• Tidak ada hasil yang ditemukan

曙/b> 晃璘偵

N/A
N/A
Protected

Academic year: 2024

Membagikan "曙/b> 晃璘偵"

Copied!
11
0
0

Teks penuh

(1)

mme.modares.ac.ir

1

*2

2

- 1

- 2

* -143

14115 [email protected]

25 : 1394

: 30 1395

: 18 1395

. .

. . .

. .

.

Investigation on effect of exhaust vents location on reduction of pollution in enclosed car parks

Javad Amnian, Mehdi Maerefat

*

, Ghasem Heidarinejad

Mechanical Engineering, Tarbiat Modares University, Tehran, Iran.

* P.O.B. 14115-143, Tehran, Iran, [email protected]

A

RTICLE

I

NFORMATION

A

BSTRACT

Original Research Paper Received 14 February 2016 Accepted 18 April 2016 Available Online 07 May 2016

The correct placement of supply air inlets and pollution extraction outlets plays an important role in increasing indoor air quality and reducing the amount of pollution in enclosed car parks. In this paper the effect of exhaust locations, exhaust height and parking dimensions on indoor air quality of car park is investigated with numerical simulation. For this purpose conservation equations are solved with openFoam. For validation, air flow and pollution are simulated in a simple car park and compared with experimental results. In the next section, the effect of exhaust vent locations on increasing indoor air quality is investigated and compared with other solutions. The result of numerical simulation indicates that, if inlets and exhausts are located in end sides of car park and if exhaust vent locations are in the optimized height, the indoor air quality in the car park is increased. In this paper, the graph of CO concentration in different heights is explained and by using it, the optimum range for exhaust vent locations is proposed. Moreover, the standard criteria for using jet fans is expressed and the results showed that, for ventilation of car parks with length more than criterion, jet fans should be used.

Keywords:

Pollution dispersion numerical simulation air inlet position exhausts position jet fan

-1

.

. .

. .

] [ 1 .

] [ 2

1 2

1 Supply Shaft

2 Exhaust Shaft

[ Downloaded from mme.modares.ac.ir on 2023-12-07 ]

(2)

1

.

2

. . .

] - 1

[ 4 .

3

8 ppm

9 9

ppm ] 35

[ 1 . 7.5

] , 1 [ 5 .

. -

] [ 1 . . .

] [ 6 .

. ]

[ 7

.

.

] [ 8

4

. .

5

. ]

, 9 [ 10

.

. ]

[ 8 .

1 Supply air inlet

2Exhaust

3 ASHRAE

4 Fluent

5

.

.

.

] [ 9 .

. -

.

.

-2

-

5

.

6

. k-

) ( 1 ) ( 7 ]

[ 11 :

) ( 1 + ( ) = 0

) ( 2 ( )

+ ( )

= + +

Sm

.

) ( 3

) ( 3

= +

) ( 2

.

) ( 4

= 2

3 +

µt

:

) ( 5

=

:( )

) ( 6 ( )

+ ( )

= + + Pr +

5 reactingFoam

6 OpenFoam

[ Downloaded from mme.modares.ac.ir on 2023-12-07 ]

(3)

Sh

Pr

t

. 0.85

) ( 7 ( )

+ ( )

= + Sch +

SC

Sch

t

)

( ]

[ 12 .

k

) ( 8 ( )

+ ( )

= + + +

) ( 9

( ) + = +

+ ( + )

Gk

Gb

. .

) ( 10

=

= g Pr

) ( 11

= 0.09, = 1.44, = 1.92, = 1.0, = 1.3

-3 1

. ]

[ 9 .

25 ) A1

× 2.85 3

) A2

× 2 ( 3

) A3

× 2 . ( 2

-

S1 S2 E1 . E3

14

S 15 E

[

9,8

]

.

0.2 0.4 5.6

.

Fig. 1 The studied Car park geometry [

9

] ]

1

[

9

- 3

- 1

A1

1

A2

2.4 ) -2.5

.( A2 A3

)

2

.( A2

S1 S2 E1

E3

.

A1 A3 10

.

k

1.95 -4.45 )

.(

] 5 [ 9 .

) - 20

( .

. 20

- 3 - 2

. 1

.

1200000 .

2 - M1

. 2

1200000 .

1200000 .

Fig. 2 Grid size independency

2

1 Velocity Inlet

2 Pressure Outlet

1.5 2 2.5 3 3.5

0 0.2 0.4 0.6 0.8 1

H ei g h t (m )

Velocity magnitude (m/s)

8.00E+05 1.00E+06 1.20E+06 1.40E+06

[ Downloaded from mme.modares.ac.ir on 2023-12-07 ]

(4)

- 3 - 3

) 6

] [ 4 .(

) / = 2 × 1.5/30.8 × 3.6 = 0.027 (

. - . -

] [ 13 . . . ) ( A1

. 10

20 ) 25

( .

. ] [ 9 . .

- 3 - 4

1 .

M1 M2 M3 .

-

3

-

4

-

1 M1

M2 M1 M2 20

) ( 1200 ]

[ 9 .

. 0 1200

. 3

] [ 9

.

1

] 70 [ 14 .

4 . 5

1 Idle

] [ 9

. -

. -

] [ 15

.

. .

.

.

Fig. 3 CO generation in car park 3

Fig. 4 Comparison of numerical simulation and measurement results, position M1

4 M1

Fig. 5 Comparison of numerical simulation and measurement results, position M2

5

M2

2.23

2.78

2 2.2 2.4 2.6 2.8 3

0 300 600 900 1200

C O G en er at io n ( g /s )

Time (s)

0 5 10 15 20

0 200 400 600 800 1000 1200

C O ( p p m )

Time (s) Experiment [8]

Present Study

0 5 10 15 20

0 200 400 600 800 1000 1200

C O ( p p m )

Time (s) Experiment [8]

Present Study

[ Downloaded from mme.modares.ac.ir on 2023-12-07 ]

(5)

-

3

-

4

-

2 M3

] [ 9 ) M3

( 1

) 2 ( 7200

5 . 8

2 . 6

] [ 9 300

. ) 900

( 15

. .

5 8

. 1

] [ 9 . 7

] [ 9 .

)

. ( 6

Fig. 6 CO generation in car park base geometry

6 1

Table 1 Air mass flow rate to the car park in different modes

Fig. 7 Comparison of numerical results and ref. [9], Position M3 ] 7

[ 9 M3

-4

. .

- 4 - 1

1 ]

1

[ 16 . . .

-

. 2

. 7

5 8

. 1

.

.

) 3 5

8

7 .( 10

/ = (10/7) = 2.91 .

( )

8 5

.

- :

] [ 16 .

2

] 2 , 1 , 3 [ 17

Table 2 pollution and air change limits in standards [1,3,17]

1 Local Ventilation

2 Fully mixed flow

4.6

0.7 3.6

4.4

3.1

2.6 2.5

0 1 2 3 4 5

0 900 1800 2700 3600 4500 5400 6300 7200

C O G en er at io n ( g /s )

Time (s)

0 10 20 30 40 50 60

0 900 1800 2700 3600 4500 5400 6300 7200

C O C o n ce n tr at io n ( p p m )

Time (s)

5 ACH, Ref. [8] 5 ACH, Base Geometry 8 ACH, Ref. [8] 8 ACH, Base Geometry

/

5

8

A1 2.4 m3/s

2.4 m3/s

A2 -2.5 m3/s

-2.5 m3/s

1.95 m3/s

3.84 m3/s

-4.45 m3/s -7.6 m3/s

) ) (

ppm

)

(1 8 )

(35 9 7.5 lit s-1m2

8

35 -

8

50 6-10 ACH

8

25 7.5 lit s-1m2

- -

3.8 lit s-1m2

[ Downloaded from mme.modares.ac.ir on 2023-12-07 ]

(6)

1

.

2

.

] , 18 [ 19 . 1

( ) .( )

. S1

E1 E2

E3 S2

) (

. A2

.

A1 2.4

A2 -

7 1.96

.

) (

. . 5 . 6

M3

( )

. 9 5

M3 M3

. .

( )

) (

.

10 5

8

( )

.

Fig. 8 Car park with improved outlet 8

1 Longitudinal Ventilation

2 Displacement Ventilation

Fig. 9 Comparison of base and modified outlet results, Position M3

9 M3

) 1.75

t=2 hour

(

. 5

8 40

26

ppm . 20

a b

. 5 8

50 ppm . 33

.

10

)

. ( 8

] [ 6

. ) % 35

.(

)

3

( 12

4

) ( 13

] , 6 [ 20 .

Cexit

Caverage

Cmax

Cmin

.

3 CO removal effectiveness

4 CO removal efficiency

0 10 20 30 40 50 60

0 900 1800 2700 3600 4500 5400 6300 7200

C O C o n ce n tr at io n ( p p m )

Time (s)

ASHRAE

5 ACH, Base Geometry Improved Outlet

) ( 12

=

) ( 13

=

[ Downloaded from mme.modares.ac.ir on 2023-12-07 ]

(7)

Fig. 10 CO distribution, height= 1.75 m, time= 2 hour 10 1.75

t=2 hour

. 3

. .

. 4

5 8 .

8

.

- 4 - 2

. .

.

.

. 1

8 . 11

11

H

ND

=

h/H

h H

H

ND

.

1 ) 2.5

-

H

ND

0.27

. ( 0.7

1

) 16

) ( 12

11 16

12 .(

] 3 [ 20 Table 3 Ventilation flow categories [20]

4

Table 4 CO removal effectiveness and removal efficiency

0-1 0- 50%

1

50%

1-2

50- 100%

2 100%

5 0.56

27.3%

8 0.88

41.5%

1.72 83%

[ Downloaded from mme.modares.ac.ir on 2023-12-07 ]

(8)

Fig. 11 CO concentration versus non dimensional height 11

0.6 0.65

.

11

. .

8 .

.

hvent

H

H

exh

=

hvent

/H .

16 . 12 -

10

.

. 13

.

) H

exh

( 0.5 - 0.7

. 0.5 0.7

. -

14 0.5 0.7

.

.

.

.

ppm 52

. . 15

-

.

Fig. 12 CO measurement points 12

Fig. 13 CO concentration in different heights 13

0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70

22 24 26 28 30 32 34 36 38 40 42 44 46 H

ND

Average CO Concentration (ppm)

Base Case

Improved Outlet

0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90

20 25 30 35 40 45 50 55 60

H

ND

CO concentration (ppm)

Hexh = 0.1 Hexh = 0.2

Hexh = 0.3 Hexh = 0.4

Hexh = 0.5 Hexh = 0.6

Hexh = 0.7 Hexh = 0.8

[ Downloaded from mme.modares.ac.ir on 2023-12-07 ]

(9)

Fig. 14 Effect of exhaust height on average CO concentration 14

Fig. 15 Effect of exhaust height on CO removal efficiency and effectiveness

15

- 4 - 3 .

] [ 21 . 54

54 . 54

)

) ]

[ 4 .( 75

] [ 21 60

30 2.85

) .( 16

80

% 25

) ( 20

] , 4 [ 17 . 6

0.4 1 6 0.8

1.4 . 16

[1]

. )

(

N

) (

E

)

) (

A

(

T

) (

C

) ( 14

% 75 % 90

( )

] [ 4 . . 5

18.96

] [ 1 . 16

( )

20 0.1

0.25

3.16 70

) .(

2

. 16

ppm . 54

ppm ) 42

16

ppm .( 60

. .

.

) 2

( [3]

)

1.75

.(

. .

) 5 ( 14

Table 5 Amount of parameters of equation 14

)N (

- 20

)E (

g/min

18.96

E0

) (

g/(h.m2)

26.7

)A (

m2

1800

)C (

) lit/s)/(m2/s (

0.000481

)T (

s 120

qvent

)

( lit/(s.m2)

2.73

)ACH (

- 3.45

qexhaust

) (

m3/s 5.8

20 25 30 35 40 45 50 55

0 0.2 0.4 0.6 0.8 1

A v er ag e C O ( p p m )

H

exh

30 40 50 60 70 80 90 100

0.7 0.9 1.1 1.3 1.5 1.7 1.9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C O r em o v al E ff ic in cy

C O r em o v al E ff ec ti v en es s

H

exh

effectiveness efficiency )

( 14 q = C T N E × 60

A E × 100

[ Downloaded from mme.modares.ac.ir on 2023-12-07 ]

(10)

Fig. 16 CO distribution in car park, h=2 m, t=60 min

16 t=60 min 2

5 14

. ]

[ 22 . -

100 5

. 0.05

. . 90

1

2.2 . 200

1 . 0.4

2 3

. 16

. .

1 Induced fan

2 Pressure jump

3 Fan boundary condition

ppm 20 ppm

. 31 .

1.04 . 1.65

%

% 49 80

-5

k- .

-

. .

.

.

. . 2.91

-

% . 35

:

0.5 0.7 .

:

. 54

%

% 49 . 80

-6 ) A

m2

(

C1 , C2

Ci

c’i

i

Cµ

CP

)

J.kg-1K-1

(

[ Downloaded from mme.modares.ac.ir on 2023-12-07 ]

(11)

)

D m2s-1

(

E, E

0

)

gmin-1

(

)

h Jkg-1

( ) (

m

)

H

(

m

H

exh

)

k m2s-2

( )

kgs-1

(

N )

P J.s-1

(

)

p kgm-1s-2

(

Pr

t

)

Q m3s-1

(

Sch

t

SG

)

kg m-2s-2

(

Sh

)

kg m-1s-3

(

Sij

)

s-1

(

) T (

K

)

t

(

s

Ui

)

ms-1

(

u’i

) i

ms-1

(

xi

)

i

(

m

xj

)

j

(

m

-7

[1] ASHRAE Handbook, HVAC Applications (SI), chapter 15, 2011.

[2] U.S. EPA. 2010, Final Assessment: Integrated Science Assessment for Carbon Monoxide, U.S. Environmental Protection Agency (EPA), 2010.

[3] BRITISH Standard, Components for smoke and heat control systems, Part 7: Code of practice on functional recommendations and calculation methods for smoke and heat control systems for covered car parks, BS 7346-7, 2006.

[4] S. Wilbur, M. Williams, R. Williams, F. Scinicariello, J. M.

Klotzbach, G. L. Diamond, M. Citra, Toxicological profile for carbon monoxide, 2012.

[5] M. Krarti, A. Ayari, Ventilation for enclosed parking garages, ASHRAE Journal, Vol. 43, No. 2, pp. 52-57, 2001.

[6] J. C. Ho, H. Xue, K. L. Tay, A field study on determination of carbon monoxide level and thermal environment in an underground car park, Building and Environment, Vol. 39, No. 1, pp. 67-75, 2004.

[7] K. Papakonstantinou, A. Chaloulakou, A. Duci, N. Vlachakis, N.

Markatos, Air quality in an underground garage: computational and experimental investigation of ventilation effectiveness, Energy and Buildings, Vol. 35, No. 9, pp. 933-940, 2003.

[8] A. F. Elsafty, Abo Elazm, M. M. , Improving air quality in enclosed parking facilities using ventilation system design with the aid of CFD simulation, International Review of Mechanical Engineering, Vol. 3, No. 6, pp. 796- 807, 2009.

[9] E. Asimakopoulou, D. I. KOLAITIS, M. A. FOUNTI, CO dispersion in a car-repair shop: An experimental and CFD modelling study, Proceeding of the Seventh International Conference on CFD in the Minerals and Process Industries.

Melbourne, Australia, 2009.

[10]E. K. Asimakopoulou, D. I. Kolaitis, M. A. Founti, Experimental and computational investigation of CO production and dispersion in an automotive repair shop, Indoor and Built Environment, Vol.

22, No. 5, pp. 750-765, 2013.

[11]Q. Chen, Z. Zhang, Prediction of particle transport in enclosed environment, China particuology, Vol. 3, No. 06, pp. 364-372, 2005.

[12]A. Faghri, Y. Zhang, Transport phenomena in multiphase systems:

Academic Press, 2006.

[13]K. Watanabe, K. Matsuno, Moving computational domain method and its application to flow around a high-speed car passing through a hairpin curve, Journal of computational Science and Technology, Vol. 3, No. 2, pp. 449-459, 2009.

[14]M. Ehsan, M. Shah, M. Hasan, S. Hasan, Study of Temperature Profile in automotive exhaust systems for retrofitting catalytic converters, Proceedings of the International Conference on Mechanical Engineering (ICME2005), 2005.

[15]Y. Tominaga, T. Stathopoulos, Numerical simulation of dispersion around an isolated cubic building: model evaluation of RANS and LES, Building and Environment, Vol. 45, No. 10, pp. 2231-2239, 2010.

[16]M. Y. Chan, W. K. Chow, Car park ventilation system:

performance evaluation, Building and Environment, Vol. 39, No. 6, pp. 635-643, 2004.

[17]International mechanical code, IMC 2012, 2012.

[18]D. Chen, Periodically reversible supply/exhaust ventilation strategy, Building and Environment, Vol. 46, No. 12, pp. 2590- 2597, 2011.

[19]T. Gil-Lopez, A. Sanchez-Sanchez, C. Gimenez-Molina, Energy, environmental and economic analysis of the ventilation system of enclosed parking garages: Discrepancies with the current regulations, Applied Energy, Vol. 113, No. 1, pp. 622-630, 2014.

[20]O. Seppänen, Ventilation strategies for good indoor air quality and energy efficiency, International Journal of Ventilation, Vol. 6, No.

4, pp. 297-306, 2008.

[21]J. Wissink, L. Rasmussen, T. v. d. Wielen, M. Jansen, R. v. Beek, Car Park Ventilation Manual, 1st edition., NOVENCO, 2003.

[22]Australian Standard, The use of ventilation and airconditioning in buildings, Part 2: Mechanical ventilation in buildings, 2012.

)

eff m2s-1

(

)

m2s-3

(

)

t m2s-1

(

µ

eff

)

kgm-1s-1

(

µ

t

)

kgm-1s-1

(

)

m2s-1

( )

t m2s-1

(

)

kgm-3

(

k

¯

average

exhaust

exit

inlet

max min

ND vent

[ Downloaded from mme.modares.ac.ir on 2023-12-07 ]

Referensi

Dokumen terkait