

:%

/

"&D

$ 673(

&

7+

EF

× G / G

$

&0

"&D

$

3(

67

&

7+

EF

× I / J

$ K++

% 1=

>7?#

< 0 67% / 78

. % 7LM3 678

LN

D 3 #

% 7LM3 678

GO D 3 # ( P3 673(

3

(Shelf-life)

+ #73

. Q

$?R &

S9R T K ,8 =3

@ 3

" A / U 78 .

# N

$ % 6( +

&

%

&

4

$?0 &

V2W

? D

"8

D % ( P3

C% 0

"

* ( X

$?0

#7??0 W

73 . 6 Y (

1=

@3 / C% R

"

Z [ 678 ,+

# &

KD

# 7 .

S + 1=

>7?#

( P3 C% R

"

Z V2W

? 67% /

7/3 . ( P3 X

$?R

??R #7

"=3

< R X

+

"=3 1=

@3 X

<

+

!

"#

.

هژاو يﺎﻫ يﺪﻴﻠﻛ : :

$?0 :;\

Pichia guilliermondii

: K .

ﻪﻣﺪﻘﻣ

#$%&'

% ( )

*+ ,&

- . /- 01

2 345-61 2

7 /-89

;

<1 . /6%=>?@

A(B

# (- . .

Botrytis cinera Pres

)

Penicillium

expansum Link

)- 6$>%1 DE

#@9 (

<B

F1 -+

#$-G;

61 /) H%&

-

#.

<6

/-

# 5 . -

&

( / I

% 6

% ,

*I J9

( -) KL LM

% O- 7,$

5 4&

)

Abaias et al., 2003

.(

R>

2

# 1

J9 AS ( / /,&

/61 6B

#$-G;

( -&

# -5 .

#6=

(

#

<B - - / T1 J9 AS (

- U%V ) A ,W 4)T

< X ( / Y

/>%1 2 / 01 2 45-61

<1 J9 AS ( -X) --

)

Caffarelli et al., 1999

(3 F1 7Z - 4EX

<0&

(2)

Y G%1 [

\

<1

\ 7) Y>]

/61 6B

/>%1 ( / 01 2 45-61 -6$

4&

(Elzein et al.,

2004)

. -

&

( / 6%I 4%TW /(

Y19

<^Z /

- -&

2

; 4%$

( /

#1)6]%

/61 6B

/>%1 ( / 01 2 45-61 YO 5 4&

)

*Z.

/- 2 -

<%2 -X

# 51

(Vero et al.,

2002)

. Y 6B%1

<1

# E

<1

#?_1 2

4 6

#T%

*W;

/61 A(B -&

2

4W;

AB 3(

<1 B

<W6$

# -5 . @ )6]%

3D%$

O8I (6>_

<B

<1

*O

#0%.

61 /)

`a&

% ( )

*+ ,&

-X) 3- /61 6B

/>%1 ( / 01 2 45-61

<I5 5

<B

#I61

/-

# b1 - A(B c%5 />%1 ( /

#@9

01 2 45-61 61 /)

% ( / d_

- e%T

#(=? 2;

)

%f>(

- e%T

#0O

# 51

(Jijak et al., 1999; Lima et al., 1997)

. -

< T 1

J9 ( /

<5 /

>

4 , /(6>_

3#G6B%1

g

%G /(h&

4%&

2

%B]%

(

# 51 )

Paulitz & Belanger, 2001

.(

1 -X)

<]

-0 /- 2 2

; 4%$

( /

#1)6]%

/61 6B

/>%1 ( / 01 2 45-61

#&61 5 ) Y

#G6B%1 6ij

/ ( -0

#>B 2 Y

/+

5 .

Deco-182

1 g /+

Aspire

/)

6>_

Candida oleophila

<B -

*b V )

Y%k6&

<1 4i

%&

34&

Yild plus

/) 6>_

Cryptococcus albidus

- /T 6W;

#1X

<1 4i

%&

4&

.

Bio save 100 & 110

%&b6W , 6W

5 /6B1

syringe Pseudomonas

4&

<B -

*b V

<1 4i

%&

4&

(Abaias et al.,

2003)

. - -&

3/+

4%TW

\ Y 6B

#] [G%1

/- 2

<1

%&b6W

;

#=1

-- . l

#O /61 /+

-6B

*b8V 3#G6B%1

+ -

\ 8V

<G6W ' 4&

<B 4%19

6B

#$B -I

>(

&

( / 2 m -6B

51 )

Janisiewics & Jeffers, 1997

.(

1 -X)

<];

/ '

&

( /

Candida sake

01 2 ->+

\?I

O- 3-1 6%in 8V

\?I 5 61 /)

P.expansum

H%&

6>B 2

&

( / 2 (?

5 4&

. )Z 61 / '

; 01 2 )-

/E=

- /-

<X-

<1 O- A(B 4W

)

Abaias et al., 2001

.(

2 +;

#

<B Y

\ [G%1

*-X 2

/ 3(

6(

#%&b6W 1

>o

2 #

(Shelf life)

#WB 51 . )Z 61

\

%&b6W

#1)6]%

3H&

1 /-

<W6O /-89

/61 p%G 2 # H&

)

#WB /61 6ij -1

;

) -&

&;

61 /)

% ( 51 .

%f>(

6$

6>_

<1 g6W

\?I

<G6W 5 51 1

<1

&;

#

=1;

% 6 /

-+

-5 . - 4 E 4%19 6B

#$B

; 1 -

g>

Y6 p%&b6W /-

#b.

* ) q;

$

% 6 / -+

m -5 )

Melin, 2006

.(

\ BW

/%B Y19

<^Z -+

\ U%V DB

< ,(

H&

/61

%G e%1

#G&

4&

.

\ U%V DB

< ,(

<B 1 - e%T

#0O -&

-5 . - -

C. sake

#a%V 61

< ' Z e 6]?%

-+

5 4&

<B -

<1 -);6W

#X

*+IB

%G

6]5 Y19

#&6&- 4&

)

Abaias et al., 2000

.(

r(

2 3A()s' 6%in Y /(

#G;

)

#G;6%t d_

61

/) 2 # 6>_

-

&b6W

% )

# B 6>_

-

6S

\hB

#1;

H%&

#5 2

P. expansum

# 51 .

داﻮﻣ و شور ﺎﻫ

< X

Wick P. guilliermondii

/2&X

5 2

`a&

% ( / H%&

<B 4%19

#%$;

;

- u -6' V 1

#&61 -6$

)

# &5

< X

6>_

U&

"Identification Service CBS"

*O

<W6$

-1 )

Alavifard, 2008

( 2

%]B )6$

%$

#]5,' u -6' V 1

=?- 6E 4W - -6$

.

19

% 4

$;

%

# 6>_

- 6S vhS 1;

#

&

% H

&61

# 5 )

<1 v X <

6ij ) S

7,$

-6$

(Gholamnejad, 2009; Gholamnejad

et al., 2009)

.

< X 6>_

-

%G )6%$

) wL / y g6$

- 6%G /- D%&' [)%(

p*W Kw / y

g6$

- 6%G D%&' /- [)%(

p*W LM / y g6$

-

6%G

*G&

g ,%

p Mz / y g6$

- 6%G D &

p*6%&

LKL g6$

- 6%G )6%$

( - , 6W wy

(3)

!"#

:

$%&

# Pichia guilliermondii

...

<X-

#&

-6$

/E=

5 )

Druvforse, 2004 .(

< X 6$>%1

Penicillium expansum Link.

/2&X 5

2

% H%&

<B - A_1 />%1

#&5 u -6' 3V 1 />%1

2

#

; 61 /)

%

H%&

<1

*i

%&

-1

(Gholamnejad, 2009)

2

%]B )6$

%$

#]5,' u -6' V 1

=?-

6E 4W - -6$

.

/(h&

%1 6$>

2 4?B 4(

2) 6$>%1 -

U%V - PDA

/-

"

<X-

#&

-6$

<1

<%&)

{G

<5-61 5 ) - q;

6aT )6&

%h&&

-6$

. 4%0>X 6$>%1 1 -&

2 gb /6%&>(

%%0 -6$

. 4EX g+

3*? 2;

4^t 1

h&

-

#%

6%G q;

6aT -

&

- 69 4W6$

.

< X 6>_

61 /) U%V 4?B

Potato Dextrose

Agar (PDA)

)

Nutrient Yeast Dextrose Broth

(NYDB)

4?B -- 5 . /61

%G e%1 2

\

U%V /) eZ 6]?%

)

"

g6$

- 36%G

/

= ( pH

) 8 6>_

)

"

/ $ g6 - 6%G ( -&

5

(Usall et al., 2000)

.

!

"

/61

<%E e%1 6>_

2 7) S

% / )

% , 1

>S

# }

%%

6 -&

5 .

<1

*O 3<S

< X 6>_

2 /) U%V 4?B U&PDA

{G

<5-61 5 ) 1

q;

6aT )6&

#%h&&

<%E 5 .

\

#%

6%G

2

%h&&

<1

\&ZW /(

"

#%

6%G /

/)

#%

6%G U%V l

<W NYDB

5 )

<1

* 4&

/)

=&- ] (- )

"

)-

-

<T%9- ( - /-

~ 69 4W6$

.

&

( / 6>_

1

-&

2 [% 6&

)

<1

*

<T%9- -

"g

( 2

U%V X NYDB

5 ) /61 61 r6.

-6B

>%91 U%V

3# t )- 1 1 q;

6aT )6&

?5 5 . uh&

2

&

( / 6>_

- q;

6aT

)6&

&

&

%h

<%E 5 . )-

#%

6%G 2

%h&&

YO

<1 v&ZW ( /

"

#%

6%G /

/)

#%

6%G U%V 4?B eZ 6]?%

<W

5 ) /)

=&- ] (- ) )- -

<T%9- ( -

/-

~ 69 -- 5 . 01 2 4&

&

( / 6>_

1 -&

2 [% 6&

)

<1

*

<T%9-

"g

( 2 U%V eZ X 5 ) 1 q;

6aT )6&

?5 -6$

) u' 2

€%9 3/2&

4%0>X

; 1

-&

2 gb 6%&>(

<1

×

&

-

#%

6%G

&

5 )

Kinay & Yildiz, 2008

.(

#$ %

#%h&&

/) )6%$

) v/v

% (3 D &

*%+G;

M w/v)

/ K

%3

(Sigma-Aldrich

)

&

6>_

1 4%0>X

×

<%E 5

(Shabana & Sauerborn,

2003)

.

%h&&

YO

<1 4

\

<1 E@

(V/W)

<1 . X

<$

<1 -' 3\G 3%GkB e&

61 ) e&

g$

<B - )- 2)

#G )ZB 5

3-1

<W )

<1 . YB

‚_

-6$

(Bora et al.,

2004)

.

‚_

YO

<1

*

"

4&

- U 65

=? 2;

- U%V ZB )6&

) 6 2 -(

(

\?I 5 .

&b6W

% YO -

‚_

S -' 5 ) )-

<GG /(

]GW cc

- (- /

ƒ ) LM

<X-

#&

-6$

E=

/ 5 . /61 6(

>%

<&

6]

- 6^

<W6$

5 . 61 / 2 $

% 6 / 41.

2 7)

Christoph

et al. (2004)

-&

-6$

. 41.

&b6W

% ( /

-' vG ) GkS

% -)

"

O- ) 61 /

b6W

&

% ( / e&

g$

) e&

61 -)

"

O- 2 1

# 5 .

&

'

#$ %

&(

)*

+' /$

b6W

%&

( / E=

/ 5 - 65 U

„

# - (- /

ƒ

<X-

#&

-6$

) f_

( )

<X-

#&

-6$

) 1„

( 6(

…y 2) v 1 -

.

# - )

#2 Kwy 2) 1 -&

2 7) 6&

49

(Serial dilution)

<&V 5

.

\ g6$

2 6(

%&b6W 6>_

<1

<

#%

6%G q;

6aT )6&

<W ) u]) -6$

. uh&

/6&

49

<%E 5 )

2 49 /(

- 6^

%h&&

b6W

%&

(

<1

.

<$X /) U%V 4?B 1< PDA

T

)6]%

6%G - 6(

\?

/6' 1

<%

<?%5 / DI

35 A_' 5 ) - 1]

- - /-

"

<X-

#&

-6$

69 4W6$

) 01 2 4&

<B

#S ( /

6>_

6(†

35

#S ( 1 -&

2

=&-

#B

>5 7>5 5 .

<&

61 / 6(

49

<1 S 4W

(4)

'

) -0

&

2 6>_

- g6$

&b6W

%

<&V

5 )

Bora et al., 2004

(.

&

,

$ %

# -.

/0

&1

2

&3' P.expansum

3 +'

<1

^ 2

% ( / H%&

D9

$ ,?%G-

<B

#=>(

DG&

) 9W 6(

<$

<

\ [G ,%W -1

-&

-6$

. /61

# 3#Va&

% ( -

4 6Bh%(

D &

K / y O-

<.t ) 5 ) uh&

)-

1 1 q;

)6&

?5 -- 5 ) R E

<1

* M

<%i - Y]G

\%%

‡y O-

<.t ) 5 . uh&

1 -&

2

\ 2&

)6&

/) 6(

%

<&

DI2

<1 6a9 M / L

#%

6%G )

€>

…

#%

6 1 YOW

/) 2 g- -+

-6$

6( .

v 2

<G6W ( / E

%

<

5 01 2 A5

$ / 3

&61

#

*9

6S

#$S E;

%

<

1

%

>

/ vhS 1;

#

&

% H -

65 U 2;

A 5 .

\ g6$

2 6(

%&b6W -

<

#%

6%G q;

6aT Y 6&

%h&&

5 . DI2 (

1

ƒy 6%G)6]%

2

%h&&

6(

%&b6W

>%

5 ) 01 2 Lƒ

4&

Ly 6%G)6]%

2

%h&&

6$>%1 ) KyM h&

-

#%

6%G (

<1 YI- 6(

DI2

<

#2 5 . H%&

( /

>%

5 -

#%&

/(

# T

<5$

) )-

<%S ( /

#]%&Z' 69

-- 5 1

/6h&

-6B q;

)6&

- )-

<%S ( 41.

# YI- E;

-

`a&

# b1 ) -) zM O- (

<=

<5- 5 )

Vero et al, 2002

(.

H%&

( - /- E@

<X-

#&

-6$

/E=

5 . /(>%

6= - 3Y5

6$>%1 6>(

1 - 3%&b6W -

%&b6W

<1

3# E

%h&&

&

( / 2 6>_

6>(

1

36$>%1

&

( / 2 6>_

<1 3# E (5 -G;

)

(5 DG&

-1 . 01 2

#.

)- /E=

) 2) (

DI2 ( 2 6^

-+

#$%&'

#&61 5 ) 6a9

<]G (

1 -&

2 u%GB 2 /6%$

) 4 E;

61

H

#%

6 l16

<&V 5 . - A 2;

/61

6(

>%

E@

6]

- 6^

<W6$

5

<B 6(

6]

Y5

\

% ) 6(

% /-

<&

DI2 -1 .

45 ) 6 1

,+

<

) V

% Y -- ( / 2;

A 1 -&

2

g6 ,W

; /

SAS (V9.1)

<1 7)

proc anova

g+

-6$

.

%

=

% -- ( 1

&

- 2 2;

@

<- /

Duncan

-

`a&

% K T

<

5 .

ﺞﻳﺎﺘﻧ

7 -)

$ %

# 8)

 A 2;

? --

<B 4%0>X

&

2

P. guilliermondii

-

%&b6W -'

\G )

%&b6W

%GkB - .

* 2 /E=

A5

<(

- /- E@

<X-

#&

-6$

/-

\ )

#?(B -1 . 4%0>X 2 6>_

- b6W

%&

( /

B

2

×

&

2 6>_

<1

× /

ˆ

&

2 6>_

- g6$

%&b6W

%GkB )

×

"

/

&

2 -6>_

g6$

%&b6W -'

\G A(B

4W ) )X .(

4%0>X

&

2 6>_

-

b6W

%&

( / e&

61 ) e&

g$

- .

* 2 /E=

- /- E@

<X-

#&

-6$

g&

u' 2 3/E=

A ,W

<W ) 01 2

;

' )- /E=

)

#?(B 45- . 4%0>X

&

2 6>_

- b6W

%&

( / B

- ' 2)

2

×

&

2 6>_

<1

× /

&

2

6>_

- g6$

%&b6W e&

61 )

×

"

/

"

&

2 6>_

- g6$

%&b6W e&

g$

%&

<B 4

<1 4%0>X

<%G) A ,W

? -- -1

) )X .(

- /-

°C

"

%&b6W e&

g$

1

4%0>X

× /

!

&

2 6>_

)

%&b6W

%GkB 1 4%0>X

×

ˆ /

&

2 6>_

'-

)- /E=

<1 H%6 /- 6?%1 )

6>B

4%0>X

&

2 6>_

- g6$

%&b6W -

-1 ) )X

"

.(

- /-

°C

"

,%

4%0>X

&

2

6>_

-

%&b6W -'

\G )

%&b6W

%GkB

/- )

#?(B -1 ) 4%0>X

&

2 6>_

-

%&b6W e&

61 ) e&

g$

g&

3/E=

A ,W

<W ) 01 2

; ' )- A5

<(

/E=

R 6T 41i ) /- )

#?(B -1 .

T

<

0>X

% 4 (6>_

- . E=

/

) Y„5 (

? -- 5 4&

. 0>X

% 4 6>_

- )-

- / )

"

<X-

#&

-6$

- ( / 3) g)- )

g&

R 6T

„ 0>X

% 4 6>_

- D?5 -

- /

<X-

#&

-6$

- T

<

1 - /

"

<X-

&

# -6$

1

% 6?

-1 .

(5)

!"#

:

$%&

# Pichia guilliermondii

...

(%)

* +,)

%-

(CFU)

#

P. guilliermondii

/ 01203

4

$5 6 7%

-

$

°C

× b**

× /

*

c × /

c × /

b × /

c × /

d /×

!"

×

ba / ×

a

#×

b ×

b

$× /

%

b

$#× /

%

b × /

&' ()

×

b × /

c

*× /

c /×

b /×

c × /

c

#× /

%

+,-. !"

×

a

*× /

b × / 0

a × /

a

#× /

$

a ×

a

#× /

#

1" (2' 3" ,4 5 67,8 9 ,4*

) ,; 39<. = ( >9) ?9@' 3" (2' A >

.(

D E@ FG9H I7 E9" A ( 3 JKA 5**

D,;

, 2 ELM ,N( &K OP" (

IQ9R J-S ( ,(

.

(%) '

* +,)

%-

(CFU)

#

P. guilliermondii

/ 01203

4

$5 6 7%

-

$

°C

'

× c**

× /

*

c × /

b

*× /

d /×

c /× T

d × /

!"

×

b 0× /

a × /

#

a × /

b

#× /

b

#× /

b × /

&' ()

×

C

$× /

c / ×

*

b × /

c

%×

c × /

c /×

%

+,-. !"

×

a × /

b × /

a ×

a × /

$

a × /

a × /

,4*

9 67,8 5 ,4 3"

(2' 1"

)

>

A (2' 3"

?9@'

>9) (

= 39<.

,;

.(

5**

JKA 3 ( A E9"

I7 FG9H E@

D D,;

, M EL 2 ( OP"

&K ,N(

IQ9R J-S ( ,(

.

)()' () $ ="# $01203 / P. guilliermondii # %- +,) 9";<* 8

"1 . ( A

/%? @051 01203 .

( B

A6 @051 01203 .

( C

B 01203 C<0D

. ( D

E<F 0& 01203 .

%&b6W - 6>_ 2 4%0>X < T

/- )- - 5 /E=

)

"

#& <X- -6$

* <1 /- )- #.

? -- 5 4&

) Y„5 .(

1 <

. S # .

# ( / 3) g)- ) g&

2

3/- )- 0>X

% 4 2 6>_

- 6(

)- - / )

"

<X-

&

# -6$

R 6T

„ -1 ' -

/- )- )

2) ( 3 0>X

% 4 2 6>_

-

- 5 /E= %&b6W -

/

<X-

#&

-6$

1%

6?

- 5 /E= />( 2 -

/

"

<X-

#&

-6$

-1 .

(6)

&

,9

$ %

#

3 +'

)

Penicillium expansum

61 e&



<1 4&-

; 2

*0Ga 3/

%1

/(>%

<

#2 5 1 b6W

%&

( / 6>_

6>(

1 6$>%1 )

&

( / 2 6>_

6>(

1 6$>%1 1

>%

(5 -G;

)

<

#2 5 1 6$>%1 ( rZI

#0 - / X) - -- .

%f>(

%1 /(>%

<

#2

5 1 b6W

%&

( / 6>_

)

&

( / 2 6>_

2

6^

6i 6B

#$B ) A(B 4

<]G rZI

#0 - / -X) --

<1 . /

<S 4

<„G -

% (>

#

<S 2

&

( / 2 6>_

-&

-6$

<1 .

#0 - / 2 4

<„G -

% (>

#

<S 2 b6W

%&

( -&

-6$

6>S -1 .

%1

%&b6W -'

3\G

%&b6W e&

61 )

%&b6W e&

g$

2 6^

A(B 4

<]G

rZI

#0 - / -X) 45 . b6W

%&

( /

B

1

%&b6W

%GkB - A(B 4

<]G

WZI

# -X) 45 .



? --

%1 /(>%

<

#2 5 1 ['

<1 6>(

- Y

%&b6W

)

>%

<

#2 5 1 6$>%1 ) (5 -G;

( 2 6^

; / rZI

#0 - / -X) - .

%1

>%

( /

<

#2 1 - Y

%&b6W )

<

#2 1

< X

6>_

1

>%

<

#2 5 1 q;

6aT ) (5 ( )

#

#0 - / (?

? .

(%)

* GH C;

I 203 01

$

# J06 6 +KG L<

$

%

$ M1 -

% 6

P.expansum

- 8NO 9?&

$%N;

$ NO )

"1

(mm2)

(mm2)

+ !"#

c**

/ *

+

$%& '*!

*a /

+ -./ !"#

*b / 01

+ '*!

*a /

+ 01 '*! !"#

dc /

* 01 '*!

e

/

+

$%& '*! !"#

c /

$%& '*!

e

/

+

a / -./

e /

1213 )

+ ( 4 d

/ 0

e /

+ -./

a

1213 )

( e

/

3 %5 ) (

*a / 3 6 %5

) 7!

( e

/

,4*

67,8 5 (UV (2' J ,-;

.

JKA(W'**

3 I7 FG9H E@

D D,;

, ( ELM 2 ( OP"

%

>(

IQ9R J-S ( J ,-;

.

ﺚﺤﺑ

%&b6W Y

6B%1

#]

2

<X /(

%1 DE

*0Ga 6B

\ [G%1

# 51 . 4%TW

-

<%2

&

- 2 Y

#G6B%1 -

U 65 /+

D 2 m

*9 3*%

/$

)

# B

<1 .

YB

<1

%&b6W

#=1 -- . -

\

%&b6W

- Y

%G)

‰,X 6ij - A_' 5

*b8V

\ [G%1 -

U%V r(

( .

<@6$

%&b6W

l 2 6^

4GE&

-61B ) q;

%$

/6 -+

61

%&b6W /-'

4%VX --

(Melin et al., 2006)

.

#G) 4%19 /$

; - . )- /E=

-

< T 1

%&b6W /-'

%1

%k'

# 51

)

Melin et al., 2007

(.

-

€%TV

\ 7) 2 )

6ij /61

%&b6W

P. guillermondii

1 -&

2 -

Y

#G;

) e&

g$

) e&

61 ( )

#G;6%t

) -'

\G )

%GkB ( -

#&61 69 4W6$

. -&

+ / 2 Y

$;

% 4

<1 <

T

% V

#

% 2 --

<S

&

( /

;

<1

* 2 - 2

>1 )

<1

&;

#

Y>

) YT -5 )

Connick, 1988

(.

$ /

/(6>_

( /

$;

% 4 - b6W

%&

( /

v?I 7,$

5 4&

)

Kinay & Yildiz, 2008

.(

-' Y1) 61 / E=

/ ) -61S 1

% H&

4&

(Bateman et al., 1993)

.



€%TV 6

? --

&

( / 6>_

# / ' - - Y d_

<1

* A%1 2 A5 - .

%f>(

# -

Y d_

- m / '

&

( / 6>_

-

.

* /E=

A5

<(

- /- E@

) Lƒ

<X-

#&

-6$

/- rZI

#0 - /

# 51 . -

(7)

!"#

:

$%&

# Pichia guilliermondii

...

P

3#&61

%&b6W /)

e&

g$

/$

# b1

# - /-

"

<X-

#&

-6$

45- .

e&

g$

6E1 - Y 2 6^

4%0>X 2

6>_

01 2

#.

)- A5

<(

-1 . 4%0>X

&

2 6>_

-

%&b6W /)

-'

\G )

%GkB

<1 - Y R 6T 41i )

<1 )6 A(B 4W .

u' 2

#.

)- A5

<(

%&b6W -'

\G -

< T 1

%&b6W

%GkB /- 0 -

&

2

/6b1 -1

<B 1



Kinay & Yildiz (2008)

-

#&61 / '

&

( / 6>_

- -'

\G )

%GkB

4T1a -- .

%f>(

61 e&

*0Ga

*O 3<W6$

-'

\G Y

%1

#&

/61

%&b6W

/6B1 ( 4&

)

Kinay & Yildiz, 2008

.(

4%0>X 2

&

6>_

-

%&b6W e&

g$

)

%&b6W

e&

61 01 2 g)- /E=

<1 ,%

6161

A ,W 4W ) - ' D?5 4%0>X

&

2

b6W

%&

( 4

<1 4%0>X

<%G)

%&b6W 6b1

-1 .

*(?

#B 2 6%Š]

&

( /

< X 6>_

P. guilliermondii

- b6W

%&

( / e&

g$

)

e&

61 - . )- /-

# 51 . 4%19

/ ' D%$)6]%

(

#=1

<1 -

# t ) q;

- 3e6&-

< X )

<$

#@9 -- . 2 +;

#

<B

e&

g$

e&)

61

<1 l1

#t 2 -

# t

<I5 5 3

<1

^ 6

#

&

&

( / 6>_

- e>

1 - ) 1 -&

2 -

# t -X

6%Š]

# 1 .

%@

‚&

# -5 Y__

- 2

%1

e&

g$

) e&

61

#]

2 Y

Œ6V

6%Š]

&

( / 6>_

# 51 .

&

( / 6>_

-

e>

1 q;

8V 5 - YI )

6W 45-

3e&

q;

- 2%

/61 5 ) 6%Š]

qX ->

) F1 b1 W 4%0>X - b6W

%&

( / /)

e&

g$

) e&

61

# -5 . -

<0Ga /

<B 61

/) / '

Bacillus subtilis AH18

- 61 /(

d_

*O 34W6$

A ,W 4%0>X -

%&b6W

/) 4%G6' -

< T 1 b6W

%&

( / /)

%GkB ) 4%Gk2

<1 b1 -1 Y__

4%G6' -

%&b6W /)

4%G6' 4 --

(Chung et al.,

2007)

. 2 U 65

#a%V g2b

/61 5 D%$)6]%

( -X) 41.

# 51 .

<f@

41.

2 U%V r

B D%$)6]%

5 I - 2

4&- -- )

#

#I61 2 E;

2

%1

# ) .

G -X)

-

# t ) l1 16B )

*2 H&

( - e&

g$

) e&

61 ) 41.

g2b -X - e&

(

F1

# -5

<B

$)6]%

D%

( 2 l1

< }

-6B ) 5 >

G -0 YB

$)6]%

D%

( /

-X -

%&b6W

<1 )6 A ,W

%' -6B ) -

4 E -0 /6?%1 2 6>_

4

<1 b6W

%&

( /

-'

\G )

%GkB (?

# -5 . 6E1 4G

3%&b6W

#a 65 4&

<B 1 m 4G

>B -

%&b6W F1

/ '

#b.

*

%&b6W

# -5 . 61

&

e

 A 2;

-E?%'

# -5 3

-'

\G )

%GkB - Y

%1 6ij / - m

4G

>B

&

( / 6>_

- . A5

/E=

( -

#G

<B e&

61 ) e&

g$

F1

\ 6V 5 ) 6%Š]

&

( / 6>_

-

. )- /E=

# 5 . r6O 6^

2

b6W

%&

( / -E?%'3

# -5 6%Š]

) / '

&

( / 6>_

- 61 ( l1 - Y ) -

#-),W 4&

. -

#&61 /61 A ,W / ' b6W

%&

(

2 D &

*%+G;

) )6%$

<1 - -),W

-&

5 .

@ - -),W

‰,X

%1 DE

b6W

%&

( (

<B 61 /) 2 # ) 6= -

*%O8I 6%^

4%GZ - q;

)

#$B6' 8V

#G6B%1 61

/)

`a&

r(

6%in

#

$

. D &

*%+G;

<1 - -),W

<1

#&;

- q;

Y

# -5 )

<1

* /- 2 - q;

<1

*O

€0

)

%h&&

(

#91

# .

&

D +G;

%

* Y

' / 3

$@

# ) g)-

&b6W

%

# 51 )

$

% )6 - 4†

) E=

/ 2

&

( / 6>_

AT -- )

Kinay & Yildiz, 2008

.(

Shabana & Sauerborn (2003)

7,$

-6B

<B

8 6>(6>_

1 2)6B&

) )6%$

8 6>_

6>(

1 2)6B&

- H%B6 1 D &

*%+G;

<1

6E1 - -),W /61 4I&

%&b6W u] 6

$ g$

Fusarium oxysporum f.sp. orthoceras

(8)

Q

) d AB

#@9 1

Pesta

(

<I5 5

.

D &

3*%+G;

#B16B Y%

,G&

) 2%B

<1

- -),W /61

<W -6B

<1

%h&&

6>_

<1

^ ,W A 6B

#$B b6W

%&

( /

#] [G%1 u'

2 45-61 3H%&

#W60 5

(Sparado & Gullino, 2004)

. 3%f>(

D &

*%+G;

HX A 6W / ' ) />%1 2

#

%&b6W

\?I

F. oxysporum f. sp. orthoceras

01 2 A5

-6$

)

Melin et al., 2007

.(

b6W

%&

( / /E=

5 - /- E@

<X-

#&

-6$

-

< T 1 b6W

%&

( / /E=

5

- Lƒ

<X-

#&

-6$

2 6^

m 2 # 6$

-1 .

<+%

1



<1 4&-

; -

<a1 1

Candida sake CPA-1

/E=

5 - /-

"

<X-

#&

-6$

4T1a -- )

Abaias et al., 2003

(.

%f>(

€.

#&61

*O

<W6$

61 /)

Metschinkovia pulcherrima

b6W

%&

( /

/E=

5 - /-

<X-

#&

-6$

-

< T

1 b6W

%&

( / /E=

5 -

"

<X-

#&

-6$

6 '

# 51

(Jijak et al., 1999)

. /$

#b.

6 - /-

%k' 6

#

<1 4%G0W

#]%G1

%k' 6

$')6' /(

J9 ( - /-

%k'

4 -- )

Druvefors, 2004

.(

Usall et al.

(2000)

7,$

-6B

#=(

<B 4^t

&

( / 6>_

Candida sake

2

ml-1 CFU

Ky

×

Ž/

K

<1

ml-1 CFU

× / A ,W 4W 2

<]G /(

P.expansum

/) H%&

A(B 4W .

Gholamnejad

(2009)

7,$

->

<B 4%G0W

#%$;

(6>_

/

P. guilliermondii

3

Candida membranifaciens

)

Rhodotorula mucilaginosa

61

<%

\hB

#1;

H%&

<1 4^t E;

<1) -1 )

#9) 4^t /(

&

-

#%

6%G -&

5 - 4^t /(

)

&

-

#%

6%G 4

<1 4^t

&

-

#%

6%G 2 6^

`a&

6B

#$B -

`a&

% ' /6 -1 -

#G

<B - 4^t

&

-

#%

6%G

*)

#0 - / 1 4^t

&

-

#%

6%G 45 ) 2 6^

6B

#$B 1

; -

\

`a&

69 45- .

 4&1

; 2 TV

%

€

? --

<S -61S

h&&

%

&b6W

%

< X

P.gillermondii

1

-&

2 - Y d_

- A(B />%1

\hB

#1;

H%&

6ij 4&

. 6(

@

# B b6W

%&

( -

A(B 4

<]G -+

5 U&

6$>%1 -

< T 1

&

( / 2 6>_

-

`a&

% ' /6 69

45-

#G)



<1 4&-

; /61 6B />%1

4 A_1

# 51 . 61

€.



<1 4&-

; -

Y -&

5 - b6W

%&

(

<1

# E -9

<1 A(B 4

<]G -+

5 U&

1

% 6$>

#>

51

%f>(

>%

&

H%

( 1 -

? --

<B - 6%in

# 61 /)

% ( / H%&

- .

-61B

&

( / 6>_

<1

# E 61 /) H%&

,%

%(

<$

6i

# /)

% ( / H%&

45 .

<@6$

6B

\ [G%1

#]

2 7) /(

B)%

6B

#T%

<1

^ /6%$X 2

#$%&' ( /

#%%%' 01

2 45-61 H%&

34&

_?

5 4&

<B

#I61 2 Y 6B%1 UTW

#2 6ij (

<B

<1

*O

&

( / 2 -

-&

69

# 6%$

) - 8V

<G6W 5 /-

# B 4

#?_1

%

(Brown & Chambers,

1996)

.



€%TV

? --

<B -+

\

%&b6W B

) 6ij )T

# 51 .

1

<X

<1

<]

/-

%k' /61 /E=

#b.

*

*b8V

\ [G%1 /)6

# 51

<B

<

HX Y%>V

< ,(

/(

%=&

# -5 3 g2b

4&

# B

*b8V

\ [G%1

<1 /X

#&61 -

<-

# - -)V ) 6B 5 -

<-

# -

l%&) /6 -

#&61 69 -6%$

(Arual, 1994; Spotts

& Sandesson, 1994)

.

r(

2

€%TV -

<%2 3%&b6W

#1%&-

<1

#%&b6W 4&

<S 2 6^

m

*9

%

* )

,W A S

# Y

$;

% 4 - 1

% 6ij

-1 ) )- E=

/

; 1

% A 2 )-

&

D(

4

A_1 51 - E 4

<1

*O ) + / G

%

5 ) - I

% 2)?S 69

$

% -6 . - ' -E?%'

# -5 4EX -E1 b6W

%&

( 3

<X /(

6= -

(9)

!"#

:

$%&

# Pichia guilliermondii

...

R

%&b6W 2

<>X /(- d_

\?I -6B

3%&b6W ,%

4%G0W

#1;

%&b6W

(aw)

)

4?B 6>_

-

#a%V 1 4%G0W

#1;

%k' /61

A ,W /$

6>_

-

#.

Y6

%&b6W

(Mokiou & Magan, 2002)

-

#&61 ) A 2;

69 -6%$

.

<1 B -61

\ U%V 4?B

#0O 2

4>%9 1

# B b1 2

* )6

€%TV -

<%2

# 51

<]

1

\ 8V H&

)

% -

%I 2)?B 69

-6%$

.

يراﺰﮕﺳﺎﭙﺳ

A()s' 1 -&

2

*]

#(=? 2;

u -6' V 1

=?- 6E ) /]>(

<>%>O

e5B g6V

B6&

DI eE 76E />V

6W ) DI eE

<>.W 26W6&

]%

g+

5

<B

1

<%&)

$=

H6 6]?

)

#-9 -I

261

# - .

%f>(

2 DI eE

%5 2

<B

-

< ,+

/;

€%TV / -6B

<>%>O

#9 ) 6]?

# -5 .

REFERENCES

1. Abadias, M., Usall, J., Teixido, N. & Vinas, I. (2003). Liquid formulation of the postharvest biocontrol agent Candida sake CPA-1 in isotonic solutions. Phytopathology, 93, 436- 442.

2. Abadias, M., Teixido, N., Usall, J., Benabarre, A. & Vinas, I. (2001). Viability, efficacy and stability of freeze-dried biocontrol agent Candida sake using different protective and rehydration media. Journal of Food Protection, 64, 856-861.

3. Abadias, M., Teixido, N., Usall, J., Vinas, I. & Magan, N. (2000). Solute stresses affect growth patterns, endogenous water potentials and accumulation of sugars and sugar alcohols in cells of the biocontrol yeast candida ske. Journal of Applied Microbiology, 89, 1009-1017.

4. Alavifard, F. (2008). Studies on biological control of grey mold in apple by yeasts and their mechanisms of antagonism. M.Sc. dissertation, University of Tehran. 51pp. (In Farsi).

5. Arual, J. (1994). Emerging technologies for the control of post-harvest diseases of fresh fruits and vegetables. In: C.L. Wilson and M.E. Wisniewski, Editors, Biological Control of Postharvest Diseases–

Theory and Practice, CRC Press, Florida, pp. 1–7.

6. Bateman, R., Carey, M., Morre, D. & Prior, C. (1993). The enhanced infectivity of Metarhizum flavoviridae in oil formulations to desert locust at low humidities. Annals Applied Biology, 122, 145-152.

7. Bora, T., Ozakhtan, H., Gore, E. & Aslan, E. (2004). Biological control of Fusarium oxysporum f. sp.

melonis by wettable powder formulations of the two strains of Pseudomonas putida. Journal of Phytopathology, 152, 471-475.

8. Brown, G. E. & Chambers, M. (1996). Evaluation of biological products for the control of postharvest diseases of Florida citrus. In: Proceedings of the Florida State Horticultural Society, 109, 278-282.

9. Caffarelli, V., Rapagnani, M. R., Letardi, A., Triolo, L., Santaroni, P. & Lacia, B. (1999). Pesticide residues in horticultural product and carcinogenic risk for consumers. In: Del Re AAM, Brown CD, Capri E, Errera G,Evans SP, Trevisan M (eds) Human enviromental exposure to xenobiotics. La Goliardica Pavese, pavia, pp 665-669.

10. Christoph, R., Shrinivasa, N. & Stephane, B. (2004). Determination of water content in powdered milk.

Food chemistry, 86, 457-464.

11. Chung, S., Mi-Lim, H. & Kim, S. D. (2007). Formulation of stable Bacillus subtilis AH18 against teperature fluctuation with highly heat-resistant endospores and micropore inorganic carriers. Journal of Applied Microbiology and Biotechnology, 76, 217-224.

12. Connick, W. R. (1988). Formulation of living biological control agents with alginate. ACS-Symposium, 371, 241-250.

13. Droby, S. & Chalutz, E. (1994). Mode of action of biocontrol agents of postharvest diseases. In:Wilson, C.L. Wisniewski, M.E., (Eds), Biological control of postharvest diseases:Theory and Practic. CRC Press, Boca Raton, pp.63-75.

14. Druvefors, U. A. (2004). Yeast biocontrol of grain spoliage moulds–mode of action of Pichia anomala. Doctor’s dissertation. Swedish University of Agricultural Sciences, 44 pp.

15. Eckert, J. W. & Ogawa, J. M. (1988). The chemical control of post- harvest diseases: Deciduous fruits, berries, vegetables and root /tuber crops. Annual Review of Phytopathology, 26, 433–469.

16. Elzein, A., Kroschel, J. & Muller-Stover, D. (2004). Optimization of Storage Conditions for Adequate Shelf-Life of Pesta Formulation of Fusarium oxysporum “Foxy 2”, a Potential Mycoherbicide Striga:

(10)

Effect of Temperature, Granules Size and Water Activity , Biocontrol Science & Technology, 14, 545-559.

17. Gholamnejad, J. (2009). Studies on biological control of blue mold in apple by some yeast isolates and their mechanisms of antagonism. M.Sc. dissertation, University of Tehran. P 152. ( In Farsi).

18. Gholamnejad, J., Etebarian, H. R., Sahebani, N. & Roustaee, A. (2009). Characterization of biocontrol activity of two strain from Iran against blue mold apple in order to reduce the environmental pollution.

Journal of International Environmental Application & Science, 4, 28-36.

19. Janisiewics, W. J. & Jeffers, S. N. (1997). Efficacy of commercial formulation of two biofungicides for control of blue mold and gray mold of apples in cold storage. Crop Protectection, 16, 629–633.

20. Jijak, M. H., Lepoivre, P. & Grevesse, C. (1999). Yeast species for biocontrol of apple post-harvest diseases; An encouraging case of study for practical use. In: Upadhyay RK, Mukerji (eds).

Biotechnological approaches in biocontrol of plant pathogens. Kluwer Academic/Plenum Publishers, New York, pp 31-49.

21. Kinay, P. & Yildiz, M. (2008). The shelf life and effectiveness of granular formulations of Metschinkowia pulcherrima and Pichia guilliermondii yeast isolates that control postharvest decay of citrus fruit. Biological Control, 45, 433-440.

22. Klopper, J. W. & Schroth, M. N. (1981). Development of powder formulation of rhizobacteria for inoculation of potato seed pieces. Phytopathology, 71, 590–592.

23. Lima, G., Ippolito, A., Nigro, F. & Salerno, M. (1997). Effectiveness of Aureobasidium pullulans and Candida oleophila against post-harvest stawbery rots. Postharvest Biology and Technology, 10, 169- 178.

24. Melin, P., Hakansson, S. & Schnurer, S. (2007). Optimisation and comparison of liquid and dry formulations of the bicontrol yeast Pichia anomala J121. Journal of Applied Microbiology and Biotechnology, 73, 1008-116.

25. Melin, P., Hakansson, S., Eberhad, T. H. & Schnurer, S. (2006). Survival of the biocontrol yeast Pichia anomala after long-term storage in liquid formulations and different temperatures, assessed by flow cytometry. Journal of Applied Microbiology, 100, 264-271.

26. Mokiou, S. & Magan, N. (2002). Ecophysiological manipulation of the fermentation process improves viability of the biocontrol yeast Pichia anomala. Biocontrol of Fungal and Bacterial Plant Pathogens.

IOBC WPRS Bulletin, 25 (10), 395-398.

27. Muller-Stover, D., Thomas, H., Saureborn, J. & Kroschel, J. (2004). Two granular formulation of Fusarium oxysporum f. sp. Orthoceras to mitigate sunflower broomrape Orbanche Cumana Biocontrol, 49, 595-602.

28. Paulitz, T. C. & Belanger, R. R. (2001). Biological control in greenhouse systems. Annual Review of Phytopathology, 39, 103-133.

29. Shabana, Y. M. & Sauerborn, J. (2003). Granular pesta formulation of Fusarium oxysporium f. sp.

Orthoceras for biological control of sunflower broomrape: efficacy and shelf-life. Biological Control, 26(2), 189-201.

30. Sparado, D. & Gullino, M. L. (2004). State of the art and future prospects of the biologocal control of postharvest fruit diseases. Inter. Journal of Food Microbiology, 91 (2), 185-194.

31. Spotts, R. A. & Sandesson, P. G. (1994). The post-harvest environment and biological control. In: C.L.

Wilson and M.E. Wisniewski, Editors, Biological Control of Postharvest Diseases-Theory and Practice, CRC Press, London, pp. 43–56.

32. Usall, J., Texido, M., Fons, E. & Vinas, I. (2000). Biological control of blue mould on apple by a strain of Candida sake under several controlled atmosphere conditions. Food Microbiology, 58, 83-92.

33. Vero, S., Mondino, P., Burgaeno, J., Soubes, M. & Wisniewski, M. E. (2002). Chracterizatioin of biological activity of two yeast strains from Uruguay against blue mold of apple. Postharvest Biology and Technology, 26, 91-98.

34. Wilson, C. L. & Wisniewski, M. E. (1994). Biolgical control of postharvest diseases – Theory and Practic. CRC Press, Boca Raton, Florida, 182pp.

(11)

!"#

:

$%&

# Pichia guilliermondii

...

Referensi

Dokumen terkait

Labor-intensive potential factor has a negative and significant effect, while the labor productivity of LMI and domestic investment has a positive and significant

[r]