mme.modares.ac.ir
1
* 2
3
1 - )
2 - )
3 - )
* 1698715861
07 :
1393
: 06 1393 06 : 1393
. .
. .
. .
9 / 16 %
6 /2 %
Numerical and Experimental Study of Diamond Collapse of Thin Wall Tube Energy-Absorber with Caps under Dynamic Axial Loading
Alireza Nadaf Oskouei
1*Hossein Khodarahmi
2, Mojtaba Pakian Booshehri
3Department of Mechanical Engineering, Imam Hossein Comprehensive University, Tehran, Iran P.O.B. 16535-187 Tehran, Iran, [email protected]
A RTICLE I NFORMATION A BSTRACT
Original Research Paper Received 29 October 2014 Accepted 27 November 2014 Available Online 27 December 2014
One of the most important devices for absorbing energy of the impact is circular tubes which absorb energy in different modes of plastic deformation. But one of the most important modes of deformation is dynamic progressive buckling caused by the axial collapse. This mode has the most energy absorption. In this study, the behavior of thin walled tubes (with caps) which have fossa near the end edges of the tube has been investigated in numerical and experimental way. This is contrary to the previous researches on energy absorption which used the quasi-static form. To carry out experimental tests, drop hammer machine has been used. In the numerical part, capabilities of Abaqus have been employed. The results show that caps improve energy absorption, thus more energy is absorbed in less length crushing, and the up and down fossa of the tube causes the maximum collapse force to occur with delay. Also, these absorbers have linear behavior in absorbing energy with respect to the crushing length and the average collapse force has not been changed by increasing the hammer weight. An experiment was conducted to assess the collisions with the same kinetic energy to study strain rates in four collisions. It was seen that reduction of 16.9 percent in strain rate increases 2.6 percent of the crushing length.
Keywords:
Absorbing energy Circular tubes
Dynamic Progressive buckling Diamond Collapse
1 - .
. . ]
1 [ .
. ]
2 [ .
[ Downloaded from mme.modares.ac.ir on 2023-12-07 ]
-
. ]
3 [ . .
] 4 .[
.
] 5 [ .
. ] 6 .[
] 7 [ .
. ]
8 [ .
. 2000 100
] 9 [ . -
100 . ]
10 [ . .
] 11 [ .
.
30 96
] 12 [ .
. 13 ]
. [
.
( )
.
.
2 -
2 - 1 -
1
. .
2
. 2/
cm13 25
cm/5
21
mm/0 . 250
.
. 7/
cm0 . 5 cm
.
200
GPa380
MPa. 3
– -
1 ( )
2
[ Downloaded from mme.modares.ac.ir on 2023-12-07 ]
3 -
STM-20
( )
JANAF
. –
3
2 - 2 -
. 4 .
) (
w)
. (
h. 5
. .
78
m/2
.
S S1S2
S3
S4
. S
3-n S3.
S
5.
S3
)
. (
2 - 3 -
6.12 1 2
.
1Abaqus 2Explicit
4
5
. .
E=200 GPa 0.29
- .
[ Downloaded from mme.modares.ac.ir on 2023-12-07 ]
S1
S2
S3
S4
5
m/s. 5
. 0050 /0 0014 /0 0024
/0 0018 /0
0018 /0 .
S4R
3 -
3 - 1 - 6
1
. ) 80
D/t90
. .
6 7 8
9 .
1
) (
kg) (
m) (
cm1
S1
2/
6 78 /2 3/
3 1
2
S2
9
78 /2 2/
6 5
3
S3
7/
10 78 /2 3/
7 6
4
S4
2/
12 78 /2 4/
9 11
5
S3-n
7/
10 78 /2 37 /8 10
6
S5
17 75 /1 15 /8 8
6
7
8
9
. .
.
S3
S4
S1
S2
S3
S4
14 ]
. [
) 1 ( .
) 1 P
mean(
M
p-
3 n+
2n tan (
2n) D t
Mp
) 2 (
) 2 ( M
p 0( t
24 )
n
[ Downloaded from mme.modares.ac.ir on 2023-12-07 ]
4 .
D t
0
. 1
1/
N2123 .
.
.
2
) 3 (
g
.
h= ( 3 )
78
m/2
4/
m/s7 .
2
.
30
. %
1/
m/s5
S1
2/
kg6
9
kgS
25 8/
kg2 4 -
. .
700
g1/
m/s5 1/
9 .
S
3.
5/
kg4 5
900
g7/
11
.
S4
6
kg10
.
600 g
8/
7 .
733 g
1/
m/s5 5/
9 .
46
kg/5
71
)
. (
S3-n
2
)
(
J)
(
m/s1
S1
70 7/
4
2
S2
02
/ 128 3/
5
3
S3
98
/ 154 3/
5
4
S4
46 / 180 4/
5 .
10
S3
. 37
cm/8 07
cm/1
10
. .
.
.
11
S5
S5
S3
.
S5
S3
.
.
.
S1
–
S4
12
.
S3
S4
3 - 2
-
. -
10
S3-n
S3
[ Downloaded from mme.modares.ac.ir on 2023-12-07 ]
S5
11
- 12
-
) (
S3
S4
.
-
. . 13
14 15 -
.
3
. 16
17 -
.
S1
S4
13
14
15
3
) (
kg) (
cm1
S1
2/
6 4 2
2
S2
9
03 /6 3
3
S3
7/
10 4/
7 5
4
S4
2/
12 5/
8 7
5
S5
17 69 /7 5
16
[ Downloaded from mme.modares.ac.ir on 2023-12-07 ]
– 17
18 19 20 21
S2
S3
. .
S2
03 /6 .
.
y.
-
.
.
.
. 22 -
S
4.
7 15
ms18
S2
S3
19
S2
20
S3
21
S4
– 22
.
23 .
S1
59 / 77
17
msS2
43 / 112 25
msS3
S4
72 / 133 42 / 152
28 32 .
ms[ Downloaded from mme.modares.ac.ir on 2023-12-07 ]
24
.
. ...
S1
59 / 77
81 / 70
26 / 91
%
S2
S3
S4
32 / 101 41 / 122 9/
138
11 / 90
% 54 / 91 %
12 / 91
. %
25 26
S2
S4
.
. 5
ms.
23
24
25
S2
26
S4
. -
.
)
( .
.
.
27 –
.
. 150
26
28 .
)
4 (
) 4 (
= 1
.
2000
N.
– . .
S3
- 69
/ 133
4/
cm7 1806
N.
S4
S4
– 27
[ Downloaded from mme.modares.ac.ir on 2023-12-07 ]
S4
– 28 43 –
/ 153 5/
cm8
1805
N.
S5
966
m/s/3 17
kg S3.
29
S5
.
69
cm/7 . 30
.
S3
7/
kg10
5
m/s5/
N.s53
75 / 133
S5
17
kg966
m/s/3 42
N.s/ 67
69 / 133 .
S5
.
30
S5
7
ms S3.
S3
S5
64 /2 19 /2
s-1
. 5 14
kg
. 4
. 9/
16 %
3/
2 %
S5
29
S5
30
4
) (
kg) (
m/s) (
K.s) (
ms) (
cm)
s-1
(
1 5 31
/7 55 / 36 18 18 /7 98 /3
2 7/
10 5
5/
53 28 41 /7 64 /2
3 14 37
/4 18 / 61 31 66 /7 47 /2
4 17 966 /3 42 / 67 35 69 /7 19 /2
4 -
.
1/
m/s5 70
5/
9
.
.
9 7/
kg10
.
.
[ Downloaded from mme.modares.ac.ir on 2023-12-07 ]
5 -
) CF (N
) (m
) (GPa ) KE (J
n
) PE (J
Pmean
) (N
Pmax
) (N
S1,2,3,4,5
) W
(kg
) t (s
t )
(ms
) (cm
6 -
[1] JM. Alexander, An approximate analysis of collapse of thin-walled cylindricalshells under axial load, Mechanical and Applied Mathematics, Vol. 13, pp. 5-10 1960.
[2] AG. Pugsley, M. Macaulay, The large-scale crumpling of thin cylindrical columns Mechanical and Applied Mathematics, Vol. 12, pp. 1-9 1960.
[3] W. Johnson, PD. Soden, In extensional collapse of thin-walled tubes under axial compression, Strain Analysis, Vol. 12, pp. 317-330, 1977.
[4] S. Salehghaffari, M. Tajdari M. Panahi, F. Mokhtarnezhad, Attempts to improve energy absorption characteristics of circular metal tubes subjected to axial loading, Thin-Walled Structures, Vol. 48, No. 6, pp. 379- 390, 2010.
[5] MM. Abedi, A. Niknejad, GH. Liaghat, M. ZamaniNejad, Theoretical and experimental study on empty and foam-filled columns with square and rectangular cross section under axial compression, Mechanical Sciences Vol. 65, No. 1, pp. 134-146, 2012.
[6] A. Niknejad, G.H. Liaghat, H. Moslemi Naeini, A.H. Behravesh, Theoretical Calculation of the Instantaneous Folding Force in Single-Cell Square Column under Axial Loading, Modares Mechanical Engineering Vol. 10, No. 3, pp. 21-30, 2010. (I Persian).
[7] A. Niknejad, B. Rezaei, GH. Liaghat, Empety circular metal tube in the splitting proces- theoretical and experimental studies, Thin-Walled Structures, Vol. 72, pp. 48-60, 2013.
[8] S.J. Hosseinipour, G.H. Daneshi, Energy absorbtion and mean crushing load of thin-walled grooved tubes under axial compresstion, Thin- Walled Structures Vol. 41, No. 1, pp. 31-46, 2003.
[9] H. Khodarahmi, M. Abasi, Analitical and numrical methods of design of grooved cylindrical shock absorber, in The 13th International Conference on Mechanical Engineering, Esfahan, Iran, 2006. (In Persian).
[10] A. Naddaf Oskouei, H. Khodarahmi, M. Rezvani, Dynamic progressive buckling of circular tubes under high speed axial impact loadings, Aerospace Mechnics Vol. 9, No. 4, pp. 17-35, 2013. (In Persian).
[11] K. Yamasaki, J. Han Maximisation of Crushing Energy Absorption of Cylindrical Shells, Adva. Eng. Soft, Vol. 31, No. 6. pp. 425-423, 2000.
[12] J. Zamani, B. Baran, A. Rafahi, An experimental analysis of single and double thin-walled structure under static load, in The 22th International Conference on Mechanical Engineering Ahvaz, Iran, 2014. (In Persian).
[13] A. Ghamarian, M.T. Abadi Axial Crushing Analysis of End-capped Circular Tubes, Adva. Thin walled structure, Vol. 49, No. 6 pp. 743-752, 2011.
[14] A.A. Singace, Axial Crushing Analysis of tube deforming in the multi-lobe mode, Mechanical Sciences, Vol. 41, No. 7, pp. 865-890, 1999.
[ Downloaded from mme.modares.ac.ir on 2023-12-07 ]